
FACS 2007

A Model-Based Approach to the Verification
and Adaptation of WF/.NET Components

Javier Cubo, Gwen Salaün, Carlos Canal, Ernesto Pimentel

Department of Computer Science, University of Málaga
Campus de Teatinos, 29071, Málaga, Spain

Email: {cubo,salaun,canal,ernesto}@lcc.uma.es

Pascal Poizat
INRIA/ARLES Project-Team, France, and

IBISC FRE 2873 CNRS - Université d’Évry, France
Email: pascal.poizat@inria.fr

Abstract

This paper presents an approach which supports verification and model-based adaptation of software compo-
nents and services implemented using Windows Workflow Foundation (WF). First, we propose an abstract
description of WF workflows, and we formalise the extraction of Labelled Transition Systems from these
workflows. Next, verification and adaptation are applied using respectively model-checking techniques and
existing model-based adaptation approaches. Last, we explain how a WF workflow can be generated from
an adaptor protocol.

Keywords: Sofware Components, Services, Composition, Model-based Adaptation, WF Workflows,
Model-checking

1 Introduction

Software Adaptation [4,7] is a promising research area which aims at supporting
the building of component systems [25] by reusing software entities. These can
be adapted in order to fit specific needs within different systems. In such a way,
application development is mainly concerned with the selection, adaptation and
composition of different pieces of software rather than with the programming of
applications from scratch. Many approaches dedicated to model-based adapta-
tion [5,8,16,19,23,26] focus on the behavioural interoperability level, and aim at
generating new components called adaptors which are used to solve mismatch in a
non-intrusive way. This process is completely automated being given an adapta-
tion mapping which is an abstract description of how mismatch can be solved with
respect to the behavioural interfaces of components. However, most of these ap-
proaches are independent of the implementation framework, and few of them relate
with existing programming languages and platforms. To the best of our knowledge,

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Cubo et al.

the only attempts in this direction have been carried out using COM/DCOM [16],
BPEL [6], and SCA components [19].

In this paper, we focus on Windows Workflow Foundation (WF) [24] which be-
longs to the .NET Framework 3.0 developed by MicrosoftR©. We have chosen WF
because this platform supports the behavioural descriptions of components/services
using workflows. In addition, the .NET Framework is widely used in private compa-
nies, and makes the implementation of services easier thanks to its workflow-based
graphical support and the automation of the code generation. More than dealing
only with adaptation of WF components, our approach also allows the verification
of such components by extracting abstract descriptions from them and by using
model-checking tools. This work extends and formalises the ideas sketched in [9].

Our approach is summarised in Figure 1. To make the verification and adapta-
tion possible, in a first stage, abstract behavioural descriptions (Labelled Transition
Systems, LTSs) have to be extracted from WF workflows. Next, being given a set
of LTSs, mismatch detection is computed to check whether the involved compo-
nents need adaptation or not. If a mismatch exists, we apply adaptation techniques
that aim at generating an adaptor protocol/LTS from a mapping. Assessment tech-
niques are then helpful to check that the adaptor is as expected. If not, another
mapping may be proposed. We emphasise that formal verification of WF compo-
nents takes place twice: when detecting mismatch, and when assessing the resulting
system (components+adaptor). Last, once the designer is satisfied by the abstract
adaptor, the corresponding WF workflow is generated.

WF components
 LTS abstractions

No adaptation

needed

Adaptation

mapping

LTS adaptor
 WF adaptor

Adaptor component

Components

Verification

Mismatch

detection

Adaptation

Adaptor

generation

Verification

Assessment

techniques

Fig. 1. Overview of our approach for the adaptation of WF components

The remainder of the paper is organised as follows. We give an overview of WF,
and we define an abstract notation for WF workflows in Section 2. We present in
Section 3 a simple on-line computer sale example, and the WF components it relies
on. Section 4 formalises the extraction of LTSs from WF workflows. In Section 5,
we focus on the verification and adaptation of WF components based respectively
on model-checking techniques and model-based adaptation. Section 6 presents the
encoding of an adaptor LTS into a WF workflow. In Section 7, the contributions of
our approach are compared to related work. Finally, in Section 8, we conclude the
paper and present future work.

2

Cubo et al.

