
Relating Model-Based Adaptation and
Implementation Platforms:

A Case Study with WF/.NET 3.0
Javier Cubo, Gwen Salaün,

Carlos Canal, Ernesto Pimentel
Dept. of Computer Science, University of Málaga

Campus de Teatinos, 29071, Málaga, Spain
Emails:{cubo,salaun,canal,ernesto}@lcc.uma.es

Pascal Poizat
INRIA/ARLES Project-Team, France, and

IBISC FRE 2873 CNRS – Université d’Évry, France
Email: pascal.poizat@inria.fr

Abstract—In this paper, we propose to relate model-based
adaptation approaches with the Windows Workflow Foundation
(WF) implementation platform, through a simple case study. We
successively introduce a client/server system with mismatching
components implemented in WF, our formal approach to work
mismatch cases out, and the resulting WF adaptor. We end with
some conclusions and a list of open issues.

I. I NTRODUCTION

Software Adaptation [1] is a promising research area which
aims at supporting the building of component systems [2] by
reusing software entities. These can be adapted in order to fit
specific needs within different systems. In such a way, appli-
cation development is mainly concerned with the selection,
adaptation and composition of different pieces of software
rather than with the programming of applications from scratch.
Many approaches dedicated to model-based adaptation [3], [4],
[5], [6], [7] focus on the behavioural interoperability level, and
aim at generating new components calledadaptorswhich are
used to solve mismatch in a non-intrusive way. This process
is completely automated being given anadaptation mapping
which is an abstract description of how mismatch can be
solved with respect to behavioural interfaces of components.
However, very few of these approaches relate their results with
existing programming languages and platforms. To the best of
our knowledge, the only attempts in this direction have been
carried out using COM/DCOM [5] and BPEL [8].

In this paper, we propose to relate adaptor generation pro-
posals with existing implementation platforms. BPEL [9] and
Windows Workflow Foundation (WF) [10] are very relevant
platforms because they support the behavioural descriptions of
components/services. Implementing BPEL services is possible
with the Java Application Server included in Netbeans Enter-
prise. On the other hand, WF belongs to the .NET Framework
3.0 developed by MicrosoftR©. Here, we have chosen WF
to achieve our goal because the .NET Framework is widely
used in private companies whereas BPEL is a language that
recently emerged and for which tool support is being released.
In addition, WF can be used to implement Web services, as it
is the case for BPEL, but also any kind of software component.

WF makes the implementation of services easier thanks to its
workflow-based graphical support. Last, by using with WF,
most of the code is automatically generated, which is not the
case with BPEL platforms.

The remainder of the paper is organised as follows. We
give a quick overview of WF in Section II. We present in
Section III a simple example of on-line computer sale, and
the WF components on which it will rely on. In Section IV,
we apply successively the main steps that are necessary to
compose and adapt these WF components: extraction of be-
havioural interfaces from WF workflows, mismatch detection,
writing of the mapping, generation of adaptor protocol, and
implementation of the adaptor component from its abstract
description. In Section V, we draw up some conclusions, and
discuss issues that we will tackle in future work.

II. WF OVERVIEW

In this section we present the WF constructs that we use
in this work: Code, Terminate , InvokeWebService ,
WebServiceInput , WebServiceOutput , Sequence ,
IfElse , Listen with EventDriven activities, and
While . The reader interested in more details may refer
to [10].

WF belongs to the .NET Framework 3.0, and is supported
by Visual Studio 2005. The available programming languages
to implement the workflows in Visual Studio 2005 areVisual
Basic and C#. In this work, C# has been chosen as the
implementation language.

The Code activity is meant to execute user code pro-
vided for execution within the workflow. TheTerminate
activity is used to finalise the execution of a workflow. A
WF InvokeWebService activity calls a Web service and
receives the requested service result back. If such an invoke
has to be accessed by another componentC, it has to be
preceded by aWebServiceInput activity, and followed by
a WebServiceOutput activity. Hence,C will interact with
this new service using these two input/output activities that
enable and disable the data reception and sending, respectively,
with respect to the invoked Web service. WF-based XML Web



services require at least oneWebServiceInput and one or
moreWebServiceOutput activities. The input and output
activities are related, thus each output activity must be associ-
ated with an input activity. It is not possible to have an instance
of WebServiceInput without associated outputs, as well
as having outputs without at least oneWebServiceInput .

