
ARITH 2021
14 June 2021

Opportunities for Mixed Precision Arithmetic
in Numerical Linear Algebra

Theo Mary
Sorbonne Université, CNRS, LIP6

https://www-pequan.lip6.fr/~tmary/
Slides available at https://bit.ly/arith21

1/32

https://www-pequan.lip6.fr/~tmary/
https://bit.ly/arith21

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Low precision increasingly supported by hardware:
• Fp16 used by NVIDIA GPUs, AMD Radeon Instinct MI25 GPU,
ARM NEON, Fujitsu A64FX ARM

• Bfloat16 used by Google TPU, NVIDIA GPUs, Arm, Intel

2/32

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Great benefits:
• Reduced storage, data movement, and communications
• Increased speed on emerging hardware (16× on A100 from
fp32 to fp16/bfloat16)

• Reduced energy consumption (5× with fp16, 9× with bfloat16)

Some risks too:
• Low precision (large u)
• Narrow range

2/32

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

Great benefits:
• Reduced storage, data movement, and communications
• Increased speed on emerging hardware (16× on A100 from
fp32 to fp16/bfloat16)

• Reduced energy consumption (5× with fp16, 9× with bfloat16)

Some risks too:
• Low precision (large u)
• Narrow range

2/32

Mixed precision algorithms

Mix several precisions in the same code with the goal of
• Getting the performance benefits of low precisions
• While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, …

What space of precisions?
• Arbitrary/custom precisions
• Mixed precision algorithms: small set of widely available
precisions, such as IEEE arithmetics + bfloat16

Crux of the matter: how to select the right precision for the right
variable/operation

3/32

Mixed precision algorithms

Mix several precisions in the same code with the goal of
• Getting the performance benefits of low precisions
• While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, …

What space of precisions?
• Arbitrary/custom precisions
• Mixed precision algorithms: small set of widely available
precisions, such as IEEE arithmetics + bfloat16

Crux of the matter: how to select the right precision for the right
variable/operation

3/32

Mixed precision algorithms

Mix several precisions in the same code with the goal of
• Getting the performance benefits of low precisions
• While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, …

What space of precisions?
• Arbitrary/custom precisions
• Mixed precision algorithms: small set of widely available
precisions, such as IEEE arithmetics + bfloat16

Crux of the matter: how to select the right precision for the right
variable/operation

3/32

How are precisions selected?

• Precision tuning: explore the space of variables of a code
▲ Does not need any understanding of what the code does

▼ Does not have any understanding of what the code does

• Algorithm-based, analysis-based, data-based approaches
The more knowledge about the code we have, the better:
1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take into account specific data at hand

Illustration of this methodology for numerical linear algebra

• Mixed precision computing brings new life to numerical
analysis (rounding error analysis)

4/32

How are precisions selected?

• Precision tuning: explore the space of variables of a code
▲ Does not need any understanding of what the code does
▼ Does not have any understanding of what the code does

• Algorithm-based, analysis-based, data-based approaches
The more knowledge about the code we have, the better:
1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take into account specific data at hand

Illustration of this methodology for numerical linear algebra

• Mixed precision computing brings new life to numerical
analysis (rounding error analysis)

4/32

How are precisions selected?

• Precision tuning: explore the space of variables of a code
▲ Does not need any understanding of what the code does
▼ Does not have any understanding of what the code does

• Algorithm-based, analysis-based, data-based approaches
The more knowledge about the code we have, the better:
1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take into account specific data at hand

Illustration of this methodology for numerical linear algebra

• Mixed precision computing brings new life to numerical
analysis (rounding error analysis)

4/32

How are precisions selected?