2 WF Workflow Notation

In this paper, we present a representative kernel of the WF activities, namely Code,
Terminate, InvokeWebService, WebServiceInput, WebServiceOutput, Sequence,
IfElse, Listen with EventDriven activities, and While. The reader interested in
more details may refer to [24]. We also introduce a textual and abstract notation
for the aforementioned WF activities.

2.1 WF Overview

WF belongs to the .NET Framework 3.0, and is supported by Visual Studio 2005.
The available programming languages to implement workflows in Visual Studio 2005
are Visual Basic and C#. In this work, C# has been chosen as the implementation
language.

The Code activity is meant to execute user code provided for execution within
the workflow. The Terminate activity is used to finalise the execution of a work-
flow. A WF InvokeWebService activity calls a Web service and receives the re-
quested service result back. If such an invoke has to be accessed by another com-
ponent C , it has to be preceded by a WebServiceInput activity, and followed by
a WebServiceOutput activity. Hence, C will interact with this new service using
these two input/output activities that enable and disable the data reception and
sending, respectively, with respect to the invoked Web service. WF-based XML Web
services require at least one WebServiceInput and one or more WebServiceOutput
activities. The input and output activities are related, thus each output activity
must be associated with an input activity. It is not possible to have an instance of
WebServiceInput without associated outputs, as well as having outputs without at
least one WebServiceInput.

The Sequence construct executes a group of activities in a precise order. The
WF IfElse activity corresponds to an if-then-else conditional expression. Depend-
ing on the condition evaluation, the IfElse activity launches the execution of one
of its branches. If none of the conditions is true, the else branch is executed.

The Listen activity defines a set of EventDriven activities that wait for a
specific event. One of the EventDriven activities is fired when the expected message
is received. Last, the While construct defines an activity that is fired as many times
as the While condition is true.

2.2 Abstract Notation for WF Workflows

Here, we define a textual and abstract notation for WF workflows. This notation
makes abstract several implementation details. Our proposal considers as input
textual workflows instead of their graphical description. Table 1 formalises the
grammar for the textual notation of WF activities A, where C , Ci are boolean
conditions, and I , Ii (inputs), O , Oi (outputs) are parameters of activities.

3

Cubo et al.

A ::= Code executes a chunk of code

| Terminate ends a workflow’s execution

| InvokeWebService(O1,. . . ,On ,I) calls a Web service (WS)

| WebServiceInput(I1,. . . ,In) receives data from a WS

| WebServiceOutput(O) sends data to a WS

| Sequence(A1,A2) executes first A1 and then A2

| IfElse((C1,A1),. . . ,(Cn ,An),An+1) executes Ai if Ci is true,

or An+1 otherwise

| Listen(E1,. . . ,En) fires one of the Ei branches

| While(C,A) executes A while C is true

E ::=

EventDriven(WebServiceInput(I),A) executes A when I is received

Table 1
Grammar for the abstract notation of WF workflows

3 Running Example: On-line Computer Sale

This section introduces an on-line computer sale example. It consists of a system
whose purpose is to sell computer material such as PCs, laptops, or PDAs to clients.
As a starting point we reuse two components: a Buyer and a Supplier . These com-
ponents have been implemented using WF./NET, and their workflows are presented
in Figure 2.

First, the Supplier receives a request under the form of two messages that indi-
cate the type of the requested material, and the max price to pay (type and price,
(1) and (2) respectively in Fig. 2). Then, it sends a response indicating if the request
can be replied positively (reply, (3)). Next, the Supplier can terminate the session,
receive and reply other requests ((4), (5) and (6)), or receive an order of purchase
(buy, (7)). In the latter case, a confirmation is sent (ack, (8)) emphasising if the
purchase has been realised correctly or not.

The Buyer can submit a request (request, (9) in Fig. 2), in which it indicates the
type of material he/she wants to purchase and the price to pay. Next, once he/she
has received a response (reply, (10)), the Buyer may realise another request ((11)
and (12)), buy the requested product (purchase and ack, (13) and (14)), or end
the session (stop, (15)).

