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Today's floating-point landscape

Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10%3%  4x1073
fpl6 H 11 5  10%° 5x 1074

fpl28 Q 113 15 10!4932 1x 1073

Low precision increasingly supported by hardware:

e Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM

e Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel
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Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10%3%  4x1073
fpl6 H 11 5  10%° 5x 1074

fpl28 Q 113 15 10!4932 1x 1073

Great benefits:

e Reduced storage, data movement, and communications

¢ Increased speed on emerging hardware (16 x on A100 from
fp32 to fp16/bfloat16)

e Reduced energy consumption (5x with fp16, 9x with bfloat16)
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Today's floating-point landscape

Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10138  4x1073
fpl6 H 11 5  10%° 5x 1074

fpl28 Q 113 15 10!4932 1x 1073

Great benefits:

e Reduced storage, data movement, and communications

¢ Increased speed on emerging hardware (16 x on A100 from
fp32 to fp16/bfloat16)

e Reduced energy consumption (5x with fp16, 9x with bfloat16)
Some risks too:
e Low precision (large u)

e Narrow range
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Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Gefting the performance benefits of low precisions

e While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, ...
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Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Gefting the performance benefits of low precisions

e While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, ...

What space of precisions?
e Arbitrary/custom precisions

e Mixed precision algorithms: small set of widely available
precisions, such as |IEEE arithmetics + bfloat1é

Crux of the matter: how to select the right precision for the right
variable/operation
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How are precisions selected?

e Precision tuning: explore the space of variables of a code
A Does not need any understanding of what the code does
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How are precisions selected?

e Precision tuning: explore the space of variables of a code

A Does not need any understanding of what the code does
¥ Does not have any understanding of what the code does

e Algorithm-based, analysis-based, data-based approaches
The more knowledge about the code we have, the better:

1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions

3. If possible take info account specific data at hand
[llustration of this methodology for numerical linear algebra
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How are precisions selected?

e Precision tuning: explore the space of variables of a code

A Does not need any understanding of what the code does
¥ Does not have any understanding of what the code does

e Algorithm-based, analysis-based, data-based approaches
The more knowledge about the code we have, the better:

1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take info account specific data at hand

[llustration of this methodology for numerical linear algebra

e Mixed precision computing brings new life fo numerical
analysis (rounding error analysis)
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Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular
2. Solve Ly=b and Ux =y

Precision u = computed X satisfies |[x — x|| < f(n)x(A)ul|x]],

with £(A) = [A[[|A~1]
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Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular
2. Solve Ly =band Ux =y

Precision u = computed X satisfies |[x — x|| < f(n)x(A)ul|x]],
with £(A) = [A[A7Y]

An algorithm to refine the solution: iterative refinement (IR)

Solve Axy = b via x; = U™Y(L7b)
while Not converged do
ri = b — AX,'
Solve Ad; = r;via d; = U~1(L™ 1)
Xi+1 = Xj + d
end while

Many variants over the years, depending on choice of precisions
and solver for Ad; = r;
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Error analysis of general IR

[3 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming k(A)u < 1:
Solve Axy = b by LU factorization at precision us
while Not converged do
ri = b — Ax; at precision u,
Solve Adj = r; such that ||d; — di|| < ¢i||d]|
Xi+1 = X; + d; at precision u
end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ¢; < 1, the forward error converges to
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Error analysis of general IR

[3 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming k(A)u < 1:

Solve Axy = b by LU factorization at precision us
while Not converged do
ri = b — Ax; at precision u,
Solve Adj = r; such that ||d; — di|| < ¢i||d]|
Xi+1 = X; + d; at precision u
end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ¢; < 1, the forward error converges to

e Limiting accuracy: depends on u and u, only, can be made
independent of x(A) by taking u, = u?
/- Convergence condition: depends on the choice of solver


https://epubs.siam.org/doi/abs/10.1137/17M1140819

(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization in precision ug
for i=1: nsteps do

ri=hb— Ax; in precision u,

Solve Ad; = r;via d; = U~} (L 1)