• Precision tuning: explore the space of variables of a code
▲ Does not need any understanding of what the code does
▼ Does not have any understanding of what the code does

• Algorithm-based, analysis-based, data-based approaches
The more knowledge about the code we have, the better:
1. Develop approach tailored to specific algorithm
2. If possible use error analysis to determine best choice of precisions
3. If possible take into account specific data at hand

Illustration of this methodology for numerical linear algebra

• Mixed precision computing brings new life to numerical
analysis (rounding error analysis)

4/32

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision u⇒ computed x̂ satisfies ∥x̂− x∥ ≤ f(n)κ(A)u∥x∥,
with κ(A) = ∥A∥∥A−1∥

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax1 = b via x1 = U−1(L−1b)
while Not converged do

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions
and solver for Adi = ri

5/32

Solving Ax = b

Standard method to solve Ax = b:

1. Factorize A = LU, where L and U are lower and upper triangular

2. Solve Ly = b and Ux = y

Precision u⇒ computed x̂ satisfies ∥x̂− x∥ ≤ f(n)κ(A)u∥x∥,
with κ(A) = ∥A∥∥A−1∥

An algorithm to refine the solution: iterative refinement (IR)

Solve Ax1 = b via x1 = U−1(L−1b)
while Not converged do

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

end while

Many variants over the years, depending on choice of precisions
and solver for Adi = ri

5/32

Error analysis of general IR

 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming κ(A)u < 1:

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve Adi = ri such that ∥d̂i − di∥ ≤ ϕi∥di∥
xi+1 = xi + di at precision u

end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error converges to

∥x̂− x∥
∥x∥

≤ u+ urκ(A)

• Limiting accuracy: depends on u and ur only, can be made
independent of κ(A) by taking ur = u2

• Convergence condition: depends on the choice of solver

6/32

https://epubs.siam.org/doi/abs/10.1137/17M1140819

Error analysis of general IR

 Carson and Higham (2018) analyze the most general version of IR:
For a target accuracy u, and assuming κ(A)u < 1:

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve Adi = ri such that ∥d̂i − di∥ ≤ ϕi∥di∥
xi+1 = xi + di at precision u

end while

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error converges to

∥x̂− x∥
∥x∥

≤ u+ urκ(A)

• Limiting accuracy: depends on u and ur only, can be made
independent of κ(A) by taking ur = u2

• Convergence condition: depends on the choice of solver6/32

https://epubs.siam.org/doi/abs/10.1137/17M1140819

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization in precision uf
for i = 1: nsteps do

ri = b− Axi in precision ur
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di in precision u

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

Low prec. fact. S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

MMM
7/32

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = double
for i = 1: nsteps do

ri = b− Axi ur = double
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

Low prec. fact. S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Fixed-precision
 Jankowski and Wozniakowski (1977)  Skeel (1980)7/32

https://link.springer.com/article/10.1007%2FBF01932150
https://www.ams.org/journals/mcom/1980-35-151/S0025-5718-1980-0572859-4/

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = double
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

Low prec. fact. S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Traditional
 Wilkinson (1948)  Moler (1967)7/32

https://dl.acm.org/doi/abs/10.1145/321386.321394

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = single
for i = 1: nsteps do

ri = b− Axi ur = double
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

Low prec. fact. S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Low precision factorization
 Langou et al (2006)7/32

https://ieeexplore.ieee.org/abstract/document/4090224

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = single
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

Low prec. fact. S D D 108 κ(A) · 10−16

3 precisions S D Q 108 10−16

Three precisions
 Carson and Higham (2018)7/32

https://epubs.siam.org/doi/abs/10.1137/17M1140819

70 years of LU-IR

LU-IR: reuse LU factors to solve for di:
di = U−1L−1ri ⇒ ∥d̂i − di∥ ≤ f(n)κ(A)uf∥di∥ ⇒ ϕi = O(κ(A)uf)

Solve Ax1 = b by LU factorization uf = half
for i = 1: nsteps do

ri = b− Axi ur = quadruple
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di u = double

end for

uf u ur max κ(A) Forward error

Fixed D D D 1016 κ(A) · 10−16

Traditional D D Q 1016 10−16

Low prec. fact. H D D 103 κ(A) · 10−16

3 precisions H D Q 103 10−16

Only well-conditioned problems can be solved
with a half precision factorization!7/32

GMRES-IR

GMRES-based IR:  Carson and Higham (2017)

• Replace LU by GMRES solver: solve Ãdi = r̃i with GMRES,
where Ã = U−1L−1A is preconditioned by LU factors

• Rationale:
◦ κ(Ã) often smaller than κ(A)
◦ GMRES can be asked to converge to accuracy u≪ uf
⇒ Ãdi = r̃i is solved with accuracy ϕi = κ(Ã)u
◦ Convergence condition improved from κ(A)uf < 1 to κ(Ã)u < 1

