
Software Adaptation

Carlos Canal* — Juan Manuel Murillo** — Pascal Poizat***

* University of Málaga, Department of Computer Science
Campus de Teatinos, 29071 Málaga, Spain

canal@lcc.uma.es

** University of Extremadura, Department of Computer Science
Avenida de la Universidad, s/n, 10071 Cáceres, Spain

juanmamu@unex.es

*** IBISC FRE 2873 CNRS – University of Evry Val d’Essonne, Genopole
Tour Evry 2, 523 place des terrasses de l’Agora, 91000 Evry, France

Pascal.Poizat@ibisc.univ-evry.fr

ABSTRACT. Reuse and integration of heterogeneous software parts are promises of Component-
Based Software Development. However, current industrial approaches suffer from a limited
support for anything else than component signatures. Software Adaptation promotes the use of
adaptors —specific computational entities guaranteeing that software components will interact
in the right way not only at the signature level, but also at the behavioural, semantic and service
levels. This paper presents in details the field of adaptation and serves as an introduction to the
four papers which have been selected after the WCAT workshop at ECOOP’2004.

RÉSUMÉ. La réutilisation et l’intégration d’éléments logiciels hétérogènes est une promesse du
développement logiciel à base de composants. Cependant, les approches industrielles actuelles
souffrent d’un support limité pour autre chose que les signatures de composants. L’adaptation
logicielle promeut l’utilisation d’adaptateurs —des entités de calcul qui garantissent que les
composants logiciels interagiront correctement, non seulement au niveau de leurs signatures,
mais aussi au niveau comportemental, sémantique et service. Ce papier présente en détail
l’adaptation et sert d’introduction aux quatre papiers qui ont été sélectionnés suite à l’atelier
WCAT à ECOOP’2004.

KEYWORDS: Component-Based Software Development, Reuse, Composition, Software Adapta-
tion, Coordination Models and Languages, Aspect Orientation.

MOTS-CLÉS : développement logiciel basé composants, réutilisation, composition, adaptation lo-
gicielle, modèles et langages de coordination, orientation aspect.

RSTI - L’objet – 12/2006. WCAT’04, pages 9 to 31

10 RSTI - L’objet – 12/2006. WCAT’04

1. Introduction

The new challenges raised by complex distributed systems have promoted the de-
velopment of specific fields of Software Engineering such as Coordination or Adap-
tation. Coordination addresses all interaction issues among software entities (either
considered as subsystems, objects, components, or more recently web services) that
collaborate to provide some functionality.

A serious limitation of currently available interface descriptions is that they do not
provide adequate means to specify and reason on the possibility of building a soft-
ware system from a set of apparently suitable existing components. Indeed, while the
notations used provide convenient ways to describe the typed signatures of software
entities, they offer for instance a quite limited support to describe their concurrent be-
haviour. As a consequence, when an entity or component is going to be reused, one
can only be sure that it provides the required interface, but nothing else can be inferred
about the behaviour of the component with regard to the interaction protocol required
by its environment, or about any quality of service requirements imposed either by the
component or by its new environment.

To deal with these and other similar problems, a new discipline, which has been
named Software Adaptation, is emerging. Software Adaptation promotes the use of
adaptors —specific computational entities whose main goal is to guarantee that soft-
ware components are able to interact in the right way not only at the signature level,
but also at the behavioural, semantic, and service levels. In this sense, software adap-
tation can be considered as a new generation of coordination models.

This introductory paper is organized as follows. In Section 2 we give a presentation
of Software Adaptation. Next, Section 3 is devoted to characterize adaptation with
respect to other fields in Software Engineering, and it gives more details on what
adaptation is and what it is not, and which are its relations to Coordination. Then, the
following two sections are focused on the use and interests of aspect orientation and
formal methods techniques for coordination and adaptation (respectively, Sections 4
and 5). Finally, we conclude with some general open issues and research possibilities.

2. Motivations and Antecedents

The continuous demand for more and more complex software systems, supporting
new services, and for wider application domains is changing the way in which soft-
ware is planned, designed and built. For instance, consider plug & play applications,
which provide a means for extending the functionality of the software system in a
computer in a relatively easy way; or the progressive development of the Web as a
global way of communication and interchange of both information and services; also,
the development of systems for cooperative work, that allow users distributed over a
network to collaborate in performing certain tasks; or even the increasing use of mo-
bile devices and wireless networks, eventually leading to a scenario of ubiquitous and
pervasive computing.

Software Adaptation 11

All these examples share certain common characteristics, apart from their com-
plexity: they consist of a set of interacting concurrent software entities, usually dis-
tributed over a network, in which no many assumptions on the homogeneity of the
nodes (either with respect to the hardware platform, the operating system, or the soft-
ware installed), their availability at a given moment, or even the future evolution of
the architecture of the system can be made. Indeed, all these are examples of open
systems, in opposition to old closed systems in which all the issues mentioned had to
be planned, controlled and known in advance.

Software Engineering needs to react to this new challenge providing developers
with new methods that help in building this kind of systems. In order to succeed
fulfilling their requirements, the development process must shift from a short of hand-
icraft in which each piece of software is developed from scratch, to a more rigorous
engineering activity in which reuse and parameterization of both the design, the code,
and the development process itself become a reality.

The ability of reusing existing software has always been a major concern of Soft-
ware Engineering. In particular, the need of reusing and integrating heterogeneous
software parts is at the root of the so-called Component-Based Software Engineer-
ing (CBSE). CBSE is a relatively new discipline. We can place its origin both as a
natural evolution of the object-orientated paradigm, and also in the industrial develop-
ment of component platforms like CORBA/CCM (Object Management Group, 1999),
COM (Chappell, 1996), J2EE (Sun Microsystems, 1997), or .NET (Prosise, 2002).
Indeed, CORBA —the first of these platforms to appear— was defined as an architec-
ture of distributed objects, while the rest of them —including CCM, OMG’s successor
for CORBA— are already defined as models or platforms of components.

The aim of CBSE is that the development of applications consists in the construc-
tion by composition of existing components (possibly developed by third parties),
rather than in implementing everything from scratch. The final goal is the establish-
ment of a common market of software components, the so-called COTS (Commer-
cial-Off-The-Shelf), where developers would find the right component to integrate in
their applications.

As we have said, CBSE is a relatively new discipline in Software Engineering.
However, many of the problems addressed are not new. Indeed, similar issues raise
also in the object-oriented paradigm, in particular when dealing with concurrent object
languages and with the separation of concerns between computation and coordination
while implementing classes. Furthermore, most of the concerns of traditional system
design and the more recently approaches of Software Architecture (Shaw et al., 1996)
share the interest in representing explicitly the structure of a system, and the rela-
tions among its parts. Finally, the current research and proposals in the field of Web
Service choreography and orchestration description (Peltz, 2003) are just an example
of some of the problems to be solved while building a system from heterogeneous
independently developed components.

12 RSTI - L’objet – 12/2006. WCAT’04

Nevertheless, although some of the problems addressed —and also many of the
solutions proposed— may not be new, the approach of CBSE is somehow different.
First of all, components are binaries, not specifications nor source code. Second,
CBSE puts its emphasis in composition, even at runtime. Hence, all the development
process, from component mining to actual composition and system deployment, must
be as automated as possible. Third, components are subject to unpredictable com-
position; their developers cannot assume where and why they will be used. Fourth,
components must be reusable from their interface, which must consist in a full speci-
fication of their characteristics, assumptions and requirements.

