
CARE: a platform for reliable Comparison and Analysis of Reverse-Engineering
techniques

Sylvain Lamprier, Nicolas Baskiotis, Tewfik Ziadi and Lom Messan Hillah
University Pierre et Marie Curie

LIP6 - UPMC
Paris, France

Email: surname.name@lip6.fr

Abstract—Reverse engineering of behavior models has re-
ceived a lot of attention over the last few years. However, no
standard benchmark exists for the comparison and analysis
of published miners. Evaluation is usually performed on few
case studies, which fails to demonstrate effectiveness in a broad
context. This paper proposes a general, approach-independent,
platform for the intensive evaluation of behavior miners. Its
goals are essentially: provide a benchmark mechanism for
reverse engineering; allow analysis of miners w.r.t. a class of
programs and/or behaviors; help users in choosing the best
suited approach for their objective.

Keywords-Reverse engineering; Inference mechanisms; Soft-
ware maintenance; Reasoning about programs; Artificial in-
telligence; Artificial program generation; Evaluation; Bench-
marking

I. INTRODUCTION

Behavior models, such as Finite State Automata (FSA),
use a state representation to model the flow of the execution
of a system. They play an important role in the traditional
engineering of software-based systems; it is the basis for
systematic approaches to design, simulation, code genera-
tion, testing, and verification. Nevertheless, such models are
often not maintained during the development phase or, when
it is the case, there is no guarantee about their consistency,
regarding for instance completeness (all behaviors of the sys-
tem are represented in the model) and correctness (behaviors
described by the model belong to the system).

When behavior models are either absent or inconsistent,
reverse engineering techniques can be used to extract them
Interesting surveys on the reverse engineering of FSA can
be found in [1], [2]. Mainly two approaches have been
developed: while static analysis focuses on source code,
dynamic analysis considers traces obtained from executions
of the corresponding program. For object-oriented systems,
dynamic analysis is best suited to extract the behavior
model. It allows capturing runtime-induced characteristics of
the program, like polymorphism and dynamic bindings [4].
Moreover, dynamic analysis can be instrumented even in the
absence of the program source code. We thus focus in this
paper on dynamic reverse engineering techniques.

Most of recent researches have mainly focused on par-
ticular contexts (test, verification, program comprehension),

which induces important difficulties for evaluation purposes.
Comparisons between FSA inference algorithms (also re-
ferred to as miners in the following) are nevertheless possi-
ble, as the different objectives can be expressed by the use
of dedicated evaluation measures, adapted to the context.

Moreover, as mentioned in [3], previously published be-
havior miners lack suitable benchmarks for their evaluation.
Usually, evaluation is performed on standard case studies,
which is useful for assessing the feasibility of the algorithm
on particular cases, but fails to demonstrate the effectiveness
of the miner in a broader context.

In this paper, we propose CARE1, a standard platform
for the evaluation of behavior miners. CARE is approach-
independent: the only need for the miner to be tested is to
accept a set of traces as input and produce an FSA model. It
includes an artificial data (programs + traces) generation tool
for benchmark purposes, which is designed for modeling
different classes of programs (groups of programs sharing
similar properties) and behavioral aspects. The goals of
CARE are essentially: provide a benchmark mechanism for
reverse engineering; allow analysis of miners w.r.t. to a class
of programs and/or behaviors; help users in choosing the
most accurate approach w.r.t. their objective.

The remainder of the paper is organized as follows: Sec-
tion II presents the generation process of data and Section
III reports and interprets experimental results obtained for
demonstration purposes. Finally, Section IV sketches the
perspectives of this work.

II. GENERATION OF ARTIFICIAL DATA

After giving details on how programs are specified in the
platform, this section presents both processes of artificial
programs generation and simulated traces collection.

A. Program Specification

Programs are specified by nested blocks determining
their structure. Our program specification follows a formal
grammar G = (N,Σ, P, S), where N is the set of non-
terminal symbols, Σ the set of terminal symbols, S the

1The CARE platform is available at http://care.lip6.fr

starting symbol Block and P the following set of production
rules:

Block → BlockList | Alt | Opt | Loop| Call (1)
BlockList → Block+

Alt → Block Block+

Opt → Block

Loop → Block

Call → MethodLabel Block? MethodLabel

BlockList is a succession of program blocks; Alt cor-
responds to an alternative between at least two program
blocks; Opt stands for an optional part of the program; Loop
corresponds to a part of program that can be repeated several
times; Call corresponds to the call of a given method, which
owns method labels (opening and closing) and possibly
produces a child block (allowing methods imbrication).