• The catch: the matrix–vector products are with Ã = U−1L−1A,
introduce an extra κ(A) unless performed in higher precision

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with

 products with U−1L−1A at precision u2

xi+1 = xi + di at precision u
end while

8/32

https://epubs.siam.org/doi/abs/10.1137/17M1122918

GMRES-IR

GMRES-based IR:  Carson and Higham (2017)

• Replace LU by GMRES solver: solve Ãdi = r̃i with GMRES,
where Ã = U−1L−1A is preconditioned by LU factors

• Rationale:
◦ κ(Ã) often smaller than κ(A)
◦ GMRES can be asked to converge to accuracy u≪ uf
⇒ Ãdi = r̃i is solved with accuracy ϕi = κ(Ã)u
◦ Convergence condition improved from κ(A)uf < 1 to κ(Ã)u < 1

• The catch: the matrix–vector products are with Ã = U−1L−1A,
introduce an extra κ(A) unless performed in higher precision

Solve Ax1 = b by LU factorization at precision uf
while Not converged do

ri = b− Axi at precision ur
Solve U−1L−1Adi = U−1L−1ri by GMRES at precision u with

 products with U−1L−1A at precision u2

xi+1 = xi + di at precision u
end while8/32

https://epubs.siam.org/doi/abs/10.1137/17M1122918

LU-IR vs GMRES-IR

Using κ(Ã) ≤ (1 + κ(A)uf)
2 we determine the convergence

condition on κ(A)

uf u ur max κ(A) Forward error

LU-IR S D Q 108 10−16

GMRES-IR S D Q 1016 10−16

LU-IR H D Q 103 10−16

GMRES-IR H D Q 1011 10−16

GMRES-IR can handle much more ill-conditioned matrices.

However:
• LU solves are performed at precision u2 instead of uf
⇒ practical limitation
◦ Increases cost per iteration
◦ If u is D, requires use of quad precision
◦ Practical implementations have relaxed this requirement by

replacing u2 with u, with no theoretical guarantee

9/32

LU-IR vs GMRES-IR

Using κ(Ã) ≤ (1 + κ(A)uf)
2 we determine the convergence

condition on κ(A)

uf u ur max κ(A) Forward error

LU-IR S D Q 108 10−16

GMRES-IR S D Q 1016 10−16

LU-IR H D Q 103 10−16

GMRES-IR H D Q 1011 10−16

GMRES-IR can handle much more ill-conditioned matrices.
However:
• LU solves are performed at precision u2 instead of uf
⇒ practical limitation
◦ Increases cost per iteration
◦ If u is D, requires use of quad precision
◦ Practical implementations have relaxed this requirement by

replacing u2 with u, with no theoretical guarantee9/32

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision u except matvecs at precision u2

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?

10/32

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision u except matvecs at precision u2

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?

10/32

Rethinking GMRES-IR

• Goal: solve Adi = ri with GMRES and bound ϕi = ∥d̂i−di∥/∥di∥
◦ In what precision do we really need to run GMRES?
◦ How much extra precision is really needed in the matvec products?

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

Relax the requirements on the GMRES precisions: run at
precision ug ≤ u with matvecs at precision up ≤ u2

⇒ FIVE precisions in total!

What can we say about the convergence of this GMRES-IR5?
10/32

Two precision GMRES

• Unpreconditioned GMRES in precision u for Ax = b:
◦ Backward error of order u  Paige, Rozloznik, Strakos (2006)
◦ Forward error of order κ(A)u

• Two precision preconditioned GMRES for Ãx = b:
◦ Backward error of order κ(A)up + ug

• The matrix–vector products are performed with Ã = U−1L−1A:
y = U−1L−1Ax⇒ ∥ŷ− y∥ ≲ κ(A)up∥Ã∥∥x∥

• The rest is at precision ug

◦ Forward error of order κ(Ã)
(
κ(A)up + ug

)
◦ κ(Ã) ≤ (1 + κ(A)uf)

2 ⇒ ϕi ∼ κ(A)2uf
2
(
κ(A)up + ug

)
Side-result: generalization of the backward stability of GMRES to
a preconditioned two-precision GMRES
 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