TheSequence construct executes a group of activities in a
precise order. The WFIfElse activity corresponds to anif-
then-elseconditional expression. Depending on the condition
evaluation, theIfElse activity launches the execution of one
of its branches. If none of the conditions is true, theelsebranch
is executed.

TheListen activity defines a set ofEventDriven activ-
ities that wait for a specific event. One of theEventDriven
activities is fired when the expected message is received. Last,
the While construct defines a set of activities that are fired
as many times as its condition is true.

III. C ASE STUDY: ON-LINE COMPUTERSALE

In this section we introduce a simple case study of on-
line computer sale. The example consists of a system whose
purpose is to sell computer material such as PCs, laptops, or
PDAs to clients. As a starting point we reuse two components:
a Supplier and aBuyer. These components have been im-
plemented using WF/.NET, and their workflows are presented
in Figures 1 and 2 respectively.

First, the Supplier receives a request under the form of
two messages that indicate the type of the requested material,
and the max price to pay (type and price ). Then, it
sends a response indicating if the request can be replied
positively (reply ). Next, the Supplier can terminate the
session, receive and reply other requests, or receive an order
of purchase (buy ). In the latter case, a confirmation is sent
(ack ) pointing out if the purchase has been realised correctly
or not.

The Buyer can submit a request (request ), in which it
indicates the type of material he wants to purchase and the max
price to pay for that material. Next, once he/she has received
a response (reply ), the Buyer may realise another request,
buy the requested product (purchase ), or end the session
(stop ).

In both Supplier andBuyer we have split the workflows
of Figures 1 and 2, presenting them into two parts. On
the left-hand side, we show the initial execution belonging
to the first request, and on the right-hand side we present
the loop offering the possibility of executing other requests,
performing a purchase or finalising. We identify the names
of certain activities, whose functionality is the same, with an
index (such astype_1 and type_2 , or invokeType_1
and invokeType_2 in Supplier), because WF does not
accept activities identified using the same name. Note that
in the Buyer component, the messages with thecode
suffix, such asrequest_1_code , correspond to the exe-
cution of C# code. Last, someWebServiceInput and
WebServiceOutput activities may be meaningless with
respect to the component functionality, and appear in the WF

 


Supplier


s


s


Fig. 1. WF workflow for theSuppliercomponent

workflow only because WF obliges their presence before and
after InvokeWebService activities. In Figures 1 and 2
these activities are identified withtau identifiers.

IV. COMPOSITION AND ADAPTATION OF WF
COMPONENTS

In this section, we focus on the composition and adaptation
of the Buyer andSupplier components.

A. Extraction of the Behavioural Interfaces

First of all, we present in Figure 3 the LTS (Labelled Transi-
tion Systems) extracted from the workflow-based components
presented in Section III. The main ideas of the obtaining of
LTS from workflow constructs are the following:

• Code is interpreted asτ transition (internal);
• Terminate corresponds to a final state in LTS;
• InvokeWebService is split into two messages, one

emission followed by a reception;
• WebServiceInput and WebServiceOutput mes-

sages are translated similarly in LTS;
• Sequence is translated so that it preserves the order of

the involved activities in the resulting LTS;
• IfElse corresponds to a choice, that is two transitions

outgoing from the same state, which encodes both parts
of the conditional construct;



 


Buyer


b


b


Fig. 2. WF workflow for theBuyer component

• Listen corresponds to a state with as many outgoing
transitions as there are branches in the WF contruct; each
transition holds a message that may be received;

• While is translated as a looping behaviour in the LTS.