2.1. Levels of Interoperability

From the discussion above we can conclude that one of the most important issues
to be addressed in CBSE is how to provide components with a specification that will
help in the whole process of CBSE. The characteristics and expressiveness of the
language used for interface description determine the level of interoperability we can
achieve using it, and the kind of problems that can be solved.

Typically, currently available commercial component platforms provide conve-
nient ways to describe typed signatures via Interface Description Languages (IDLs) as
a means for allowing software composition, even at runtime. However, they are quite
limited and low-level for giving a real solution to many software interoperability prob-
lems. Indeed, these languages make it possible to overcome mismatch in the signature
of the components being connected, like discrepancies in the names of the services
offered or required by each of them, or in their parameters, or even the mismatch
caused by the use of different programming languages for developing each compo-
nent. However, even if all signature problems are overcome, there is no guarantee that
the components will interoperate suitably, since mismatch may also occur at several
different levels not addressed by signature interfaces as provided by current IDLs.

Hence, we can distinguish between several levels of interoperability, and accord-
ingly of interface description:

– Signature level. This is the state-of-the-art of current component platforms,
as those mentioned above. Interface descriptions at this level specify the methods
or services that an entity offers (as in object IDLs, like CORBA-IDL, or the public
interface of a Java class). Sometimes, they also describe its external dependencies (like
in component IDLs like CCM-IDL for OMG’s component model, or WSDL (W3C,
2001) for Web Services). Typically, these interfaces specify the name of the service,
the type of its arguments and return values, and the possible exceptions raised, that is,
the full signature of the component. Hence, the kind of problems that we can address
at this level is for instance whether all the services required by a certain component
are provided by its environment.

– Behavioural level. Interfaces at this level specify the protocol describing the
interactive behaviour that a component follows, and also the behaviour that it expects

Software Adaptation 13

from its environment. Indeed, mismatch may also occur at this protocol level, be-
cause of the ordering of exchanged messages and of blocking conditions (Vallecillo et
al., 2000), that is, because of differences in the behaviour of the components involved.
Behavioural descriptions are required for entities with state, providing non-uniform
services which are not available at any time, but that depend on the internal state of
the entity. There are several proposals for extending component interfaces for in-
cluding behaviour, thus resulting in what we may call a Behavioural IDL (BIDL).
Among them we can mention here those for describing Web Service choreographies,
like WSCDL (W3C, 2004) or WSBPEL (Andrews et al., 2005). The kind of problems
that we can address at this level is, for instance, compatibility of behaviour, that is,
whether the components may deadlock or not when combined.

– Semantic level. This level describes what the component actually does, not
only the methods it offers, or the messages it exchanges. In fact, even if two compo-
nents present perfectly matching signature interfaces, and they also follow compatible
protocols, we cannot ensure that what one component does when receiving a certain
message is what the other one expects. Hence, some kind of functional specification
should be provided, which would be particularly interesting for component mining.
In the field of Web Services, this level of description is related to the Semantic Web,
using OWL-S (OWL Service Coalition, 2004) and other XML-based notations, as
an alternative to behavioural descriptions for raising the level of expressiveness of
interfaces (Talib et al., 2004). A more classical approach, also at this level of interop-
erability consists in using formal functional descriptions for specifying functionality,
and theorem provers for ensuring the correctness of compositions.

– Service level. Finally, even if we are able to find a perfect match between com-
ponents at the signature, behavioural and semantic levels, there is still a whole world
of sources of mismatch, related with non-functional properties like temporal require-
ments, security, reliability, accuracy, cost, etc. that make composition impossible.
This highest level of interoperability is the target of Quality of Service (QoS) propos-
als and their related notations, such as the QoS Modeling Language (QLM) (Frølund
et al., 1998). These notations are usually highly customizable, and the possible speci-
fications include mean values, standard deviations and a set of quantiles characterizing
the distribution of any self-defined quality metric. A different approach here is the use
of aspect oriented techniques for tuning the behaviour of the system. Aspects are
mainly conceived to encapsulate crosscutting concerns. However, adding aspects to
a system may also have the effect of adapting it to a different environment (Akşit
et al., 1996). Typical aspects that can be adapted are synchronization, security, or
persistence, to name a few.

2.2. Coordination Models and Languages

One of the research areas contributing to solve some of the problems of software
composition is that of Coordination Models and Languages, which has produced a lot
of results during the last few years. In particular, we must mention the results collected

14 RSTI - L’objet – 12/2006. WCAT’04

by the COORDINATION series of conferences since 1996, and the Special Track
on Coordination Models associated to the ACM Symposium on Applied Computing
(SAC).

Coordination models and languages are mainly focused on providing mechanisms
and primitives to specify the synchronized interaction between software artifacts.
Given a set of computational entities, the purpose of the coordination model is to
make them interact in the right way. To achieve this, the coordination model adapts
the interaction protocol of each particular entity to make them behave altogether as an
ensemble. The way in which one manages to do this introduces two different kinds of
coordination models (Arbab, 1998; Papadopoulos et al., 1998) :

– Data-Oriented Coordination Models. The main contribution of data-oriented
models is to make composition easier by softening the dependencies among com-
municating entities, allowing them not to know each other. Using these models the
communication topology is only settled at runtime. The most representative model in
this category is Linda (Carriero et al., 1989).

In the Linda model, software entities communicate interchanging tuples through
a shared space named tuplespace. Tuples are containers for one or more values, and
have a meaning only for the communicating entities. The sender puts a tuple in the
tuplespace using a specific primitive. In order to get the tuple, the receiver indicates
the pattern to be satisfied by the tuple in which it is interested. The tuplespace will
then return the first tuple satisfying the pattern, which may be eliminated from the
tuplespace or not, depending on the input primitive used. Hence, the behaviour of
the pattern matching mechanism, and the semantics of the primitives to access the
tuplespace, determine how software entities communicate/coordinate.

In this setting, the accommodation of entities following different communication
protocols can be easily managed. For example, if the sender does not produce tuples
in the appropriate format for the receiver, a new entity can be introduced to get the
tuple and produce a new one with the correct format. In the same way, tuples can be
redirected to different receivers, or even a tuple instance can be broadcasted to serve
several receivers, thus changing the communication topology.

– Control-Oriented Coordination Models. Control-oriented models introduce
a new kind of computational entity, commonly named coordinator, responsible for
forcing the coordination protocols over the communicating entities. Since the co-
ordination primitives are now placed outside the coordinating entities, dependencies
between them are even weaker than in data-oriented models. The best known model
in this category is IWIM and its associated language, Manifold (Arbab, 1996).

Coordinators react to the events raised by the entities under their control. Typical
events are input/output operations, or the fact that a particular state has been reached.
Reaction to an event usually involves intercepting the operation raising the event, stop-
ping it, and triggering actions in some computational entity. Thus, the coordinator
assumes the responsibility of orchestrating the actions of the system.

Software Adaptation 15

Using control-oriented models, communication protocols can be easily adapted.
If an entity does not send correct messages to another one, these messages are in-
tercepted by the coordinator which will resend them in an appropriate way. The in-
terception and stopping mechanism can also be used to create dependencies between
actions, that is, to execute the actions in the appropriate sequence.