11/32

https://epubs.siam.org/doi/10.1137/050630416
https://hal.archives-ouvertes.fr/hal-03190686

Five precision GMRES-IR

Solve Ax1 = b by LU factorization at precision uf
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

Theorem (convergence of GMRES-IR5)

Under the condition (ug + κ(A)up)κ(A)2uf
2 < 1, the forward error

converges to its limiting accuracy

∥x̂− x∥
∥x∥

≤ urκ(A) + u

 Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2021)

12/32

https://hal.archives-ouvertes.fr/hal-03190686

Meaningful combinations

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) there are
over 3000 different combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can
be lowered without worsening either the limiting accuracy or the
convergence condition.

Filtering rules

• u2 ≤ ur ≤ u ≤ uf

• up ≤ ug

• up < uf

• up < u, up = u, up > u all possible
• ug ≥ u
• ug < uf, ug = uf, ug > uf all possible

13/32

Theoretical results

Meaningful combinations of GMRES-IR5 for uf = H and u = D.

ug up
Convergence Condition

max(κ(A))

LU-IR 2× 103

B S 3× 104

H S 4× 104

H D 9× 104

S D 8× 106

D D 3× 107

D Q 2× 1011

Five combinations between LU-IR and Carson & Higham’s
GMRES-IR⇒ More flexible precisions choice to fit at best the
hardware constraints and the problem difficulty.

14/32

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

Similar picture on many types of matrices

15/32

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

up = Q

Similar picture on many types of matrices

15/32

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR

up = D

up = Q

Similar picture on many types of matrices

15/32

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = D

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/32

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = S

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/32

Experimental results

Take 100 random matrices with specified κ(A) and measure the
success rate: the percentage of matrices for which GMRES-IR5
converges to a small forward error

100 102 104 106 108 1010 1012 1014 1016

0.2

0.4

0.6

0.8

1.0

κ(A)

uf = H ug = H

LU-IR
up = S

up = D

up = Q

Similar picture on many types of matrices

15/32

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =



nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)

16/32

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =



nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/32

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =


nu16 (fp16)

2u16 + nu32 (tensor cores)

nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/32

https://epubs.siam.org/doi/10.1137/19M1289546

NVIDIA GPU tensor cores
Tensor cores units available on NVIDIA GPUs V100 carry out a
4× 4 matrix multiplication in 1 clock cycle:

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp16

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

fp32

• Performance boost: peaks at 125 TFLOPS (8× speedup vs
fp32, 16× on A100)

• Accuracy boost: let C = AB, with A ∈ Rm×n, B ∈ Rn×p, the
computed Ĉ satisfies

|Ĉ− C| ≲ cn|A||B|, cn =


nu16 (fp16)
2u16 + nu32 (tensor cores)
nu32 (fp32)

 Blanchard, Higham, Lopez, M., Pranesh (2020)16/32

https://epubs.siam.org/doi/10.1137/19M1289546

Block LU factorization

with tensor cores

• Block version to use matrix–matrix operations

• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do

L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)

Aij ← Aij − L̃ikŨkj

using tensor cores

end for
end for

end for

17/32

Block LU factorization with tensor cores

• Block version to use matrix–matrix operations
• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k+ 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki
end for
for i = k+ 1: n/b do

for j = k+ 1: n/b do
L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)
Aij ← Aij − L̃ikŨkj using tensor cores

end for
end for

end for

17/32

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis
and gives same bounds to first order  Blanchard et al. (2020)

Standard fp16 Tensor cores Standard fp32

nu16 2u16 + nu32 nu32

10,000 20,000 30,000 40,000

10−7

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

18/32

https://epubs.siam.org/doi/10.1137/19M1289546

Impact on iterative refinement

Results from  Haidar et al. (2018)

• TC accuracy boost can be critical!
• TC performance suboptimal here, but can reach up to 50

TFLOPS with optimized data movements  Lopez and M. (2020)
19/32

https://ieeexplore.ieee.org/abstract/document/8665777
http://eprints.maths.manchester.ac.uk/2782/

Preconditioners other than LU

Solve Ax1 = b by LU factorization at precision uf
Compute M−1 ≈ A−1 and initialize x1
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