LTS does not support the description of data expressions,
consequently conditions appearing inWhile and IfElse
constructs are abstracted during the LTS extraction stage.
Likewise, WebServiceInput and WebServiceOutput
activities identified withtau identifiers (see Figs. 1 and 2)
are translated asτ transitions in the corresponding LTS.

Initial and final states in the LTS come respectively from
the explicit initial and final states that appear in the work-
flow. There is a single initial state that corresponds to the
beginning of the workflow. Final states correspond either to
a Terminate activity or to the end of the whole workflow.
Accordingly, several final states may appear in the LTS be-
cause several branches in the workflow may lead to the final
state. Initial and final states are respectively depicted in LTSs
using bullet arrows and darkened states.

The messages that appear in theBuyer LTS come from
the output and input parameters that appear in its invoke
activities. As far as theSupplier component is concerned, the
invoke activities are made abstract because they correspond
to interactions with external components (in charge of the
material database), and are not of interest for the composition

at hand. Therefore, the observable messages in this case are
coming from the input and output messages surrounding the
invoke activities. All theτ transitions in both LTSs corre-
sponding toC# code in theBuyer workflow, and totau
WebServiceOutput activities in theSupplier one have
been removed (byτ∗.a reduction [11]) to favour readability. To
identify unambiguously component messages in the adaptation
process, their names are prefixed by the component identifier,
respectivelyb for Buyer, ands for Supplier.

 s:type?  s:price?

 s:reply!

 s:price?  s:type?

 s:buy?  s:ack!

 b:request!

 b:reply?

 b:purchase!
 b:ack?

 b:request!

 b:stop!

Fig. 3. LTS interfaces ofSupplier(top) andBuyer (bottom) components

B. Mismatch Cases

In this simple example, we can emphasise three cases of
mismatch:

1) name mismatch: theBuyer may buy the computer using
purchase! whereas theSupplier may interact on
buy? ;

2) mismatching number of messages: theBuyer sends
one message for each request (request! ) while the
Supplier expects two messages, one indicating the type
(type? ), and one indicating the max price (price? );

3) independent evolution: theBuyer may terminate with
stop! but this message has no counterpart in the
Supplier.

C. Adaptation Mapping

Now a mapping should be given to work the aforementioned
cases of mismatch out. We use vectors that define some
correspondences between messages. More expressive mapping
notation exist in the literature, such as regular expressions of
vectors [4], but with respect to the example at hand, vectors
are enough to automatically retrieve a solution adaptor.
Vreq = 〈b :request!, s :type?〉
Vprice = 〈b :ε, s :price?〉
Vreply = 〈b :reply?, s :reply!〉
Vstop = 〈b :stop!, s :ε〉
Vbuy = 〈b :purchase!, s :buy?〉
Vack = 〈b :ack?, s :ack!〉
The name mismatch can be solved by vectorVbuy. The

correspondence betweenrequest! and messagestype?
and price? can be achieved using two vectors,Vreq and
Vprice, where the second contains an independent evolution of
componentSupplier. The last mismatch is solved usingVstop
in which the messagestop! is associated to nothing.



D. Generation of the Adaptor Protocol

Given a set of component LTSs (Section IV-A) and a
mapping (Section IV-C), we can use existing approaches (here
we rely on [4]) to generate the adaptor protocol automatically.
This is a strength of this proposal because in some cases, the
adaptor protocol may be very hard to derive manually. Since
the adaptor is an additional component through which all the
messages transit, all the messages appearing in the adaptor
protocol are reversed.

Figure 4 presents theAdaptor LTS. Note first that the
adaptor receives the request coming from theBuyer, and
splits the message into messages carrying the type and price
information. This LTS also shows how the termination is
possible along thestop? message, and how the adaptor may
interact on different names (purchase? andbuy! ) to make
the interaction possible.

 b:request?  s:type!  s:price!  s:reply?  b:reply!

 b:request?
 s:type!

 s:price!

 b:stop?

 s:buy!

 b:purchase?

 b:ack!  s:ack?