In both Supplier and Buyer we have split the workflows of Figure 2, presenting
them into two parts. On the left-hand side, we show the initial execution belonging
to the first request, and on the right-hand side we present the loop offering the
possibility of executing other requests, performing a purchase or finalising. We
identify the names of certain activities, whose functionality is the same, with an
index (such as type 1 and type 2, or invokeType 1 and invokeType 2 in Supplier),
because WF does not accept activities identified using the same name. In the Buyer

4

Cubo et al.

Supplier
 Buyer

(
1
)

(
2
)

(
3
)

(
4
)

(
5
)

(
6
)

(
7
)

(
8
)

(
9
)

(
10
)
 (
11
)

(
12
)

(
13
)

(
14
)

(
15
)

s

s

b

b

Fig. 2. WF workflows for the Supplier (left) and Buyer (right) components

component, the messages with the code suffix, such as request 1 code, correspond
to the execution of C# code. Last, some WebServiceInput and WebServiceOutput
activities may be meaningless with respect to the component functionality, and
appear in the WF workflow only because WF obliges their presence before and
after InvokeWebService activities. In Figure 2, these activities are identified with
tau identifiers.

To illustrate the textual notation defined in Section 2.2, we apply it on the
Supplier WF workflow. We focus on the While construct, and present a part of the
Listen activity it contains. The condition of the While construct is true because
the component loops on requests until it receives an order of purchase, or until the
system stops.

Sequence
(...,

While
(true,

Listen
(EventDriven

(WebServiceInput(type),
...

),
EventDriven

(WebServiceInput(buy),
Sequence

(InvokeWebService(buy, ack),
Sequence

(WebServiceOutput(ack),
Terminate

)
)

)
)

5

Cubo et al.

)
)

Note that we remove in the abstract notation all the suffixes used in the work-
flows to distinguish activity names. Last, we recall that in the following we consider
such an abstract description of WF components, as an input (Section 4) and output
(Section 6) to our verification and adaptation proposal.

4 Extracting LTSs from WF Workflows

Since we want to reuse existing techniques to make verification and adaptation of
WF components, we have first to extract from the abstract WF notation the re-
quired model, namely Labelled Transition Systems. A LTS is a tuple (A,S , I ,F ,T)
where: A is an alphabet (set of events or messages), S is a set of states, I ∈ S
is the initial state, F ⊆ S are final states, and T ⊆ S × A × S is the transition
function. The extracted LTSs must preserve the semantics of workflows as encoded
in WF/.NET Framework 3.0. A formal proof of semantics preservation between
both levels is not achieved yet since WF does not provide a formal semantics. Our
encoding has been deduced from our experiments using the WF platform. The main
ideas of the LTS obtaining from abstract description of workflow constructs are the
following.

• Code is internal and hence interpreted as an internal transition, τ ;
• Terminate corresponds to a final state;
• InvokeWebService corresponds to a sequence of emissions followed by a

reception, WebServiceInput corresponds to a sequence of receptions, and
WebServiceOutput corresponds to an emission;

• Sequence is translated so as to preserve the order of the involved activities. For
this, the final states of the first activity are linked to the initial state of the second
activity using ε transitions;

• IfElse corresponds to an internal choice. This corresponds to as many τ transi-
tions as there are branches in the IfElse construct (including the else branch).
Each of these τ transitions leads to the initial state of the corresponding activity;

• Listen corresponds to an external choice. This corresponds to as many outgoing
transitions as there are branches in the Listen construct. These transitions are
labelled with receptions corresponding to the messages that can be received and
target the initial state of the related activity;

• While is translated as a looping behaviour, where the choice between termination
or loop is encoded using internal non-determinism (τ transitions).

Formally, an LTS L = (A,S , I ,F ,T) can be obtained from an abstract workflow
represented by activity A using function awf 2lts : WF → LTS . For an LTS L =
(A,S , I ,F ,T), we define X (L) = X for every X in {A,S , I ,F ,T}. This notation
is overloaded for activities: for some activity A, we define X (A) = X (awf 2lts(A))
for every X in {A,S , I ,F ,T}. Finally, we use new s to denote the creation of s as
a new (fresh) state in the LTSs we are building. awf 2lts can be defined inductively
on the structure of WF activities as follows:

6

Cubo et al.