A better preconditioner implies:
▲ Smaller κ(M−1A)
▼ More expensive to compute/apply
▼ Larger error in matvecs with M−1A in GMRES
Convergence condition becomes

κ(M−1A)
(
∥M−1∥∥A∥
∥M−1A∥

up + ug

)
< 1

20/32

Preconditioners other than LU

Solve Ax1 = b by LU factorization at precision uf
Compute M−1 ≈ A−1 and initialize x1
for i = 1: nsteps do

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES at
precision ug except matvecs at precision up

xi+1 = xi + di at precision u
end for

A better preconditioner implies:
▲ Smaller κ(M−1A)
▼ More expensive to compute/apply
▼ Larger error in matvecs with M−1A in GMRES
Convergence condition becomes

κ(M−1A)
(
∥M−1∥∥A∥
∥M−1A∥

up + ug

)
< 1

20/32

Mixed precision restarted GMRES

Initialize x1
for i = 1: nsteps do

ri = b− Axi at precision uhigh
Solve Adi = ri with GMRES at precision ulow
xi+1 = xi + di at precision u

end for

• With no preconditioner (M = I), GMRES-IR becomes equivalent
to mixed precision restarted GMRES (inner–outer scheme)
 Turner and Walker (1992)  Buttari et al. (2008)

 Lindquist et al. (2020)  Loe et al. (2021)

• Preconditioners can exploit mixed precision too
 Anzt et al. (2018)

• GMRES can exploit mixed precision too
 Gratton et al. (2019)  Agullo et al. (2020)  Aliaga et al. (2020)

21/32

https://epubs.siam.org/doi/abs/10.1137/0913048
https://dl.acm.org/doi/abs/10.1145/1377596.1377597
https://link.springer.com/chapter/10.1007/978-3-030-63393-6_4
https://arxiv.org/abs/2105.07544
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4460
https://arxiv.org/abs/1907.10550
https://hal.inria.fr/hal-02572910/
https://arxiv.org/abs/2009.12101

Mixed precision restarted GMRES

Initialize x1
for i = 1: nsteps do

ri = b− Axi at precision uhigh
Solve Adi = ri with GMRES at precision ulow
xi+1 = xi + di at precision u

end for

• With no preconditioner (M = I), GMRES-IR becomes equivalent
to mixed precision restarted GMRES (inner–outer scheme)
 Turner and Walker (1992)  Buttari et al. (2008)

 Lindquist et al. (2020)  Loe et al. (2021)

• Preconditioners can exploit mixed precision too
 Anzt et al. (2018)

• GMRES can exploit mixed precision too
 Gratton et al. (2019)  Agullo et al. (2020)  Aliaga et al. (2020)

21/32

https://epubs.siam.org/doi/abs/10.1137/0913048
https://dl.acm.org/doi/abs/10.1145/1377596.1377597
https://link.springer.com/chapter/10.1007/978-3-030-63393-6_4
https://arxiv.org/abs/2105.07544
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4460
https://arxiv.org/abs/1907.10550
https://hal.inria.fr/hal-02572910/
https://arxiv.org/abs/2009.12101

Mixed precision restarted GMRES

Initialize x1
for i = 1: nsteps do

ri = b− Axi at precision uhigh
Solve Adi = ri with GMRES at precision ulow
xi+1 = xi + di at precision u

end for

• With no preconditioner (M = I), GMRES-IR becomes equivalent
to mixed precision restarted GMRES (inner–outer scheme)
 Turner and Walker (1992)  Buttari et al. (2008)

 Lindquist et al. (2020)  Loe et al. (2021)

• Preconditioners can exploit mixed precision too
 Anzt et al. (2018)

• GMRES can exploit mixed precision too
 Gratton et al. (2019)  Agullo et al. (2020)  Aliaga et al. (2020)

21/32

https://epubs.siam.org/doi/abs/10.1137/0913048
https://dl.acm.org/doi/abs/10.1145/1377596.1377597
https://link.springer.com/chapter/10.1007/978-3-030-63393-6_4
https://arxiv.org/abs/2105.07544
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4460
https://arxiv.org/abs/1907.10550
https://hal.inria.fr/hal-02572910/
https://arxiv.org/abs/2009.12101

Data-driven mixed precision computing?