Hence, both data and control-oriented coordination models facilitate software
composition, providing also some basic forms of adaptation. However, they are pri-
marily focused on interaction issues, most other adaptation issues not directly related
with interaction being out of their scope.

2.3. The Need for Adaptation

CBSE puts its focus on component reusing, aiming to develop a real market of
software components –similar for instance to the market of hardware components and
electronic devices—, in which customers select the most appropriate software compo-
nent depending on its technical specification (what we call its interface). The develop-
ment of such a market has always been one of the myths of Software Engineering, but
it has never become a reality. The reason is that unlike what happens with hardware
components, software is never reused “as it is”, but a certain degree of adaptation is
always required (Nierstrasz et al., 1995).

In fact, there are only a few very specific contexts where the functionality of the
system and other technical requirements are clearly defined and commonly agreed by
all parts, allowing a large degree of component reuse (consider for instance mathemat-
ical or input/output libraries). For the rest, we cannot expect that any given component
being offered in the COTS open market would match perfectly the needs of a certain
system where it is trying to be reused. Hence, there will always be a certain mismatch.
This mismatch may occur at any of the levels of interoperability mentioned above:

– At the signature level, the names of the services required/offered may be differ-
ent, or it may be necessary to perform a reordering of parameters, to adapt their types,
or even to synthesize some missing parameters.

– At the behavioural level, there may not be a one-to-one correspondence for each
of the services required (instead, one of the components may consider as a single
service what will be achieved invoking several services in the other component), or
the protocols followed by the components may be incompatible, then requiring both
protocol transformation and remembering of messages and parameters.

– At the semantic level, the need for adaptation also exists, although it is more
speculative. Suppose we are looking for a component performing a certain task (de-
scribed somehow in its interface) and we find a component offering a similar (but not
exact) functionality. The possibilities of adaptation, especially automatic, are less ev-
ident at this level (consider for instance transforming a queue into a stack). Another
situation would arise if one does not find a single component performing the required

16 RSTI - L’objet – 12/2006. WCAT’04

functionality, but two (or more) partially offering it. In this case, adaptation would
involve composing suitably the components found.

– At the service level, we may also have to adapt the component found (provided it
offers the right signature, behaviour and functionality) in order to achieve the required
QoS. For instance, we may have to use several components in parallel in order to
achieve lower response times, or a greater accuracy, or fault tolerance.

Hence, the need for software adaptation may (and it probably will) occur at any
of the levels of interoperability, and we shall use different specification languages for
detecting and measuring mismatch, and different platforms and techniques for solving
it. Software Adaptation emerges as a new discipline dealing with all these issues.

3. Characterization of Adaptation

Although several adaptation problems have been largely studied and addressed by
different fields in Software Engineering, it has been recently accepted that Software
Adaptation must be considered as a discipline on its own, and as any new discipline
its focus, methods, and objectives must be characterized.

3.1. Kinds of Adaptation

Software Adaptation is concerned with providing techniques to make arrange-
ments on already developed pieces of software, in order to reuse them in new systems.
Thus, Adaptation is related to a number of other Software Engineering disciplines.
For instance, Adaptation is related to Coordination, since coordination models provide
techniques for adapting the interaction protocols of software entities. However, coor-
dination models are neither concerned with the adaptation of properties different from
interaction, nor with topics such as how to detect that a piece of software needs to be
adapted, or what is the kind of adaptation required. Adaptation is also close to main-
tenance. Maintenance is concerned with how software methods can manage system
evolution in an easy and efficient way. Hence, Adaptation can help maintenance by
providing the technical means to deal with some changes in the requirements. Never-
theless, the changes/extensions in functionality usually addressed during maintenance
in general go beyond adaptation.

Furthermore, adaptation is related with Aspect Oriented Software Development
(AOSD). By using AOSD techniques, crosscutting concerns are modularized in new
entities called aspects, instead of being scattered throughout the whole system. As-
pects can be applied to software entities in an oblivious way, having the effect of
adapting their behaviour to implement new properties. However, the main goal of
AOSD is to identify and separate crosscutting concerns along the whole software life
cycle.

Software Adaptation 17

Hence, although Adaptation is related with other fields in Software Engineering,
it must be concluded that it is an emerging discipline that needs to be characterized.
The first step will be to classify the different kinds of adaptation that could be made
over a piece of software. As mentioned in (Canal et al., 2005), this classification can
be made attending to different criteria. One of these criteria, introducing two different
categories, is the point in the software life cycle in which adaptation takes place:

– Static or Design Time Adaptation. This category includes all the adaptation
made before the system is running. It can refer to both requirement (or model) adap-
tation, or to the adaptation of already developed pieces of code. The former is needed
when the specification of a system must be extended to meet new requirements, or to
modify or change the old requirements. Examples of this kind of adaptation are for
instance introducing support for a new network communication protocol, or adding
new attributes to a data model.

The adaptation of already existing pieces of software is made having in mind code
reuse as its main objective. A typical scenario of this kind of adaptation is to modify
the way in which services are demanded to match the correct signature of the entity
that offers these services.

A common feature of all examples of static adaptation is that the steps to pro-
ceed with the adaptation are known —and have been planned— before the moment in
which the adaptation takes place.

– Dynamic or Runtime Adaptation. This is the case when running pieces of
software need to be adapted in order to change the way in which a service is provided.
This is the typical situation in ubiquitous and mobile computing scenarios. Here, the
components to be adapted, as well as the steps to manage the adaptation, are unknown
before the moment of the adaptation.

A different classification is based on the way in which adaptation is managed.
Attending to this criterion. adaptation could be:

– Manual Adaptation. The adaptation steps as well as the adaptors are specified
and developed by the people involved in the software development process (design-
ers, architects, programmers, etc) probably assisted by software tools. Nevertheless,
manual adaptation must be non-intrusive, that is, it should not require a modification
of the component being adapted, which would not be possible in a black-box environ-
ment of components. Otherwise this task would be more related to maintenance than
to adaptation.

– Automatic Adaptation. All the adaptation steps and the adaptors themselves are
automatically generated by software tools. This kind of tools must be able to detect
the need for adaptation as well as to determine if the required adaptation is possible or
not. Next, the tool would proceed determining the steps to be done in order to manage
the adaptation. Finally, an adaptor would be automatically generated.

An alternative criterion to classify adaptation is introduced in (Yahiaoui et al.,
2004), and refers to the kind of properties that are going to be adapted:

18 RSTI - L’objet – 12/2006. WCAT’04

– Functional Adaptation. This is adaptation directed to make arrangements on
the services provided by the system. It can involve both adding new services, and
modifying the existing ones.

– Technical Adaptation. This is the case when adaptation is directed to modify
the way in which services are provided. This is usually done by adding or removing
constraints to the behaviour of these services. Examples of this kind of adaptation
are adding real time constraints, security features, changing network protocols, etc.
Aspect Oriented techniques are especially suitable for this kind of adaptation.

3.2. Towards a Methodology of Adaptation

A methodology of software adaptation, addressing the issues indicated in the pre-
ceding section would rely on the following main ingredients:

– Component interfaces. Component IDLs must be extended so to shift from the
current signature level to more advanced levels of interoperability. As we will show
in Section 5, there are currently a lot of proposals in this direction, both in the general
field of CBSE, as in the more specific of Web Service choreographies.