Code 7→ ({τ}, {new s1,new s2}, s1, {s2}, {s1 τ→ s2})

Terminate 7→ (∅, {new f }, f , {f },∅)

InvokeWebService(O1, . . . ,On , I) 7→ ({O1!, . . . ,On !, I ?}, ⋃i∈{0,...,n+1}{new si},
s0, {sn+1}, (

⋃
i∈{1,...,n} si−1

Oi !→ si) ∪ {sn I ?→ sn+1})

WebServiceInput(I1, . . . , In) 7→ ({I1?, . . . , In?}, ⋃i∈{0,...,n}{new si}, s0, {sn},⋃
i∈{1,...,n} si−1

Ii?→ si)

WebServiceOutput(O) 7→ ({O !}, ⋃i∈{0,1}{new si}, s0, {s1}, {s0 O !→ s1})

Sequence(A1,A2) 7→ (A(A1) ∪A(A2) ∪ {ε},S (A1) ∪ S (A2), I (A1),F (A2),
T (A1) ∪ T (A2) ∪ {f ε→ I (A2) | f ∈ F (A1)})

IfElse((C1,A1), . . . , (Cn ,An),An+1) 7→ ((
⋃

i∈{1,...,n+1}A(Ai)) ∪ {τ},
(
⋃

i∈{1,...,n+1} S (Ai)) ∪ {new s}, s,⋃i∈{1,...,n+1} F (Ai),⋃
i∈{1,...,n+1}(T (Ai) ∪ {s τ→ I (Ai)}))

Listen(EventDriven(WebServiceInput(I1),A1), . . . ,
EventDriven(WebServiceInput(In),An)) 7→ (

⋃
i∈{1,...,n}(A(Ai) ∪ {Ii?}),

(
⋃

i∈{1,...,n} S (Ai)) ∪ {new s}, s, ⋃i∈{1,...,n} F (Ai),⋃
i∈{1,...,n}(T (Ai) ∪ {s Ii?→ I (Ai)}))

While(C ,A) 7→ (A(A) ∪ {ε} ∪ {τ},S (A) ∪ {new s,new f }, s,F (A) ∪ {f },
T (A) ∪ {s τ→ I (A)} ∪ {s τ→ f } ∪ {f ′ ε→ I (A) | f ′ ∈ F (A)})

Once the LTS is constructed, ε transitions are removed [15]. LTS does not
support the description of data expressions, consequently conditions appearing in
While and IfElse constructs are abstracted away while extracting LTS. Likewise,
WebServiceInput and WebServiceOutput activities identified with tau identifiers
(see Fig. 2) are translated as τ transitions in the corresponding LTS.

Initial and final states in the LTS come respectively from the explicit initial
and final states that appear in the workflow. There is a single initial state that
corresponds to the beginning of the workflow. Final states correspond either to a
Terminate activity or to the end of the whole workflow. Accordingly, several final
states may appear in the LTS because several branches in the workflow may lead to
a final state. Initial and final states are respectively depicted in LTSs using bullet
arrows and hollow states.

Let us illustrate the extraction of LTSs from abstract WF workflows on our
running example (Figure 3). The messages that appear in the Buyer LTS come
from the output and input parameters that appear in its invoke activities. As far
as the Supplier component is concerned, the invoke activities are made abstract
because they correspond to interactions with external components (in charge of the
material database), and are not of interest for the composition at hand. Therefore,

7

Cubo et al.

the observable messages in this case are coming from the input and output messages
surrouding the invoke activities. All the τ transitions in LTSs are removed using a
(τ∗.a) behavioural reduction [12] before the adaptation process to favour efficiency
and readability. To identify unambiguously component messages in the adaptation
process, their names are prefixed by the component identifier, respectively b for
Buyer , and s for Supplier .

 s:type? s:price?

 s:reply!

 s:price? s:type?

 s:buy? s:ack!

 [while]

 b:request!

 b:reply?

 b:purchase!
 b:ack?

 b:request!

 b:stop!

 [while]

Fig. 3. LTS interfaces of Supplier (top) and Buyer (bottom) components

5 Verification and Model-Based Adaptation in WF

This section presents our approach to verify and compose/adapt WF components.
Verification techniques are useful in two cases: first, they may help to identify
mismatch situations, and, in a second step, they allow to check if the adaptor works
correctly, since the designer writes the mapping by hand, therefore it may contain
some errors that will be reflected in the adaptor protocol.