• So far, precisions are chosen independently of input data (ex: A
and b are not taken into account in Ax = b)

• Simple example: run κ(A) estimator before selecting optimal
GMRES-IR5 variant

• In the following, more sophisticated examples exploit the matrix
structure (sparsity, data sparsity) to use even lower precisions

• Different approaches sharing a strong connection! Based on
the same fundamental observation:

⇒ Small elements can be stored in lower precision

22/32

Data-driven mixed precision SpMV

Consider the sparse matrix–vector (SpMV) product y = Ax
 Ahmad, Sundar, Hall (2020) propose to split A = Ad +As, where As
contains the “small” elements of A, and compute:

y = Asx︸︷︷︸
Compute in single

+ Adx︸︷︷︸
Compute in double

Analysis: split row i of A into p buckets Bik and sum elements of
Bik in precision uk

yi =
p∑
i=1

y(k)i , y(k)i =
∑

aijxj∈Bik

aijxj

|̂y(k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj|

Backward error (Oettli-Präger):

max
i

|̂yi − yi|
|A||x|

≤ max
i

p∑
k=1

n(k)i uk

∑
aijxj∈Bik |aijxj|∑n
j=1 |aijxj|

23/32

https://dl.acm.org/doi/abs/10.1145/3371275

Data-driven mixed precision SpMV

Consider the sparse matrix–vector (SpMV) product y = Ax
 Ahmad, Sundar, Hall (2020) propose to split A = Ad +As, where As
contains the “small” elements of A, and compute:

y = Asx︸︷︷︸
Compute in single

+ Adx︸︷︷︸
Compute in double

Analysis: split row i of A into p buckets Bik and sum elements of
Bik in precision uk

yi =
p∑
i=1

y(k)i , y(k)i =
∑

aijxj∈Bik

aijxj

|̂y(k)i − y
(k)
i | ≤ n

(k)
i uk

∑
aijxj∈Bik

|aijxj|

Backward error (Oettli-Präger):

max
i

|̂yi − yi|
|A||x|

≤ max
i

p∑
k=1

n(k)i uk

∑
aijxj∈Bik |aijxj|∑n
j=1 |aijxj|

23/32

https://dl.acm.org/doi/abs/10.1145/3371275

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

 Graillat, Jézéquel, M., Molina (2021)

24/32

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

Matrix: lund_a

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

 Graillat, Jézéquel, M., Molina (2021)
24/32

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

Matrix: mesh1e1

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

 Graillat, Jézéquel, M., Molina (2021)
24/32

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

Matrix: arc130

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

 Graillat, Jézéquel, M., Molina (2021)
24/32

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

Matrix: plat362

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

 Graillat, Jézéquel, M., Molina (2021)
24/32

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

Matrix: steam3

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

 Graillat, Jézéquel, M., Molina (2021)
24/32

Data-driven mixed precision SpMV

To achieve a backward error of order ε, must control the ratios

ϕik =

∑
aijxj∈Bik

|aijxj|∑n
j=1 |aijxj|

⇒ explicit rule for building the buckets Bik

Matrix: bcsstk04

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

 Graillat, Jézéquel, M., Molina (2021)
24/32

Data sparse matrices

σ

τ

B
ρ σ

τ

small rε

large rε

• Data sparse matrices possess a block low rank structure: a
block B represents the interaction between two subdomains
⇒ singular values decay rapidly for far away subdomains

B →

25/32

BLR matrices

Block low rank (BLR) matrices use a flat 2D block partitioning
 Amestoy et al. (2015)  Amestoy et al. (2019)

Example of a BLR matrix (Schur

complement of a 643 Poisson

problem with block size 128)

• Diagonal blocks are full rank
• Off-diagonal blocks Aij are
approximated by low-rank blocks Tij
satisfying ∥Aij − Tij∥ ≤ ε∥A∥

• ε controls the backward error of BLR
LU  Higham and M. (2021)

26/32

https://epubs.siam.org/doi/abs/10.1137/120903476
https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1093/imanum/drab020

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
 Abdulah et al. (2019)  Doucet et al. (2019)  Abdulah et al. (2021)