Xiy1 = X;i + d; in precision u
end for

ur u u, max k(A) Forward error
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = double
for i=1: nsteps do

r=>b—Ax; u, = double

Solve Ad; = r;via d; = U~} (L 1)

Xiy1 = X;i + d; u = double
end for

ur u u, max k(A) Forward error

Fixed D D D 1016 k(A) - 10716

Fixed-precision
7/32 [3) Jankowski and Wozniakowski (1977) [3) Skeel (1980)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = double
for i=1: nsteps do

r=>b—Ax; u, = quadruple

Solve Ad; = r;via d; = U~} (L 1)

Xiy1 = X;i + d; u = double
end for

ur u u, max k(A) Forward error

Fixed D D D 1016 k(A) - 10716
Traditional D D Q 1016 1016
Traditional

7/32 (2 Wilkinson (1948)  [8 Moler (1967)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = single
for i=1: nsteps do
r=>b—Ax; u, = double
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u, max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 1016 10°16
Low prec. fact. S D D 108 K(A)-10716

Low precision factorization
7/32 [3) Langou et al (2006)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = single
for i=1: nsteps do
r=>b—Ax; u, = quadruple
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u, max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 1016 10°16
Low prec. fact. S D D 108 k(A) - 10716
3 precisions S D Q 108 1016

Three precisions
7/32 [3) Carson and Higham (2018)
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(0O years of LU-IR

LU-IR: reuse LU faAc’rors to solve for d:
di=U"L"1r= IIdi — dil| < f(n)k(A)ug||di]| = ¢ = O(k(A)us)

Solve Ax; = b by LU factorization us = half
for i=1: nsteps do
r=>b—Ax; u, = quadruple
Solve Ad; = r;via d; = U~} (L 1)
Xiy1 = X;i + d; u = double
end for
ur u u, max k(A) Forward error
Fixed D D D 1016 k(A) - 10716
Traditional D D Q 1016 1016
Low prec. fact. H D D 103 K(A)-10716
3 precisions H D Q 103 1016

Only well-conditioned problems can be solved
7/32 with a half precision factorization!



GMRES-IR

GMRES-based IR: [3) Carson and Higham (2017)

* Replace LU by GMRES solver: solve Zd, =T, with GMRES,
where A = U™'L~1A is preconditioned by LU factors

e Rationale:

o k(A) often smaller than r(A)
© GMRES can be asked fo converge fo accuracy u < ug
= Ad =T, is solved with accuracy ¢; = /-i(A)u
o Convergence condition improved from x(A)us < 1to k(A)u < 1
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GMRES-IR

GMRES-based IR: [3) Carson and Higham (2017)

* Replace LU by GMRES solver: solve de =7; with GMRES

where A = U™'L~1A is preconditioned by LU factors
e Rationale:

o k(A) often smaller than r(A)

© GMRES can be asked fo converge fo accuracy u < ug
= Ad =T, is solved with accuracy ¢; = R(A)u

o Convergence condition improved from x(A)us < 1to k(A)u < 1
e The catch: the matrix—vector products are with A=U"1"1A

infroduce an extra K(A) unless performed in higher precision
Solve Ax; =

b by LU factorization at precision us
while Not converged do

ri = b — Ax; at precision u,
Solve U™'L"1Ad; = UL~ 1r; by GMRES at precision u with
products with UT'L™1A at precision u?

Xi+1 = X; + d; at precision u
554 end while



https://epubs.siam.org/doi/abs/10.1137/17M1122918

LU-IR vs GMRES-IR

Using k(A) < (1 + k(A)uf)? we determine the convergence
condition on k(A)

ur u ur  max k(A) Forward error
LU-IR S D Q 108 1016
GMRES-IR S D Q 1016 1016
LU-IR H D Q 103 1016
GMRES-IR H D Q 101! 10~16

GMRES-IR can handle much more ill-conditioned matrices.
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LU-IR vs GMRES-IR

Using k(A) < (1 + k(A)uf)? we determine the convergence
condition on k(A)

ur u u,  max k(A) Forward error
LU-IR S D Q 108 1016
GMRES-IR S D Q 1016 1016
LU-IR H D Q 103 1016
GMRES-IR H D Q 101! 10~16