– Adaptor specification. The interface mismatch between the components being
adapted must be measured and described, so that it can be solved. This description is
a specification of the adaptor required for connecting the components. The generation
of this specification must be as much automated as possible, although some kind of
external intervention may be admitted. The notation involved must be high-level,
establishing just a mapping between the mismatching interfaces, but not addressing
the specific concerns related to computation issues in the components.

– Adaptor derivation. Finally, a concrete adaptor component must be automati-
cally generated, given its specification and the interfaces of the components involved.
The output of this generation process will be an adaptor that will allow the components
to interoperate while satisfying the given specification. The advantage of separating
adaptor specification and derivation is to automate the error-prone, time-consuming
task of generating a detailed implementation of a correct adaptor, thus simplifying the
task of the (human) software developer.

3.3. A Scenario of Adaptation

In order to understand better the kind of problems that Software Adaptation must
address, let us consider the following hypothetical scenario:

– Suppose that a component P —running on some wireless computing device—
gets in the vicinity of a context C of interacting components, and that P wants to join
C in order to obtain some services from it.

Software Adaptation 19

– Then, the first step is that P gets from C its interface. This interface specification
may be described at any of the levels of interoperability mentioned before, depending
on the kind of adaptation problem one wants to solve.

– After considering the interface of C, the component P concludes that it may
obtain from the context the services required, so it makes a proposal for connecting to
it, indicating which services it is going to use. However, the correspondence between
the needs of P and the interface of C will certainly not be perfect, so the connection
request must be accompanied with a specification of the adaptation required, at any of
the levels of interoperability (for instance, suggesting a translation between the names
of the services required in P to the names of the services offered by C). Hence, the
general form of the adaptor specification is a mapping between the interfaces of P
and C.

– With the specification of the adaptor, describing the connection requested, the
context C builds and adaptor solving the mismatch, and returns it to P . The component
and the context are now able to interoperate satisfactorily.

4. On the Use of Aspect Orientation

As mentioned before, AOSD is an emerging discipline within Software Engineer-
ing that provides suitable techniques for adaptation. However, AOSD is not focused
on adaptation. Instead, the main goal of this discipline is to provide new modular-
ization techniques to solve the problems caused by crosscutting concerns (Filman et
al., 2005a). Such techniques pursue the separation of these crosscutting concerns.

Separation of concerns has been one of the basic principles guiding Software En-
gineering (Dijkstra, 1976). A concern can be defined as anything in the software that
one would like to think about as a relatively well-defined entity. Typical concerns are
security constraints, real-time features, implementation of communication protocols,
etc. The aim of software engineers when modelling software systems is to keep their
concerns in separated modules. However, no matter the decomposition criterion being
used, such an objective is usually impossible to be fully achieved. This phenomenon
is a consequence of the tyranny of the dominant decomposition (Ossher et al., 2001b),
and it is due to the fact that concerns are non orthogonal.

In fact, while the decomposition criterion chosen by the engineer rewards some
concerns allowing them to be encapsulated in well defined modules, others are penal-
ized, being spread throughout the whole system. The consequence is that the code
of the resulting system is scattered and tangled. Having the code scattered means
that the properties belonging to a particular concern are spread over a set of modules.
Tangled code means that a particular module contains properties belonging to several
concerns. When the two effects appear at the same time it is said that there exist cross-
cutting concerns. Giving a more technical and object-oriented definition, we may say
that two concerns crosscut if the methods related to those concerns intersect (Elrad et
al., 2001).

20 RSTI - L’objet – 12/2006. WCAT’04

Crosscutting concerns impact negatively on software quality. Concerns scattered
through several modules are difficult to understand, reason about, and maintain. On
the other hand, since system modules contain the specification of tangled concerns,
their reusability is affected as well. The solution proposed by AOSD to these problems
is the separation of crosscutting concerns, also referred to as advanced separation of
concerns. The basic idea is to isolate the crosscutting concerns in separated modules
called aspects, thus producing cleaner modules. Additionally, it is necessary to specify
the points in conventional modules where the functionality encapsulated in aspects
must be woven. These are commonly called joint points.

In addition, the specification of an aspect oriented system must follow the Quan-
tification and Obliviousness Principle (Filman et al., 2005b). Quantification refers
to the ability of writing unitary and separated statements that affect many non local
places in the system. Obliviousness means that the places to which the quantification
applies do not have to be specifically prepared to receive them. More precisely, an
aspect must be able to affect several modules, while modules receiving aspects should
not be specially prepared for this purpose.

Current AOSD approaches can be classified either as symmetric or asymmetric
(Harrison et al., 2003). In symmetric proposals there is no distinction between con-
ventional modules and aspects. All the concerns are treated the same way, and the
system is the result of weaving them. Among the proposals following this trend,
we may cite the Multi-Dimensional Separation of Concerns (Ossher et al., 2001a),
and Subject-Oriented Design (Clarke et al., 1999). On the other hand, asymmetric
approaches make a clear distinction between conventional modules and crosscutting
concerns, the latter being encapsulated in a special kind of modules (aspects). Some
of the best known approaches in this category are AspectJ (Gradecki et al., 2003), and
Composition Filters (Bergmans et al., 2001).

Asymmetric approaches provide a good support for adaptation. Aspects encapsu-
late the functionality of crosscutting concerns, and thanks to the obliviousness prin-
ciple, they can be added or removed to the system both at design and run-time. The
effect is some kind of system adaptation.

The application of AOSD to adaptation is not a new idea (Akşit et al., 1996;
Sánchez et al., 1998), and currently a lot of works on adaptation are based on it.
Consider for instance, (Rashid et al., 2000), which is focused on the evolution of data
models. In particular, the work deals with the problems of structural and behavioural
consistency arising after data model evolution. Structural consistency addresses the
problem of accessing objects whose definition is no longer accessible after evolution.
Behavioural consistency refers to the problem of legacy applications having invalid
references and method calls. The proposal of the authors is to encapsulate into aspects
the adaptation code to access the evolved model, thus managing a more flexible result
than those provided by approaches based on conventional class versioning.

Another proposal in this field is (David et al., 2003), which presents an architecture
to manage the adaptation of non-functional concerns. The concerns that will be adapt-

Software Adaptation 21

able are given the shape of an aspect. The proposed architecture supports dynamic
adaptation. In (Rashid et al., 2004) it is shown how aspect oriented techniques can
help adaptation in the context of pervasive computing environments. Again the idea is
aspectizing those facets of the system which could be adapted. Similarly, (Dantas et
al., 2004) is focused on the Adaptive Object Model (AOM) architectural style, which
supports adaptable systems not being adaptable itself. Using aspect oriented tech-
niques the authors provide an adaptable AOM.

In (Cazzola et al., 2004b), some suggestions to make joint points models more
open are proposed, in order to provide aspect oriented programming languages with a
better support for adaptation. In (Redmond et al., 2002), the Iguana/J architecture and
programming model to support unanticipated dynamic adaptation is presented. Each
functional class is associated with a set of adaptation classes which contain the adap-
tation code. The association is also specified in separated entities achieving improved
flexibility.