(Poisson, ε = 10−10)

• double
• single
• half

Analysis:
• Converting Aij to precision ulow introduces an error ulow∥Aij∥
⇒ If ∥Aij∥ ≤ ε∥A∥/ulow, block can be safely stored in precision ulow

27/32

https://ieeexplore.ieee.org/abstract/document/8990439
https://ieeexplore.ieee.org/abstract/document/8945098
https://ieeexplore.ieee.org/abstract/document/9442267

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
 Abdulah et al. (2019)  Doucet et al. (2019)  Abdulah et al. (2021)

(Poisson, ε = 10−10)

• double
• single
• half

Analysis:
• Converting Aij to precision ulow introduces an error ulow∥Aij∥
⇒ If ∥Aij∥ ≤ ε∥A∥/ulow, block can be safely stored in precision ulow

27/32

https://ieeexplore.ieee.org/abstract/document/8990439
https://ieeexplore.ieee.org/abstract/document/8945098
https://ieeexplore.ieee.org/abstract/document/9442267

Data-driven mixed precision BLR matrices

Idea: store blocks far away from the diagonal in lower precisions
 Abdulah et al. (2019)  Doucet et al. (2019)  Abdulah et al. (2021)

(Poisson, ε = 10−10)

• double
• single
• half

Analysis:
• Converting Aij to precision ulow introduces an error ulow∥Aij∥
⇒ If ∥Aij∥ ≤ ε∥A∥/ulow, block can be safely stored in precision ulow

27/32

https://ieeexplore.ieee.org/abstract/document/8990439
https://ieeexplore.ieee.org/abstract/document/8945098
https://ieeexplore.ieee.org/abstract/document/9442267

Data-driven mixed precision low rank compression
U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

28/32

Data-driven mixed precision low rank compression

U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui

28/32

Data-driven mixed precision low rank compression

U

VT

U1 U2 U3

VT1
VT2

VT3

Σ∥B∥

ε

ε/us

ε/uh

• Low-rank compress based on, e.g., SVD:⇒ ∥B−UΣVT∥ ≤ ε,
everything stored in double precision

• Mixed precision compression: partition the SVD into several
groups of different precision

• Converting Ui and Vi to precision ui introduces error
proportional ui∥Σi∥

⇒ Need to partition Σ such that ∥Σi∥ ≤ ε/ui
28/32

Back to mixed precision BLR matrices

(Poisson, ε = 10−10)

• double

⇒

{
double
double/single/half

• single

⇒ single/half

• half

29/32

Back to mixed precision BLR matrices

(Poisson, ε = 10−10)

• double⇒

{
double
double/single/half

• single ⇒ single/half
• half

29/32

Results with mixed precision BLR LU
Flops compression (ε = 10−9)

audikw_1 Fault_639 nd24k GaAsH6 cage12 thermal2
0

10

20

30
C

o
m

p
re

s
s
io

n

fp64 fp64/fp32 fp64/fp32/bf16

Error (ε = 10−9)

audikw_1 Fault_639 nd24k GaAsH6 cage12 thermal2
10

-9

10
-8

10
-7

E
rr

o
r

Up to 3.3× flops reduction with almost no error increase
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2021)30/32

https://www-pequan.lip6.fr/~tmary/doc/CSE21.pdf

Conclusion: mixed precision opportunities in NLA

Compute MP-BLR approximation M ≈ A using
MP-SVD on each block

Solve Mx1 = b with MP-LU factorization
for i = 1: nsteps do

ri = b− Axi with MP-SpMV
Solve Adi = ri with MP-GMRES, using
MP-preconditioner and MP-SpMV

xi+1 = xi + di (in uniform precision!)
end for

31/32

Conclusion: take-home messages

• Numerical linear algebra is full of opportunities for mixed
precision arithmetic

• Expert knowledge of the algorithms is crucial: need for
cross-disciplinary research in linear algebra, numerical analysis,
and computer arithmetic

• Rounding error analysis is a precious guide to the mixed
precision practitioner

• Should adapt precisions to the data at hand: data-driven
mixed precision computing

Slides available at https://bit.ly/arith21
(references are clickable)

32/32

https://bit.ly/arith21