GMRES-IR can handle much more ill-conditioned matrices.
However:

e LU solves are performed at precision u? instead of ug
= practical limitation
o Increases cost per iteration
o If uis D, requires use of quad precision
o Practical implementations have relaxed this requirement by
9/32 replacing u? with u, with no theoretical guarantee



Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — di[| /|| d||

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
precision u except matvecs at precision u?
Xiy+1 = X; + d; at precision u
end for
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Rethinking GMRES-IR

e Goal: solve Ad; = r; with GMRES and bound ¢; = ||d; — di[| /|| d||

o In what precision do we really need to run GMRES?
o How much extra precision is really needed in the matvec products?

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do

ri = b — Ax; at precision u,

Solve Ad; = r; with preconditioned GMRES at

precision except matvecs at precision Uy
Xiy+1 = X; + d; at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug < u with matvecs at precision up < u?

= FIVE precisions in total!

What can we say about the convergence of this GMRES-IR57
10/32



Two precision GMRES

e Unpreconditioned GMRES in precision u for Ax = b:

o Backward error of order u [3 Paige, Rozloznik, Strakos (2006)
o Forward error of order k(A)u

e Two precision preconditioned GMRES for Ax = b:
o Backward error of order k(A)up + ug

e The matrix-vector products are performed with A=ULA:
y=UTLT A= [T =yl S w(A)up | Al|Ix]]
e The rest is at precision ug

o Forward error of order K(Z)(H(A)up + ug)
o K(A) < (1+ K(A)ug)® = ¢ ~ K(A)%ue (K(A)up + ug)

Side-result: generalization of the backward stability of GMRES to
a preconditioned two-precision GMRES
[2) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)
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Five precision GMRES-IR

Solve Ax; = b by LU factorization at precision us
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
precision except matvecs at precision up
Xiy+1 = X; + d; at precision u
end for

Theorem (convergence of GMRES-IR5)

Under the condition (- + &(A)up)k(A)2us? < 1, the forward error
converges to its limiting accuracy

[ = x|
[l
[8) Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2021)
12/32
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Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fpb4, fp128) there are
over 3000 different combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can
be lowered without worsening either the limiting accuracy or the
convergence condition.

Filtering rules

e u?2<u <u<us ® up, <u,up, =u, up > uall possible
® u, < ug ® ug>u
® up < ug ® ug < Uf, Uug = ug, Ug > us all possible
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Theoretical results

Meaningful combinations of GMRES-IR5 for us = H and u = D.

Convergence Condition

Yo e max(k(A))
LU-IR 2 x 103
B 3 x 10%
H S 4 % 10*
H D 9 x 10%
S D 8 x 106
D D 3 x 107
D Q 2 x 101!

Five combinations between LU-IR and Carson & Higham's
GMRES-IR = More flexible precisions choice to fit at best the
hardware constraints and the problem difficulty.
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

uy =H ug =D

o
T U

100 102 10% 106 108 1
K
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5

converges to a small forward error
uy =H ug =D
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5

converges to a small forward error
up=H ug =S
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Experimental results

Take 100 random matrices with specified k(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5

converges to a small forward error
uy =H ug = H

‘ s ISR Ny
100 102 10% 106 108 1010 1012 1014 1016

Similar picture on many types of matrices
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4 x 4 matrix multiplication in 1 clock cycle:

D = A B + C

xocxox | I N

fp32 fol6 fol6 fp32

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs
fp32, 16x on A100)
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+

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs
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+
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NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs V100 carry out a
4 x 4 matrix multiplication in 1 clock cycle:

D = A B + C

+

fp32 fol6 fol6 fp32

e Performance boost: peaks at 125 TFLOPS (8 x speedup vs

fp32, 16x on A100)
e Accuracy boost: let C = AB, with A € R™*", B € R"*P, the

computed C satisfies

Nuyg (fp16)
|C —C| ScnlAllBl, cn =4 2ujs+nusy, (tensor cores)
NU39 (fp32)