Furthermore, aspect oriented techniques do not only give support to code adapta-
tion. In (Navasa et al., 2005), it is shown how evolution and adaptability of software
architectures can be managed combining aspect oriented techniques and coordination
models. The different evolution needs are introduced as aspects for managing archi-
tectural adaptation.

All these examples are only a demonstration of the interest generated by AOSD in
the field of software adaptation which can be one of the most promising research lines
in the future.

5. On the Use of Formal Methods

Formal methods are known to be mandatory when a non-ambiguous description
of systems is needed, or when these systems are required to be validated for security
matters. Within the context of CBSE, it is commonly agreed that the current state
of the art has given a solution to adaptation issues at the signature level (Canal et
al., 2005), being now the turn for the upper levels of interoperability, and in particular,
for the behavioural level (Yellin et al., 1997; Vallecillo et al., 2000).

Most of the recent proposals for Software Adaptation address behavioural issues,
promoting the use of BIDLs for describing component protocols. Many of them are
formally based. Indeed, taking foundations in formal methods, it is possible to give
a precise definition to BIDLs and protocols, and to define tools for the automatic
verification of components (for example, animation, equivalences, deadlock freedom,
property checking, or model-based testing) (Poizat et al., 2004). In this section we
will review how formal methods can support (and do currently support) the adaptation
process, yielding a formal adaptation process.

However, it must be noticed that many of these proposals take also into ac-
count several specific issues in adaptation: binary or multiparty communication, syn-

22 RSTI - L’objet – 12/2006. WCAT’04

chronous or asynchronous communication, differentiation between input and output
events, design models, or models closer to CBSE platforms, etc. Apart from this,
formally founded adaptation processes follow a general scheme:

– Definition of a BIDL for describing component protocols. This language
can be given independently, or as the extension of a usual signature IDL. This def-
inition relies either on automata-like descriptions (Yellin et al., 1997; de Alfaro et
al., 2001; Farías et al., 2002b; Schmidt et al., 2002), process algebras (Allen et
al., 1997; Magee et al., 1999; Giannakopoulou et al., 1999; Inverardi et al., 2001; In-
verardi et al., 2003a; Inverardi et al., 2003b; Bracciali et al., 2005), or more recently
on behavioural types (Carrez et al., 2003; Brogi et al., 2005; Brogi et al., 2004a; Süd-
holt, 2005). In (Beyer et al., 2005) an intermediate approach between automata and
types for interfaces is given. Automata-like languages and process algebras have
well-known formal operations (equivalences, refinements, model-checking) imple-
mented in formal tools (for example, NuSMV, SPIN, LTSA, CADP). Automata are
user-friendly but less expressive, while process algebras are more abstract, concise
and expressive, but at the same time more complex to use, verify for mismatches and
adapt —even if their operational semantics enable to translate them into transition
systems. Behavioural types provide an intermediate option between process algebras
and automata, but works dealing with adaptation using them are not numerous (Brogi
et al., 2004a). Note that some type definitions are given in terms of automata (see
for instance (Nierstrasz, 1995; Sourouille, 2001)) and therefore may benefit from their
tools and adaptation techniques.

Once a BIDL has been defined, an interface description of the components must be
developed using this language. This can be achieved from the implementation using
code analysis (Farías et al., 2002a; Alur et al., 2005). Behavioural specifications can
also be obtained from the description of interaction at the system level (MSC) using
a synthesis process, (see, for instance (Krüger et al., 1999; Uchitel et al., 2003)).
However, BIDL specifications would be commonly given as an originally provided
feature of the components (for instance, as part of their contract).

– Detection of mismatch. Two approaches co-exist here. For the first one, mis-
match means that the system is not deadlock free or that component interfaces are not
consistent (Allen et al., 1997; Inverardi et al., 2001; Schmidt et al., 2002; Inverardi
et al., 2003a; Farías et al., 2002b; Carrez et al., 2003; Uchitel et al., 2003; Bracciali
et al., 2005; Brogi et al., 2004a; Beyer et al., 2005). The second approach (Magee
et al., 1999; Giannakopoulou et al., 1999; Inverardi et al., 2003b) takes as input a
description of the properties the system should verify (usually liveness or safety prop-
erties expressed for example in temporal logics or as specific processes). Note that,
as deadlock freedom is expressible in temporal logics, works dealing with the second
approach could be applied for deadlock freedom, too.

Unfortunately, most works dealing with BIDL descriptions which address de-
tection of mismatch (Allen et al., 1997; Magee et al., 1999; Giannakopoulou et
al., 1999; Farías et al., 2002b; Carrez et al., 2003; Uchitel et al., 2003; Beyer et
al., 2005) then do not address the next phase: the adaptation process itself.

Software Adaptation 23

– Adaptor specification and derivation. The adaptation process tries to solve
mismatch problems by including adaptors between components of the system either
using a restrictive approach to remove some behaviours (i.e., system traces leading to
deadlock states), or using a generative approach which eventually enables to recom-
bine the behaviour of the components by means of the adaptor. Notice that in both
cases, these techniques are not invasive, and therefore they are suitable for black-box
components.

- Restrictive adaptation. The idea is to reduce the interactive behaviour of the
components in order to remove the behaviour leading to error (for instance, dead-
locked states, see (Inverardi et al., 2001; Inverardi et al., 2003a)). The technique
consists on synthesizing a controller between the components (using expectations of
these components with reference to their environment). Then, the controller is used
to restrict the behaviour of the components. Deadlocks detected on the controller are
avoided by removing all its finite branches. In this way, the controller enables the
maximum set of interactions between the components which do not lead to deadlock.

The proposal described in (Inverardi et al., 2001; Inverardi et al., 2003a)
deals with adaptation between any number of components (system-wide). However,
(Inverardi et al., 2001; Inverardi et al., 2003a) does not consider the possibility of
mismatching event names, nor of describing data types in the events. In (Schmidt
et al., 2002), solutions to different adaptation problems are presented. This pro-
posal mainly corresponds to the restrictive adaptation category, although its notion
of prefixing allows to deal with more complex adaptation problems, namely with ini-
tializing/finalizing issues (for instance, n actions have to be performed in one of the
communicating components before they can synchronize correctly). However, a corre-
spondence between names in the interfaces of the components involved is still needed.
In (de Alfaro et al., 2004), game theory is used to achieve this kind of restrictive adap-
tation. Again, data is not considered, but time information can be taken into account
within the component interfaces.

- Generative adaptation. This is a more general approach. It takes into account
the fact that when two components have been developed separately, they often do not
agree on the names of their services, nor in the protocol for accessing these services.
Hence, formally there is the need for a mapping between the interfaces of the compo-
nents being adapted. The use of a mapping not only enables to define one-to-one cor-
respondences between single service names, but also more complex correspondences
between whole sequences of services. The works on Ontological/Semantic Web may
be useful here; ontologies being a support to obtain this mapping in an automatic way
(see for instance (Talib et al., 2004)).

Generative adaptation proposals have been developed using different for-
malisms for mapping description: patterns (Yellin et al., 1997), process alge-
bras (Brogi et al., 2004a; Bracciali et al., 2005), labelled transition systems, Büchi
automata, or temporal logic and MSCs (Inverardi et al., 2003b). These proposals
mostly differ on the expressive power of the mappings: considering data (Yellin et
al., 1997; Brogi et al., 2004a; Bracciali et al., 2005) or not (Inverardi et al., 2003b),

24 RSTI - L’objet – 12/2006. WCAT’04

defining binary (Yellin et al., 1997; Brogi et al., 2004a; Bracciali et al., 2005) or
system-wide (Inverardi et al., 2003b) adaptation, describing one-to-one mappings be-
tween events (Yellin et al., 1997; Inverardi et al., 2003b), or more complex mappings
(one-to-many, one-to-zero, etc.) (Brogi et al., 2004a; Bracciali et al., 2005).