Such a specification presents two strong advantages:
Behavior traces may be extracted from the structure (by
simulating program executions, see section II-C); A cor-
responding FSA may be extracted to stand as a reference
model for evaluation metrics.

B. Generation of Programs

The program generation process follows two main steps:
1. Vocabulary generation: The vocabulary is generated
by determining a given number of objects and a given
average number of methods names per object. An object
is arbitrarily chosen to be the main one (starting point).
2. Structure construction: The structure is recursively
built by imbrication of blocks of different kinds, which are
chosen according to a given distribution of probabilities.
In order to get more realistic programs that may have
similar behaviors in different contexts, the process may
choose existing blocks, which correspond to blocks that have
already been built and are consistent with the current branch
of the structure (especially with respect to the current active
object). Methods of Call blocks are chosen among available
methods for a randomly selected callee.

Table I reports 7 different distributions of probabilities
for block selection. These distributions, used in experiments
presented below, imply different levels of difficulty for FSA
extraction from execution traces: while some configurations
lead to structures containing neither alternatives nor loops,
others favor the building of complicated structures. Such
configurations determine different classes of programs. Con-
figuration A leads to linear structures, configuration C to
acyclic structures with alternative paths, configuration E to
structures with cycles but no alternations and configuration
G to more complex structures mixing loops structures and
alternations. Configurations B, D and E lead to similar

automata (but with repeated patterns which complicates the
problem of FSA inference from traces).

XXXXXXXXParam
Config A B C D E F G

P(blocklist) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
P(alt) 0 0 0.1 0.1 0 0 0.1
P(opt) 0 0 0.1 0.1 0 0 0.1
P(loop) 0 0 0 0 0.2 0.1 0.1
P(call) 0.9 0.7 0.7 0.5 0.7 0.6 0.5

P(existing) 0 0.2 0 0.2 0 0.2 0.1

Table I
EXPERIMENTED PROBABILITY DISTRIBUTIONS

C. Trace Extraction

Once the structure of the program is defined, traces are ob-
tained by traversing it, following paths and reporting method
labels, until reaching the end of the program. Extracting
traces may differ thanks to the different output alternatives
of branching blocks Alt, Opt and Loop. Different strategies
of structure traversal may then be defined. According to
the strategy, extracted paths may well represent the whole
program behavior or only give a restricted view of all
possibilities. Investigated strategies are: i) Uniform: every
possible trace gets the same probability of belonging to the
observations set, independently from its length or the num-
ber of branching blocks its path traversed2; ii) Unbiased:
executions are simulated by traversing the structure with
uniform choices at every branching block; iii) Biased: a
distribution of probabilities has been set on every branching
block of the structure; iv) StateVector: at every branching
point, the choice of a given branch should depend on the
current state of the program (which includes inputs and
actions that have been performed since the start of the
program).

III. EXPERIMENTS/USE CASES

Several FSA extraction algorithms from positive examples
have been included in the CARE platform, some of them
coming from the field of grammatical inference, others
being specifically designed for reverse engineering: some
are mainly heuristics (KTail, Temporal KTail), others rely
on statistical learning techniques (Markov Model for reverse
engineering). Nevertheless, for the sake of simplicity, ex-
periments reported here mainly focus on the classical KTail
algorithm [5].

The central idea of this algorithm is to consider a state
of the automaton according to the future behaviors that
can been observed from it. After an FSA initialization step
in which each trace from the observations set leads to
the production of a specific output branch of the initial

2For computational purposes, we arbitrarily consider 100 as the maximal
length of traces drawn from uniform strategy.

state, KTail merges all states that share the same future.
Rather than considering the whole future of states (which
would prevent merging when loops occur), KTail assumes
that the future of a state can be characterized by the k
next statements of paths traversing it. Merging two states
then corresponds to assuming a generalization hypothesis:
executions sharing the same k next statements will follow
a same future behavior. Parameter k then allows to control
the specialization/generalization level of KTail: with lower
values of k, the merging process is less constrained. Hence,
the resulting FSA can be more general than with higher
values.

Thanks to this parameter, KTail appears well suited for
our experiments, whose goal is not to compare state-of-the-
art algorithms, but rather to present some use cases of the
platform in order to demonstrate its usability and relevance.