5.1 Detection of Mismatch Cases

First of all, let us introduce verification techniques that can be used to check com-
ponent LTSs, and their composition with the adaptor LTS (see Section 5.4). All
existing model-checking tools that accept automata-based format as input are good
candidates to these checks, namely SPIN [14], CADP [12] or mCRL2 [13]. In this
paper, we illustrate these ideas with CADP which is a verification toolbox for asyn-
chronous concurrent systems. CADP allows to deal with very large state spaces, and
implements various verification techniques such as model checking, compositional
verification, equivalence checking, distributed model checking, etc.

The main idea is to generate the full system using parallel composition operators
available in CADP (or similar tools), and then to reason on the resulting system
using mainly visual checking and model-checking of temporal properties. Model-
checking is an automatic technique that efficiently detects subtle architectural flaws.
Classical properties such as liveness or safety properties can be easily formalised
reusing patterns [17], and then checked against the system model (LTS) using model-
checkers, e.g., Evaluator [18] which belongs to CADP.

8

Cubo et al.

As regards our running example, we first compute the resulting LTS by compos-
ing components Buyer and Supplier and enforcing their interaction on all messages
appearing in both components. The resulting LTS consists of a single state with
no outgoing transitions. This is quite obvious because both components suffer of
mismatch in their first transition (request! in the Buyer versus type? in the
Supplier). Indeed, a study of these LTSs points out the three following cases of
mismatch:

(i) name mismatch: the Buyer may buy the computer using purchase! whereas
the Supplier may interact on buy?;

(ii) mismatching number of messages: the Buyer sends one message for each re-
quest (request!) while the Supplier expects two messages, one indicating the
type (type?), and one indicating the max price (price?);

(iii) independent evolution: the Buyer may terminate with stop! but this message
has no counterpart in the Supplier .

5.2 Adaptation Mapping

Now, a mapping should be given to work the aforementioned cases of mismatch
out. ε is used in vectors when some message has no counterpart in a component
(see e.g. Vprice and Vstop bellow). We use vectors that define correspondences
between messages. More expressive mapping notations exist in the literature, such
as regular expressions of vectors [8], but with respect to the example at hand, vectors
are enough to automatically retrieve a solution adaptor. A possible mapping for
our example is as follows:

Vreq = 〈b :request!, s :type?〉
Vprice = 〈b :ε, s :price?〉
Vreply = 〈b :reply?, s :reply!〉
Vstop = 〈b :stop!, s :ε〉
Vbuy = 〈b :purchase!, s :buy?〉
Vack = 〈b :ack?, s :ack!〉
The name mismatch can be solved by vector Vbuy. The correspondence between

request! and messages type? and price? can be achieved using two vectors,
Vreq and Vprice, where the second contains an independent evolution of component
Supplier . The last mismatch is solved using Vstop in which the message stop! is
associated to nothing.

5.3 Generation of the Adaptor Protocol

Given a set of component LTSs (Section 4) and a mapping (Section 5.2), we can
use existing approaches (here we rely on [8]) to generate the adaptor protocol auto-
matically. This automation is crucial because in some cases, the adaptor protocol
may be very hard to derive manually.

Figure 4 presents the Adaptor LTS. Since the adaptor is an additional component
through which all the messages transit, all the messages appearing in the adaptor
protocol are reversed with respect to the ones in the components. Note first that
the adaptor receives the request coming from the Buyer , and splits the message into

9

Cubo et al.

messages carrying the type and price information. This LTS also shows how the
termination is possible along the stop? message, and how the adaptor may interact
on different names (purchase? and buy!) to make the interaction possible.

 b:request? s:type! s:price! s:reply? b:reply!

 b:request?
 s:type!

 s:price!

 b:stop?

 s:buy!

 b:purchase?

 b:ack! s:ack?