Works in this category build on the seminal proposal by Yellin and
Strom (Yellin et al., 1997). They incrementally build an adaptor from the mapping
and the BIDL descriptions of the components. A mapping can be seen as an abtract
description of an adaptor (it describes properties for correct usage scenarios), which is
interesting as it can be then used as a way to express desired behavioural properties for
the global system (which a concrete adaptor will ensure), and not a mere syntactical
correspondence between service names. The proposal in (Inverardi et al., 2001; Inver-
ardi et al., 2003a), already mentioned, has been extended in (Inverardi et al., 2003b)
to take into account temporal logic mismatch (coordination policies are expressed
as LTL properties translated into Büchi automata), while interactions between com-
ponents are described using MSCs, from which the behaviour of the components is
extracted. The use of Büchi automata may roughly be considered as some kind of
mapping specification, but again the MSCs require an exact correspondence between
event names in the communicating components. Anyway, an important thing to notice
is that this approach is fully tool equipped (see M. Tivoli and M. Autili’s paper in this
same issue).

On the other hand, the proposal described in (Brogi et al., 2004a; Bracciali et
al., 2005) addresses expressiveness issues for mappings, allowing to define abstract
descriptions that will be afterwards refined into concrete behavioural adaptors, able to
accommodate not only mismatch in service names, but also in the protocols that the
components follow (i.e., the partial ordering in which services are invoked).

Finally, some recent proposals try to characterize adaptation problems and
adaptors into patterns, and develop adaptation as the combination of several adap-
tor patterns (Becker et al., 2005). Here, ideas from coordination languages, such as
the Reo coordinator patterns (see F. Arbab’s paper in this same issue) could be used.

– Adaptor implementation. Once an adaptor has been defined, one may want
to relate this definition with implementation. Although adaptor generation is consid-
ered in as an early work as (Yellin et al., 1997), only a few approaches deal with this
issue, either directly as (Inverardi et al., 2003a) for COM/DCOM components, or by
means of an extension of implementation choreography languages such as in (Brogi et
al., 2004b) for Web Services. However, adaptor generation is a crucial issue, since —
together with protocol extraction and adaptor specification— it provides a full adapta-
tion process at disposal. Without this, adaptation is restricted to a design-time activity.

It would be difficult here to assess all the different formal adaptation techniques
derivable from this scheme. Adding expressiveness in the adaptor mappings (consider-
ing data, or one-to-many and one-to-zero correspondences, for instance), or working
at the system (multiparty) level, instead of with binary adaptation between just two
components, would yield more and more complex processes. The use of behavioural

Software Adaptation 25

types could be useful for this purpose, as they provide one with a good compromise
between expressiveness and decidability.

6. Conclusions

In the recent years we have seen how both industrial and academic forums are
paying more and more attention to interoperability and adaption issues. Adaptation is
now one of the hot topics in many Software Engineering conferences, and apart from
the works cited here, a lookup on the Web would result on a significant number of
proposals claiming to address adaptation issues.

Reusing software artifacts requires a clear definition of the interfaces of these soft-
ware pieces, of their interrelationships or dependencies, and also of the mechanisms
for mismatch detection and resolution. Consequently, Software Adaptation emerges
as an independent and important field in Software Engineering, tightly related with
the spread and generalization of component-based development techniques. In this
introduction we have tried to survey the current state of the art in this field, helping
the reader to get acquainted with the most interesting proposals currently being devel-
oped. We have also presented different criteria to compare adaptation techniques, and
addressed how coordination, aspect-orientation, and formal methods could help in the
adaptation process.

However, a final and commonly agreed characterization of the field of Software
Adaptation is still pending. Such a characterization would establish what it is Software
Adaptation and what it is not, and what are the points in common and the differences
between adaptation and other related tasks, such as for instance maintenance.

Apart from this initial characterization as a field of study and research, several
other more specific issues concern Software Adaptation. These issues do not have
to be considered only as problems or challenges, but also as a good opportunity for
opening promising research lines:

– Languages for interface description. Currently, the use of industrial compo-
nent platforms help solving most of the problems related to the signature interface
level. Although some practical issues related with interoperability between different
platforms still remain, these are not problems demanding a significant research effort.
Therefore, we have seen how adaptation has jumped recently from the signature level
to the specification and analysis of behavioural interfaces. As shown in Section 5,
this behavioural level is now becoming well-known and understood. Therefore, there
will be soon a need for new contract or interface description languages with higher
expressive power and able to address the needs of the higher levels of interoperability.

The requirement for these higher-level IDLs should be investigated, and the adap-
tation process defined for them. In the end, this would be leading into considering
non functional aspects in component interfaces. There, aspect oriented techniques
combined with adaptation could help.

26 RSTI - L’objet – 12/2006. WCAT’04

– Mapping construction. Automatic or at least tool-assisted procedures for map-
ping construction are mandatory both for static and dynamic adaptation. As far as
static adaptation is concerned, some assistance in building high-level adaptor specifi-
cations or mappings would be of much help. Taking only into account the interfaces
of the components, a computer-aided procedure could provide the adaptation engineer
with partial adaptor specifications from which he would have to choose, and complete.
The definition of relations between adaptors (such as refinement) would also enable to
define an adaptor taxonomy or classification of adaptors, and would help in building a
refined mapping from a library of existing generic or abstract specifications.

– Adaptative middleware. Dynamic adaptation is a more complex task than
adaptation at design time. First of all, mismatch detection can be more difficult (e.g.,
how to detect while the system is running that parts of it are deadlocked?). Then,
the adaptation process must be able to dynamically add new components (namely, the
adaptors) within the deployed architecture. An important thing to note is also that in
most cases the system cannot be stopped to perform adaptation and then relaunched.
These constraints require the development of specific adaptative middleware. Further-
more, adaptation techniques applicable to runtime would have a remarkable impact in
the development of mobile and pervasive computation.

– Quality of Service. Definitely, adaptation has an impact on the extra-functional
properties of the resulting system. In particular, this impact may be crucial when
dealing with dynamic contexts. In order to put Software Adaptation into real practice,
we have to consider which would be the effect on QoS of performing adaptation for
integrating a group of already existing components. Reasons for this can be seen in
the assessment and selection of components, but also in the creation of prediction
models for software composition. Indeed, adaptation is a particular form of software
composition, and specific prediction methods should be developed for it.

Research in this area would cover the imprecision of current industrial adapta-
tion techniques by providing models of adaptation and mathematical foundations for
modular adaptation, and it would help to develop new techniques for determining and
predicting properties of adaptors. As a consequence, the adaptation process would si-
multaneously yield adaptor implementations and prediction models for the QoS prop-
erties of the resulting system.