16/22 [B Blanchard, Higham, Lopez, M., Pranesh (2020)
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Block LU factorization

e Block version to use matrix—-matrix operations

fork=1:n/b do
Factorize LcUkk = A (with unblocked alg.)
fori=k+1:n/bdo
Solve L,'kukk = Aik and kaUk,- = Ak,' for L,-k and Uk;
end for
fori=k+1:n/bdo
forj=k+1:n/bdo

A,‘j < A,‘j — L,‘kUkj
end for
end for
end for

17/32



Block LU factorization

e Block version to use matrix—-matrix operations

e O(n3) part of the flops done with tensor cores

fork=1:n/b do
Factorize LcUkk = A (with unblocked alg.)
fori=k+1:n/bdo
Solve L,'kukk = Aik and kaUk,- = Ak,' for L,-k and Uk;
end for
fori=k+1:n/bdo
forj=k+1:n/bdo _
Lix + ﬂlG(LL’S) End Ui + ﬂlG(Uki)
Ajj < Aj — LUy using tensor cores
end for
end for
end for
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LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis
and gives same bounds to first order [3) Blanchard et al. (2020)

Standard fpl6 Tensor cores Standard fp32

Nuyg 2uj6 + nusy Nuzy

107% |  ——1fpl6
% 1 —e— tensor cores
I ¥ —e— fp32

107° 2 E

« ]
-6 | .
} k‘\‘\‘\\—\_“‘\o

10-7 W

| | | |
10,000 20,000 30,000 40,000

Matrix size: n

Backward error
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Impact on iterative refinement

Results from [3 Haidar et al. (2018)

200————————— : T T T T —
FP16-TC->64 dhgesv
18 -=@=FP16->64 dhgesv
FP32->64 dsgesv 3
16 ||=)¢=FP64 dgesv I T T L Lt e
140 ]
o 12+
S1of 3
=
[l 8l
6l J
4t 330|
2 L
0

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size
e TC accuracy boost can be critical!

e TC performance suboptimal here, but can reach up to 50

TFLOPS with optimized data movements [3) Lopez and M. (2020)
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Preconditioners other than LU

S W " . —
Compute M~1 ~ A~ and initialize x;
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
precision except matvecs at precision u,
Xiy1 = X; + d; at precision u
end for
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Preconditioners other than LU

S W " . —
Compute M~1 =~ A~! and initialize x;
for i =1: nsteps do
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES at
precision except matvecs at precision u,
Xiy1 = X; + d; at precision u
end for

A better preconditioner implies:

A Smaller k(M™1A)

¥ More expensive to compute/apply

v Larger error in matvecs with M~1A in GMRES
Convergence condition becomes

“i (IMTHA
H(M A) (Wup + Ug < 1
20/32



Mixed precision restarted GMRES

Initialize x1

for i =1: nsteps do
ri = b — Ax; at precision uhigh
Solve Ad; = r; with GMRES at precision ujoy
Xiy1 = X; + d; at precision u

end for

e With no preconditioner (M = ), GMRES-IR becomes equivalent
to mixed precision restarted GMRES (inner-outer scheme)
[2) Turner and Walker (1992) [2) Buttari et al. (2008)
[3) Lindquist et al. (2020) [ Loe et al. (2027)
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Mixed precision restarted GMRES

Initialize x1

for i =1: nsteps do
ri = b — Ax; at precision uhigh
Solve Ad; = r; with GMRES at precision ujoy
Xiy1 = X; + d; at precision u

end for

e With no preconditioner (M = ), GMRES-IR becomes equivalent
to mixed precision restarted GMRES (inner-outer scheme)
[2) Turner and Walker (1992) [2) Buttari et al. (2008)
[3) Lindquist et al. (2020) [ Loe et al. (2027)

e Preconditioners can exploit mixed precision too
B Anzt et al. (2018)
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Mixed precision restarted GMRES