A. Evaluation Process and Criteria

In past evaluation competitions (e.g. in the Grammar
Inference domain or in the context of software engineering),
participants were given a set of strings, labeled as positive
or negative (according to their occurrence in the reference
model), and the task boiled down to a binary classification
task. Models were then evaluated according to a sensitivity
criterion, which considers the ratio of positive strings that
have actually been classified as positive, and a sensibility
criterion, which corresponds to the proportion of negative
sequences that have been classified as so.

While our platform is objective-independent, we chose to
focus in our experiments on completeness and correctness
of the resulting automata. As in [6], we therefore consider
recall and precision measures, which correspond to classical
measures from the Information Retrieval domain. Recall
renders completeness by considering the ratio of paths from
the reference model that are accepted by the hypothetical
one. Precision renders correctness as the ratio of statements
sequences from the hypothetical automaton that belong to
the reference one. Given the huge number of possible paths
in the automata (possibly infinite), such measures cannot
be exactly computed. Scores may nevertheless be accurately
approximated by defining subsets of paths uniformly chosen
among the whole set of possible paths (from the reference
or the hypothetical model, according to the considered
measure), and computing ratios on these subsets. In the
following, we work with subsets of 1000 sequences for both
measures.

B. Example of Algorithm Analysis

This section aims at giving an idea of which kind of
analysis may be made, with artificial programs, thanks to
the proposed platform. For this example, we focus on the
problem of setting an optimal size k for future behaviors
considered in KTail. We performed evaluation of KTail for
different values of k over 1000 artificial programs for each

of the seven program classes defined in Table I. Observations
sets used by KTail contain each 100 traces extracted follow-
ing strategies defined in the previous section. Table II gives
average results obtained with uniform extraction of paths for
each class of program. As expected, while for larger values
of k resulting FSA get better precision scores (less mergers,
the FSA is more specific), with low k recall is favored.

Programs from class A and B are linear. The whole
set of possible behaviors is then observed (only one trace
is possible), which results in a perfect level of recall for
every algorithm. Programs from class B nevertheless contain
repetitions of sub-programs (existing blocks), which may be
considered as loops by KTail (and induce an important loss
of precision) when mergers are not sufficiently constrained
(considering linear programs, any merge introduces gener-
alization errors).

With programs from class C and E, which respectively
contain alternatives or loops, being able to merge states is
of great importance to detect such branching points. It allows
to reduce the size of the produced FSA and to generalize
from observations to infer paths that have not been observed
but belong to the behavior model of the program. In both
cases, k = 3 appears to allow the best compromise between
completeness and correctness of the produced model, for a
reasonably sized FSA.

Programs from classes D and F respectively own similar
structure than those from classes C and E but contain
repetitions of program blocks. We note a significant loss
of performance compared with results over classes C and
E, particularly for runs with low values of k. Same manner
as for class B, repetitions of blocks in the structure intro-
duce important generalization errors. Same tendencies are
observed with programs of class G, which corresponds to
the most complex set of programs (every kind of block is
possible, much greater number of possible paths).

Two values for k are highlighted: while k = 5 allows to
limit generalization errors, k = 3 appears to obtain rather
good accuracy for reasonable sized automata. Figure 1 shows
the F1 scores3 obtained with k values 3, 5 and 1000 for
all program classes and extraction strategies. Differences
between scores of the three considered algorithms are not
constant over the various kinds of observations sets for
each program class. With program class F for instance,
while KTail 1000 obtains a F1 score similar to the one of
KTail 3 when observations are very restricted, it increases
much greater with better views of the whole behavior. More
interestingly, we may note that, when blocks cannot be
repeated in the structure, the dominance of k = 3 is largely
greater for restricted views of the whole behavior (see for
example program class E, where score difference between
k = 3 and k = 5 is around 0.1 with StateV ector 0.2,

3F1 is a classical measure allowing to mix recall and precision in a
single score : F1 = 2×Precision×Recall