– Combination with other software engineering techniques. Aspect-oriented
techniques may provide the adaptation process with a technical mechanism well suited
for taking into account new added parts in the system. Adaptor specifications could be
separated into parts or aspects, and then weaved with the original component. Static
aspect weaving techniques could be used for adaptation at design time (when the
adaptor is implemented). Dynamic aspect oriented techniques, such as those based
on reflection, could be interesting for dynamic adaptation. On the other hand, once a
centralized adaptor is defined, then coordination techniques should be applicable for
its implementation.

Aspect-orientation is also a promising technique to address separately adaptation
issues at the different levels of interoperability we presented in Section 2. Separate

Software Adaptation 27

aspect adaptation could be more efficient (in particular in a dynamic adaptation con-
text) than adaptation at the global level of a (weaved) component. It may also yield
more reusable adaptors, providing component subparts or aspects that are adaptable
themselves.

However, the proposals for the use of aspect-orientation and coordination for adap-
tation are still in their early days. They should be implemented and assessed in a
dynamic adaptation context.

– Adaptation Metrics. There is a need for metrics able to measure distance be-
tween interfaces for all the levels of interoperability involved in the adaptation pro-
cess. These metrics would help the adaptation engineer to decide whether adaptation
is technically and economically viable, or if it is better to develop a new component
from scratch. A related research line which is being currently developed is the use
of ontologies for the definition of semantic fields and their application to component
mining (i.e. finding a component with the required characteristics), and deciding on
its possible adaptation to a given context.

– Adaptor trading. The process of adaptor construction may not be solved in
one single phase, in particular when a dynamic context is considered. The adaptation
scenario presented in Section 3.3 can be slightly modified if the adaptor generated
by the context does not fulfill the specification originally produced by the component
trying to join it (for instance, the context may not trust enough the requesting compo-
nent so as to offer it some of its services, or it may not agree in the price offered for
paying these services). In this situation a scenario of adaptor trading arises, in which
the component must either agree on the adaptation proposed by the context, or make
a different adaptation proposal (that would lead to a new adaptation phase), or may
even leave, giving up the connection and trying to join a different and less demanding
context.

– Practical experiences. Practical application of the results and proposals above,
case studies, and industrial experiences, which would help us to know better the real
issues in Software Adaptation, and to evaluate the proposals and results that are being
presented.

7. References

Akşit M. (ed.), Software Architectures and Component Technology: The State of the Art in
Research and Practice, Kluwer Academic Publishers, 2001.

Akşit M., Tekinerdoğan B., Bergmans L., “Achieving Adaptability through Separation and
Composition of Concerns”, in M. Muhlhauser (ed.), Special Issues in Object-Oriented Pro-
gramming, dpunkt, p. 12-23, 1996.

Allen R., Garlan D., “A Formal Basis for Architectural Connection”, ACM Transactions on
Software Engineering and Methodology, vol. 6, n◦ 3, p. 213-249, 1997.

Alur R., C̆erný P., Madhusudan P., Nam W., “Synthesis of Interface Specifications for Java
Classes”, ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), ACM Press, p. 98-109, 2005.

28 RSTI - L’objet – 12/2006. WCAT’04

Andrews T. et al., Business Process Execution Language for Web Services (WSBPEL 1.1), BEA
Systems, IBM, Microsoft, SAP AG, and Siebel Systems. February, 2005, Available at
http://www.ibm.com/developerworks/library/specification/ws-bpel.

Arbab F., “The IWIM Model for Coordination of Concurrent Activities”, Coordination Models
and Languages (Coordination), vol. 1061 of Lecture Notes in Computer Science, Springer,
p. 34-56, 1996.

Arbab F., “What Do You Mean Coordination?”, Bulletin of the Dutch Association for Theoreti-
cal Computer Science (NVTI), March, 1998.

Becker S., Brogi A., Gorton I., Overhage S., Romanovsky A., Tivoli M., “Towards an En-
gineering Approach to Component Adaptation”, May, 2005, Joint work of the adaptation
break-out group at the Dagstuhl Seminar 04511: Architecting Systems with Trustworthy
Components. Submitted for publication.

Bergmans L., Akşit M., Tekinerdoğan B., “Aspect Composition Using Composition Filters”, in
Akşit (2001), p. 357-382, 2001.

Beyer D., Chakrabarti A., Henzinger T., “Web Service Interfaces”, 14th International Confe-
rence on the World Wide Web (WWW), ACM Press, p. 148-159, 2005.

Bracciali A., Brogi A., Canal C., “A Formal Approach to Component Adaptation”, Journal of
Systems and Software, vol. 74, n◦ 1, p. 45-54, 2005.

Brogi A., Canal C., Pimentel E., “Behavioural Types and Component Adaptation”, Algebraic
Methodology and Software Technology (AMAST), vol. 3116 of Lecture Notes in Computer
Science, Springer, p. 42-56, 2004a.

Brogi A., Canal C., Pimentel E., “Behavioural types for service integration: achievements
and challenges”, Foundations of Coordination Languages and Software Architectures (FO-
CLASA), 2005. To appear.

Brogi A., Canal C., Pimentel E., Vallecillo A., “Formalizing Web Service Choreographies”, In-
ternational Workshop on Web Services and Formal Methods (WSFM), vol. 105 of Electronic
Notes in Theoretical Computer Science, p. 73-94, 2004b.

Canal C., Murillo J. M., Poizat P., “Coordination and Adaptation Techniques for Software En-
tities”, ECOOP 2004 Workshop Reader, vol. 3344 of Lecture Notes in Computer Science,
Springer, p. 133-147, 2005.

Canal C., Murillo J. M., Poizat P. (eds), Workshop on Coordination and Adaptation Techniques
for Software Entities at ECOOP (WCAT), 2004. Available at http://wcat04.unex.es/.

Carrez C., Fantechi A., Najm E., “Behavioural Contracts for a Sound Assembly of Compo-
nents”, Formal Techniques for Networked and Distributed Systems (FORTE), vol. 2767 of
Lecture Notes in Computer Science, Springer, p. 111-126, 2003.

Carriero N., Gelernter D., “LINDA in Context”, Communications of the ACM, vol. 32, n◦ 4,
p. 444-458, 1989.

Cazzola W., Chiba S., Saake G., Reflection, AOP, and Meta-Data for Software Evolution, Tech-
nical Report n◦ C-196, Dept. of Mathematical and Computing Sciences, Tokyo Institute of
Technology, 2004a.

Cazzola W., Pini S., Ancona M., “Evolving Pointcut Definition to Get Software Evolution”, in
Cazzola et al. (2004a), p. 83-90, 2004b.

Chappell D., Understanding ActiveX and OLE, Microsoft Press, 1996.

Software Adaptation 29

Clarke S., Harrison W., Ossher H., Tarr P., “Subject-Oriented Design: Towards Improved Align-
ment of Requirements, Design and Code”, SIGPLAN Notices, vol. 34, n◦ 10, p. 325-339,
1999.

Dantas A., Borba P., Yoder J., Johnson R., “Using Aspects to Make Adaptive Object-Models
Adaptable”, in Cazzola et al. (2004a), p. 9-20, 2004.