Initialize x1

for i =1: nsteps do
ri = b — Ax; at precision uhigh
Solve Ad; = r; with GMRES at precision ujey
Xiy1 = X; + d; at precision u

end for

e With no preconditioner (M = ), GMRES-IR becomes equivalent
to mixed precision restarted GMRES (inner-outer scheme)
[2) Turner and Walker (1992) [2) Buttari et al. (2008)
[3) Lindquist et al. (2020) [ Loe et al. (2027)

e Preconditioners can exploit mixed precision too
B Anzt et al. (2018)

e GMRES can exploit mixed precision too

[2) Gratton et al. (2019)  [3 Agullo et al. (2020) [ Aliaga et al. (2020)
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Data-driven mixed precision computing?

e So far, precisions are chosen independently of input data (ex: A
and b are not taken into account in Ax = b)

e Simple example: run k(A) estimator before selecting optimal
GMRES-IR5 variant

¢ |In the following, more sophisticated examples exploit the matrix
structure (sparsity, data sparsity) to use even lower precisions

e Different approaches sharing a strong connection! Based on
the same fundamental observation:

10101101 x 20
+ 1.10(10110)x26
=1.0110000

= Small elements can be stored in lower precision
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Data-driven mixed precision SpMV

Consider the sparse matrix—vector (SpMV) product y = Ax
[2) Ahmad, Sundar, Hall (2020) propose to split A = Ag + As, where As
contains the “small” elements of A, and compute:

y = Asx + Agx
~~

Compute in single  Compute in double
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Data-driven mixed precision SpMV

Consider the sparse matrix—vector (SpMV) product y = Ax
[8) Ahmad, Sundar, Hall (2020) propose to split A = Ay + Ag, where Ag
contains the “small” elements of A, and compute:
y = Ax + Agx
~—~
Compute in single  Compute in double

Analysis: split row i of A into p buckets By and sum elements of
Bix in precision u

Ie)
Yi= Zyi(k)a k) Z aijXj
i=1

ES=m
(K k k
7 =yl < e 37 Jax]
ajjx;€Bjk
Backward error (Oettli-Prager):
Vi — yil Pl b Laxes, 13Xl
max < max N Uk——=p—
> Tl 2
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’X/EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’XJ‘EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B

Matrix: lund_a

100 ¢ 10°
S
= 80
8] 5
-8 10 5
2 60 =)
a 3
o

g :
RS 2
‘S 40 1yn-10 &
E 10 <
-
Z
‘é 20
@] —*— Cost (%)

—#— Error {1071

10718 10710 10°® 10°

Prescribed error
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’XJ‘EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B

Matrix: meshlel

100 ¢ 10°
S
= 80
8] 5
-8 10 5
2 60 =)
a 3
o

g :
RS 2
‘S 40 1yn-10 &
E 10 <
-
Z
‘é 20
@] —*— Cost (%)

—#— Error {1071

10718 10710 10°® 10°

Prescribed error
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’XJ‘EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B

Matrix: arc130

100 | 10°
S
= 80
S .
-8 10 )
2 60 =)
o <)
-
g 2
E :
g 40 {100 §
+ =
g
% 20
3 —s— Cost (%)
—#— Error 710-15
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’XJ‘EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B

Matrix: plat362

100 | 10°
S
< 80
S .
-8 10 )
2 60k =)
o <)
-
g 2
E :
g 407 110710 &
+ =
g
% 20
3 —s— Cost (%)
—#— Error 710-15
7
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’XJ‘EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B

Matrix: steam3

100 | 10°
S
= 80
S .
-8 10 )
2 60 =)
o <)
-
g 2
E :
g 40 {100 §
+ =
g
% 20
3 —s— Cost (%)
—#— Error 710-15
10°1° 10710 107 10°

Prescribed error
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Data-driven mixed precision SpMV

To achieve a backward error of order €, must control the ratios
ZBU’XJ‘EB”( |aiij|

Ok = S Jeml = explicit rule for building the buckets B

Matrix: bcsstkO4

100 | 10°
S
= 80
S .
-8 10 )
2 60k =)
o <)
-
g 2
E :
g 407 110710 &
+ =
g
% 20
3 —s— Cost (%)
—#— Error 710-15
7
10°1° 10710 107 10°

Prescribed error

4/32 [B) Graillat, Jézéquel, M., Molina (2021)



Data sparse matrices

T
—

a[ 777777 .