 [while]

Fig. 4. Adaptor protocol for the case study

5.4 Assessment Techniques

In this last step, we use model-checking techniques to validate the adaptor LTS
generated from the mapping proposed above. First, the LTS corresponding to the
composition of both components and the adaptor is computed. Synchronisation is
made explicit, and both components interact together through the adaptor. Next,
the designer may write some properties to be verified by the final system. In the
rest of this section, we show some examples of µ-calculus formulas we checked on
this system using Evaluator:

(i) a supplier always replies a buyer request
[true* . "b_request"]

mu X. (<true> true and [not ("s_reply")]X)

(ii) a buyer request is always followed by stop, purchase, or request
[true* . "b_request"]

mu X. (<true> true and
[not ("b_stop" or "b_purchase" or "b_request")]X)

(iii) a buyer request is always followed by stop, or purchase
[true* . "b_request"]

mu X. (<true> true and [not ("b_stop" or "b_purchase")]X)

Properties (i) and (ii) are true, whereas the last one (iii) is false, but this is
normal because the system can loop forever on exchanging request/reply messages.
If some properties turn out to be false whereas a positive answer was expected, it
means that the adaptation mapping contains errors that does not make the system
behave as required. In this situation, the mapping must be corrected and assessment
applies again.

6 Generating WF Workflows from LTSs

The last step in our proposal is to generate an abstract workflow from an adaptor
protocol. Formalising the function lts2awf is quite tough, especially because cycles
in the adaptor LTS have to be encoded with While activities which must preserve

10

Cubo et al.

the LTS behaviour. Therefore, as a first attempt, we give in this section some
guidelines for this encoding.

First, the initial state of the LTS is encoded as the initial state of the workflow.
Final states are encoded as Terminate activities. The adaptation process removes
all the τ transitions. Then, all the needed pieces of C# code will be added by hand
while refining the abstract workflow into a real WF workflow.

The translation process derives step by step parts of the abstract workflow by
focusing on one state of the LTS after the other. We distinguish in the following the
translation of transitions corresponding to message activities (InvokeWebService,
WebServiceInput, WebServiceOutput), and the generation of structuring activities
(Sequence, IfElse, Listen, While). Let us start with messages, and note that
the three rules below have to be applied in this order to check if the sequence of
messages corresponds to an InvokeWebService before translating it in separate
WebServiceOutput or WebServiceInput activities:

• a sequence of transitions with labels holding one or several emissions followed by
a reception is encoded as an InvokeWebService activity;

• one or several transitions with receptions as labels are translated into a
WebServiceInput activity;

• a transition with one emission corresponds to a WebServiceOutput activity.

Now, we focus on the encoding of the LTS structuring into the abstract workflow:

• a Sequence activity is generated for a sequence of transitions in the LTS cor-
responding to two successive message activities, and for which no states involve
more than one outgoing transition;

• if the state of the LTS to be translated involves two or more outgoing transitions:
· if all the outgoing transitions hold input messages, a Listen activity is derived,
· otherwise a conditional choice IfElse activity is generated;

• a cycle in an LTS is translated using a While activity. If several cycles loop on
a same state, it corresponds to a single While activity. However if a cycle in the
LTS contains another (local) cycle, this latter will also be translated as a While
activity nested in the outmost one.

Following these guidelines, an abstract workflow has been derived for our running
example that we do not show here for space reasons. Last, this abstract workflow
has been refined into a WF workflow (Fig. 5). This refinement step requires the
intervention of the designer, to (i) concretise conditions in IfElse and While ac-
tivities, and (ii) add C# pieces of code to get the adaptor WF component works
correctly. Moreover, WF requires addresses of components to be specified in in-
vocations. Therefore, to deploy our adapted system, we have first to update the
components workflows to change these addresses into the adaptor one. However,
this can be done automatically.

Finally, we point out that the simple system presented in this paper has been
completely implemented using WF, and the Buyer and Supplier components worked
as required thanks to the use of the Adaptor component.

11

Cubo et al.

Adaptor

a

a

Fig. 5. WF workflow for the Adaptor component

7 Related Work

The first group of related work concerns proposals that aimed at applying adaptor
generation approaches to existing implementation platforms. Brogi and Popescu [6]
outline a methodology for the automated generation of adaptors capable of solving
behavioural mismatches between BPEL processes [1]. In their adaptation methodol-
ogy they use YAWL workflow as intermediate language. Once the adaptor workflow
is generated, they use lock analysis techniques to check if a full adaptor has been
generated or only a partial one (some interaction scenarios cannot be resolved).