Fig. 4. Adaptor protocol for the case study

E. Implementation of the WF Adaptor

From the adaptor LTS presented above, a corresponding
WF component is obtained following the reversed process
that we have sketched in Section IV-A,i.e., by generating
a workflow from an LTS. Therefore, every emission fol-
lowed by a reply is encoded as anInvokeWebService
construct. Other input/output events are translated using
WebServiceInput/WebServiceOutput activities. The
decision of theBuyer is translated as aListen construct,
and the looping behaviour as aWhile activity. We present in
Figure 5 theAdaptor workflow that has been encoded in WF.

Finally, we point out that the system presented in this
section has been completely implemented using WF, and the
Buyer and Supplier components works as required thanks
to the use of the WFAdaptor component.

V. CONCLUSION

This paper has presented on a simple yet realistic ex-
ample how existing model-based adaptation approaches can
be related to implementation platforms such as WF in the
.NET Framework 3.0. To make this work, we had to face
and work out specificities of the WF platform such as the
use of tau WebServiceOutput activities, or of several
InvokeWebService activities in one session. This work is
very promising because it shows that software adaptation is
of real use, and can help the developer in building software
applications by reusing software components or services.

We end with a list of future tasks we will tackle to make
the adaptation stage as automated as possible:

 


Adaptor


a


a


Fig. 5. WF workflow for theAdaptor component

• automating the LTS extraction from WF workflows;
• automating the mismatch detection, and generating the

list of mismatch situations from a set of component LTSs;
• beyond mismatch detection, tackling verification of WF

components;
• supporting techniques to help the designer to write the

mapping out, and to generate automatically part of it;
• generating WF workflows from the adaptor LTS.

We would also like to carry out experiments on the imple-
mentation of adaptors using BPEL and the Netbeans Enterprise
platform to compare on precise criteria the adequacy of both
platforms to apply adaptation in practice.

ACKNOWLEDGMENT

This work has been partially supported by the project
TIN2004-07943-C04-01 funded by the Spanish Ministry of
Education and Science (MEC), and the project P06-TIC-02250
funded by Junta de Andalucı́a.

REFERENCES

[1] C. Canal, J. Murillo, and P. Poizat, “Software Adaptation,”L’Objet,
vol. 12, no. 1, 2006, special Issue on Coordination and Adaptation
Techniques for Software Entities.

[2] C. Szyperski,Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Adisson-Wesley, 2003.

[3] A. Bracciali, A. Brogi, and C. Canal, “A Formal Approach to Com-
ponent Adaptation,”Journal of Systems and Software, vol. 74, no. 1,
2005.

[4] C. Canal, P. Poizat, and G. Salaün, “Synchronizing Behavioural Mis-
match in Software Composition,” inProc. of FMOODS’06, ser. LNCS,
vol. 4037, 2006.

[5] P. Inverardi and M. Tivoli, “Deadlock-Free Software Architectures for
COM/DCOM Applications,”Journal of Systems and Software, vol. 65,
no. 3, 2003.



[6] H. W. Schmidt and R. H. Reussner, “Generating Adapters for Concur-
rent Component Protocol Synchronization,” inProc. of FMOODS’02.
Kluwer, 2002.

[7] D. M. Yellin and R. E. Strom, “Protocol Specifications and Components
Adaptors,”ACM Transactions on Programming Languages and Systems,
vol. 19, no. 2, 1997.

[8] A. Brogi and R. Popescu, “Automated Generation of BPEL Adapters,”
in Proc. of ICSOC’06, ser. LNCS, vol. 4294, 2006.

[9] T. Andrews et al., Business Process Execution Language for Web
Services (WSBPEL), BEA Systems, IBM, Microsoft, SAP AG, and
Siebel Systems, Feb. 2005.

[10] K. Scribner, Microsoft Windows Workflow Foundation: Step by Step.
Microsoft Press, 2007.

[11] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2006: A
Toolbox for the Construction and Analysis of Distributed Processes,” in
Proc. of CAV’07, ser. Lecture Notes in Computer Science, vol. 4590,
2007.