Precision+Recall

XXXXXXXXAlgo
Class A B C D E F G

R P S R P S R P S R P S R P S R P S R P S
Ktail 0 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.99 0.00 1.00
Ktail 1 1.00 0.70 32.59 1.00 0.29 25.08 0.99 0.52 67.93 0.99 0.16 50.84 1.00 0.73 30.02 1.00 0.33 21.43 0.98 0.30 49.86
Ktail 2 1.00 0.90 33.35 1.00 0.30 27.49 0.99 0.70 81.53 0.99 0.17 68.64 1.00 0.88 36.53 1.00 0.34 25.80 0.97 0.34 73.32
Ktail 3 1.00 1.00 33.49 1.00 0.55 29.32 0.98 0.99 93.64 0.98 0.38 87.53 1.00 1.00 43.23 1.00 0.60 30.02 0.94 0.61 100.0
Ktail 4 1.00 1.00 33.49 1.00 0.55 30.24 0.98 1.00 106.1 0.97 0.39 106.5 0.99 1.00 52.25 1.00 0.60 34.31 0.91 0.62 142.1
Ktail 5 1.00 1.00 33.49 1.00 0.75 31.07 0.97 1.00 119.7 0.96 0.61 127.3 0.99 1.00 62.81 1.00 0.76 39.11 0.85 0.76 200.1
Ktail 10 1.00 1.00 33.49 1.00 0.92 32.48 0.93 1.00 204.2 0.90 0.82 251.7 0.91 1.00 178.5 0.98 0.87 80.56 0.63 0.88 729.9

Ktail 1000 1.00 1.00 33.49 1.00 1.00 33.32 0.77 1.00 1404 0.72 1.00 1680 0.48 1.00 3248 0.73 1.00 2020 0.32 1.00 3877

Table II
RESULTS FOR KTAIL WITH UNIFORM OBSERVATIONS

0.
2

0.
4

0.
6

0.
8

1.
0

F
1

1234567

A

1234567

B

1234567

C

1234567

D

1234567

E

1234567

F

1234567

G

KTail_3
KTail_5
KTail_1000

Figure 1. F1 scores for KTail with k set to 3, 5 and 1000.
KTail 3, KTail 5 and KTail 1000. Letters correspond to pro-
gram classes and numbers to path extraction strategies ordered by
increasing coverage of the whole behavior: 1 = StateVector 0 ,
2 = StateVector 0 .2 , 3 = Biased, 4 = StateVector 0 .5 ,
5 = StateVector 1 , 6 = Unbiased , 7 = Uniform .

whereas it is only of 0.003 for Uniform observations).
Such examples demonstrate the importance of generating
different sets of observations, following various probability
distributions, in order to fairly compare behavior miners.

IV. CONCLUSION

By determining structures of programs as nested blocks
defining their general behavior, we proposed here a way to
generate large amounts of realistic artificial data, that greatly
serve analysis and comparisons purposes. To the best of our
knowledge, the CARE platform is the first one to propose:
1) the generation of diverse identified classes of programs;
2) various strategies of execution simulation that lead to
different coverage levels of the program behavior.

Future work will include the integration of arguments in
methods’ invocations during the structure generation in order
to be able to consider algorithms such as GKTail [7], which
focuses on determining parameter intervals on transitions of
the FSA. Stating the goal of behavior mining as producing
coherent and readable Sequence Diagrams (SD), we are
also currently working on new evaluation measures that
could consider SD driven criteria on the resulting automaton
(divisibility in sub process, coherence of contiguous calls,
one closing per call, consistent closings order, etc...). If such
measures turn out to be relevant for evaluation purposes, they
also may constitute new criteria to consider in designing
mining algorithms.

REFERENCES

[1] J. E. Cook and A. L. Wolf, “Discovering models of software
processes from event-based data,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 215–249, Jul. 1998.

[2] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, and
P. Dupont, “Stamina: a competition to encourage the devel-
opment and assessment of software model inference tech-
niques,” Empirical Software Engineering, pp. 1–34, 2012.

[3] N. Walkinshaw, K. Bogdanov, C. Damas, B. Lambeau, and
P. Dupont, “A framework for the competitive evaluation of
model inference techniques,” in MIIT ’10. New York, NY,
USA: ACM, 2010, pp. 1–9.

[4] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed Java
Software,” IEEE Tran. on Sof. Eng., vol. 32, no. 9, pp. 642–
663, 2006.

[5] A. W. Biermann and J. Feldman, “On the synthesis of
finite-state machines from samples of their behavior,” IEEE
Transactions Computers, vol. 21, pp. 592–597, 1972.

[6] D. Lo and S. C. Khoo, “Quark: Empirical assessment of
automaton-based specification miners,” in WCRE ’06. Wash-
ington, DC, USA: IEEE CS, 2006, pp. 51–60.

[7] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic genera-
tion of software behavioral models,” in ICSE ’08. New York,
NY, USA: ACM, 2008, pp. 501–510.