In [6], the authors chose BPEL. Both BPEL and WF languages allow to de-
sign Web services, but WF can also be used to implement any kind of software
component. Their respective platforms make the implementation easier thanks to
their workflow-based graphical support, and the automated generation of most of
the underlying code (XML+Java in BPEL, using Java Application Server included
in Netbeans Enterprise, and XML+C# in WF). In this work, we have focused on
WF because it is an interesting alternative to BPEL that has not been studied yet.
In addition, as a long term purpose, we want our proposal to benefit to the wide
number of people who use the .NET Framework in private companies around the
world. Compared to [6] our adaptation approach is able to reorder messages in
between components when required.

Inverardi and Tivoli [16] tackle the automatic synthesis of connectors in the
COM/DCOM framework, by guaranteeing deadlock-free interactions among com-
ponents. They may also define properties that the resulting system should verify
using liveness and safety properties expressed as specific processes. Compared to
this proposal, our approach does not only restrict the adaptor to possible non-
deadlocking behaviours [16] but may also address behavioural adaptation. That
comes from the notation and adaptation techniques we rely on that allows to deal

12

Cubo et al.

with possibly complex adaptation scenarios, whereas this approach does not use
any mapping language for adaptor specification.

As regards verification of component-based systems, recent approaches have been
dedicated to the verification of software components specified using LOTOS, LTSs
and synchronisation networks [2,3]. These works present a method and a tool in-
tended to application developers, to build behavioural models of Fractal components
on which properties can be verified using CADP. In the Web Service area, different
works have been dedicated to verifying Web service description to ensure some prop-
erties of systems [10,11,21,22]. Summarising these works, they use model-checking
to verify some properties of cooperating Web services described using XML-based
languages (DAML-S, WSFL, BPEL, WSCI). Accordingly, abstract representations
are extracted from Web service implementations, and some properties may be en-
sured using ad-hoc or well-known tools (e.g., SPIN, LTSA). Last, Mouakher et
al. [20] start with a description of components using UML class and state diagrams
that they encode into the B method to use its associated theorem prover, namely
Atelier B or B4free, so as to perform compatibility checks. In a second step, they
specify adaptors in B, and address their correctness.

Compared to these different proposals, ours focuses on both verification and
adaptation of components. We prefer model checking (instead of theorem proving
with B for instance) because it makes verification steps easier thanks to a full
automation and its adequacy to automata-based models. In addition, adaptation
techniques support the automatic generation of adaptors in case verification reveals
that components cannot be directly reused (the adaptor is completely specified by
hand in [20]).

8 Concluding Remarks

This paper has presented an approach to verify WF components, and in case they
cannot be directly composed, we have sketched how an adaptor protocol can be
generated, and encoded into a new WF component. We have illustrated the appli-
cation of our proposal in practice on a simple yet realistic example. This work is
promising because it demonstrates that software adaptation can be of real interest
for widely used implementation platforms such as the .NET Framework 3.0, and can
help the developer in building software applications by reusing software components
or services.

As far as future work is concerned, here is a list of perspectives we will tackle
to complement our approach:

• extending the set of WF activities considered in our proposal;
• extending our LTS model with respect to these new activities, and keeping data

description at this level;
• formalising both functions awf 2lts and lts2awf to support the automatic extrac-

tion and generation of abstract workflows;
• extending our verification and adaptation proposal to deal with this new model;
• implementing our translation functions between LTSs and abstract workflows in

a prototype tool;

13

Cubo et al.

• implementing in this tool automatic translators between WF workflows (described
in XML format) and abstract workflows;

• experimenting the proposal on more complex and realistic examples.

In parallel, we would also like to carry out experiments on the implementation of
adaptors using BPEL and the Netbeans Enterprise platform to compare on precise
criteria the adequacy of both platforms to apply adaptation in practice.

Acknowledgements. This work has been partially supported by project TIN2004-
07943-C04-01 funded by the Spanish Ministry of Education and Science (MEC), and
project P06-TIC-02250 funded by Junta de Andalućıa.