e Data sparse matrices possess a block low rank structure: a
block B represents the interaction between two subdomains
= singular values decay rapidly for far away subdomains

[

B —
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Block low rank (BLR) matrices use a flat 2D block partitioning
() Amestoy et al. (2015) [£) Amestoy et al. (2019)

e Diagonal blocks are full rank

e Off-diagonal blocks A are
approximated by low-rank blocks Tj
satisfying [|A; — Ty < ¢[|Al|

e ¢ controls the backward error of BLR
LU [A Higham and M. (2021)

Example of a BLR matrix (Schur

complement of a 64 Poisson
problem with block size 128)

26/32


https://epubs.siam.org/doi/abs/10.1137/120903476
https://dl.acm.org/doi/10.1145/3242094
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Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
[3) Abdulah et al. (2019)  [2) Doucet et al. (2019)  [2 Abdulah et al. (2021)

e double

® single
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Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
[3) Abdulah et al. (2019)  [2) Doucet et al. (2019)  [2 Abdulah et al. (2021)

e double

® single

Analysis:
e Converting Aj to precision ujew infroduces an error ujowl|Aj|

= If ||Aj]| < €]|All/uiow, block can be safely stored in precision ujow
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Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
[3) Abdulah et al. (2019)  [2) Doucet et al. (2019)  [2 Abdulah et al. (2021)

(Poisson, ¢ = 10719)

e double
® single

Analysis:
e Converting Aj to precision ujew infroduces an error ujowl|Aj|

= If ||Aj]| < €]|All/uiow, block can be safely stored in precision ujow
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Data-driven mixed precision low rank compression

U

)y
18]

e Low-rank compress based on, e.g., SVD: = ||B — UZV| < ¢,
everything stored in double precision
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Data-driven mixed precision low rank compression

vi
Vi

Vi

 Low-rank compress based on, e.g,, SVD: = ||B — UXVT| < ¢,
everything stored in double precision

e Mixed precision compression: partition the SVD into several
groups of different precision

e Converting U; and V; to precision u; introduces error
proportional u;||%]|
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Data-driven mixed precision low rank compression

vi
Vi
e/us Vg
93
E/uh

 Low-rank compress based on, e.g,, SVD: = ||B — UXVT| < ¢,
everything stored in double precision

e Mixed precision compression: partition the SVD into several
groups of different precision

e Converting U; and V; to precision u; introduces error
proportional u;||%]|

= Need to partition ¥ such that ||%]| < ¢/u;
28/32



Back to mixed precision BLR matrices

(Poisson, € = 10719)

o double

® single
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Back to mixed precision BLR matrices

(Poisson, € = 10719)

double
double/single/half
¢ single = single/half

e double = {
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Results with mixed precision BLR LU

Flops compression (¢ = 1077)
[Bfp64 ENIP64/1p32 [ip64/ip32/bi6 |

30
5
3 20
4
o
g
g 10
audikw_1 Fault_639 nd24k GaAsH6 cagel2 thermal2
Error (¢ = 1079)
107 ¢
E10®r
i}
1079

audikw_1 Fault_639 nd24k GaAsH6 cage12 thermal2

Up to 3.3 X flops reduction with almost no error increase
30/32  [3) Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2021)


https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Conclusion: mixed precision opportunities in NLA

Compute MP-BLR approximation M = A using
MP-SVD on each block
Solve Mx; = b with MP-LU factorization
fori=1: nsteps do
ri = b — Ax; with MP-SpMV
Solve Ad; = r; with MP-GMRES, using
MP-preconditioner and MP-SpMV
Xi+1 = x; + d; (in uniform precision!)
end for
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Conclusion: take-home messages

32/32

Numerical linear algebra is full of opportunities for mixed
precision arithmetic

Expert knowledge of the algorithms is crucial: need for
cross-disciplinary research in linear algebra, numerical analysis,
and computer arithmetic

Rounding error analysis is a precious guide to the mixed
precision practitioner

Should adapt precisions to the data at hand: data-driven
mixed precision computing

Slides available at https://bit.ly/arith21
(references are clickable)
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