References

[1] T. Andrews et al. Business Process Execution Language for Web Services (WSBPEL). BEA Systems,
IBM, Microsoft, SAP AG, and Siebel Systems, 2005.

[2] T. Barros, A. Cansado, and E. Madelaine. Model-Checking Distributed Components: The Vercors
Platform. In Proc. of FACS’06, volume 182 of ENTCS, pages 3–16. Elsevier, 2007.

[3] T. Barros, L. Henrio, and E. Madelaine. Verification of Distributed Hierarchical Components. In Proc.
of FACS’05, volume 160 of ENTCS, pages 41–55, 2006.

[4] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and M. Tivoli. Towards an Engineering
Approach to Component Adaptation. In Architecting Systems with Trustworthy Components, volume
3938 of LNCS, pages 193–215.

[5] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adaptation. Journal of
Systems and Software, 74(1):45–54, 2005.

[6] A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of ICSOC’06, volume
4294 of LNCS, pages 27–39, 2006.

[7] C. Canal, J.M. Murillo, and P. Poizat. Software Adaptation. L’Objet, 12(1):9–31, 2006. Special Issue
on Coordination and Adaptation Techniques for Software Entities.

[8] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural Mismatch in Software Composition. In
Proc. of FMOODS’06, volume 4037 of LNCS, pages 63–77, 2006.

[9] J. Cubo, G. Salaün, C. Canal, E. Pimentel, and P. Poizat. Relating Model-Based Adaptation and
Implementation Platforms: A Case Study with WF/.NET 3.0. In Proc. of WCOP’07, pages 9–13,
2007.

[10] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web Service Compositions.
In Proc. of ASE’03, pages 152–163, Canada, 2003. IEEE Computer Society Press.

[11] X. Fu, T. Bultan, and J. Su. Analysis of Interacting BPEL Web Services. In Proc. of WWW’04, pages
621–630. ACM Press, 2004.

[12] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006: A Toolbox for the Construction and
Analysis of Distributed Processes. In Proc. of CAV’07, volume 4590 of LNCS, 2007.

[13] J. F. Groote, A. Mathijssen M. van Weerdenburg, and Y. S. Usenko. From µCRL to mCRL2: Motivation
and Outline. In Proc. of the Workshop ”Essays on Algebraic Process Calculi” (APC 25), volume 162
of ENTCS, pages 191–196, 2006.

[14] G. Holzmann. The SPIN Model-Checker: Primer and Reference Manual. Addison-Wesley, 2003.

[15] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, 2nd edition, 2003.

[16] P. Inverardi and M. Tivoli. Deadlock-Free Software Architectures for COM/DCOM Applications.
Journal of Systems and Software, 65(3):173–183, 2003.

[17] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, 1995.

[18] R. Mateescu and M. Sighireanu. Efficient On-the-Fly Model-Checking for Regular Alternation-Free
Mu-Calculus. Science of Computer Programming, 46(3):255–281, 2003.

14

Cubo et al.

[19] H. Motahari, B. Benatallah, A. Martens, F. Curbera, and F. Casati. Semi-Automated Adaptation of
Service Interactions. In Proc. of WWW’07, pages 993–1002. ACM Press, 2007.

[20] I. Mouakher, A. Lanoix, and J. Souquieres. Component Adaptation: Specification and Verification. In
Proc. of WCOP’06, pages 23–30, 2006.

[21] S. Nakajima. Model-Checking Verification for Reliable Web Service. In Proc. of OOWS’02, satellite
event of OOPSLA’02, 2002.

[22] S. Narayanan and S. McIlraith. Analysis and Simulation of Web Services. Computer Networks,
42(5):675–693, 2003.

[23] H. W. Schmidt and R. H. Reussner. Generating Adapters for Concurrent Component Protocol
Synchronization. In Proc. of FMOODS’02, pages 213–229. Kluwer, 2002.

[24] K. Scribner. Microsoft Windows Workflow Foundation: Step by Step. Microsoft Press, 2007.

[25] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Adisson-Wesley, 2nd
edition, 2003.

[26] D. M. Yellin and R. E. Strom. Protocol Specifications and Components Adaptors. ACM Transactions
on Programming Languages and Systems, 19(2):292–333, 1997.

15