David P.-C., Ledoux T., “Towards a Framework for Self-Adaptative Component-Based Appli-
cations”, Distributed Applications and Interoperable Systems (DAIS), vol. 2893 of Lecture
Notes in Computer Science, Springer, p. 1-14, 2003.

de Alfaro L., Henzinger T., “Interface Automata”, Foundations of Software Engineering
(ESEC/FSE), ACM Press, p. 109-120, 2001.

de Alfaro L., Stoelinga M., “Interfaces: A Game-Theoretic Framework to Reason about
Open-Systems”, Foundations of Coordination Languages and Software Architectures (FO-
CLASA), vol. 97 of Electronic Notes in Theoretical Computer Science, p. 3-23, 2004.

Dijkstra E. W., A Discipline of Programming, Prentice Hall, 1976.

Elrad T., Akşit M., Kiczales G., Lieberherr K., Ossher H., “Discussing Aspects of AOP”, Com-
munications of the ACM, vol. 44, n◦ 10, p. 33-38, 2001.

Farías A., Guéhéneuc Y.-G., Südholt M., “Integrating Behavior Protocols in Enterprise Java
Beans”, Workshop on Behavioral Semantics at OOPSLA, p. 80-89, 2002a.

Farías A., Südholt M., “On Components with Explicit Protocols Satisfying a Notion of Correct-
ness by Construction”, International Symposium on Distributed Objects and Applications
(DOA), vol. 2519 of Lecture Notes in Computer Science, Springer, p. 995-1012, 2002b.

Filman R. E., Elrad T., Clarke S., Akşit M. (eds), Aspect-Oriented Software Development,
Addison-Wesley, Boston, 2005a.

Filman R. E., Friedman D. P., “Aspect-Oriented Programming is Quantification and Oblivi-
ousness”, in R. E. Filman, T. Elrad, S. Clarke, M. Akşit (eds), Aspect-Oriented Software
Development, Addison-Wesley, Boston, p. 21-35, 2005b.

Frølund S., Koistinen J., Quality-of-Service Specification in Distributed Object Systems, Tech-
nical Report n◦ HPL-98-159, Hewlett Packard. Software Technology Laboratory, 1998.

Giannakopoulou D., Kramer J., Cheung S. C., “Behaviour Analysis of Distributed Systems
using the Tracta Approach”, Automated Software Engineering, vol. 6, n◦ 1, p. 7-35, 1999.

Gradecki J. D., Lesiecki N., Mastering AspectJ: Aspect-Oriented Programming in Java, John
Wiley and Sons, 2003.

Harrison W., Ossher H., Tarr P., “Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition”, Workshop on Software Engineering Proper-
ties of Languages for Aspect Technologies (SPLAT), March, 2003. Available at
http://www.daimi.au.dk/ eernst/splat03/.

Inverardi P., Scriboni S., “Connectors Synthesis for Deadlock-Free Component-Based Archi-
tectures”, Automated Software Engineering (ASE), IEEE Computer Society, p. 174-184,
2001.

Inverardi P., Tivoli M., “Deadlock Free Software Architectures for COM/DCOM Applications”,
Journal of Systems and Software, vol. 65, n◦ 3, p. 173-183, 2003a.

Inverardi P., Tivoli M., “Software Architecture for Correct Components Assembly”, Formal
Methods for Software Architectures, vol. 2804 of Lecture Notes in Computer Science,
Springer, p. 92-121, 2003b.

30 RSTI - L’objet – 12/2006. WCAT’04

Krüger I., Grosu R., Scholz P., Broy M., Distributed and Parallel Embedded Systems, Kluwer
Academic Publishers, chapter From MSC to Statecharts, p. 61-71, 1999.

Magee J., Kramer J., Giannakopoulou D., Behaviour Analysis of Software Architectures,
Kluwer Academic Publishers, p. 35-49, 1999.

Navasa A., Pérez M., Murillo J., “Aspect Modelling at Architecture Design”, in R. Morrison,
F. Oquendo (eds), European Workshop on Software Architecture (EWSA), vol. 3527 of Lec-
ture Notes in Computer Science, Springer, p. 41-58, 2005.

Nierstrasz O., “Regular Types for Active Objects”, Object-Oriented Software Composition,
Prentice Hall, p. 99-121, 1995.

Nierstrasz O., Meijler T. D., “Research Directions in Software Composition”, ACM Computing
Surveys, vol. 27, n◦ 2, p. 262-264, 1995.

Object Management Group, “The CORBA Component Model”, June, 1999, Available at
http://www.omg.org.

Ossher H., Tarr P., “Multi-Dimensional Separation of Concerns and The Hyperspace Ap-
proach”, in Akşit (2001), 2001a.

Ossher H., Tarr P., “Using multidimensional separation of concerns to (re)shape evolving soft-
ware”, Communications of the ACM, vol. 44, n◦ 10, p. 43-50, 2001b.

OWL Service Coalition, “OWL-S: Semantic Markup for Web Services”, 2004, Available at
http://www.daml.org/services.

Papadopoulos G. A., Arbab F., Coordination models and languages, Technical Report n◦ SEN-
R9834, Centrum voor Wiskunde en Informatica (CWI), 1998.

Peltz C., “Web Services Orchestration and Choreography”, IEEE Computer, vol. 36, p. 46-52,
2003.

Poizat P., Royer J.-C., Gwen Salaün, “Formal Methods for Component Description, Co-
ordination and Adaptation”, in Canal et al. (2004), p. 89-100, 2004. Available at
http://wcat04.unex.es/.

Prosise J., Programming Microsoft .NET, Microsoft Press, 2002.

Rashid A., Kortuem G., “Adaptation as an Aspect in Pervasive Computing”, Workshop on Build-
ing Software for Pervasive Computing at OOPSLA, 2004.

Rashid A., Sawyer P., Pulvermueller E., “A Flexible Approach for Instance Adaptation during
Class Versioning”, Objects and Databases, vol. 1944 of Lecture Notes in Computer Science,
Springer, Berlin, p. 101-113, 2000.

Redmond B., Cahill V., “Supporting Unanticipated Dynamic Adaptation of Application Be-
haviour”, Object-Oriented Programming (ECOOP), vol. 2374 of Lecture Notes in Com-
puter Science, Springer, p. 205-230, 2002.

Sánchez F., Hernández J., Murillo J. M., Pedraza E., “Run-time adaptability of synchronization
policies in concurrent object-oriented languages”, Workshop on Aspect Oriented Program-
ming at ECOOP (AOP), June, 1998.

Schmidt H. W., Reussner R. H., “Generating Adapters for Concurrent Component Protocol Syn-
chronization”, Formal Methods for Open Object-Based Distributed Systems (FMOODS),
Kluwer Academic Publishers, p. 213-229, 2002.

Shaw M., Garlan D., Software Architecture. Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

Software Adaptation 31

Sourouille J.-L., “Héritage et substituabilité de comportement”, Approches Formelles dans
l’Assistance au Développement de Logiciels (AFADL), 2001.

Südholt M., “A Model of Components with Non-regular Protocols”, Software Composition
(SC), vol. 3628 of Lecture Notes in Computer Science, Springer, p. 99-113, 2005.

Sun Microsystems, “JavaBeans API Specification”, 1997, Available at
http://java.sun.com/beans/docs.

Talib M., Zongkai Y., Ilyas Q., “Modeling the flow in dynamic Web Services composition”,
Information Technology Journal, vol. 3, n◦ 2, p. 184-187, 2004.

Uchitel S., Kramer J., Magee J., “Synthesis of Behavioural Models from Scenarios”, IEEE
Transactions on Software Engineering, vol. 29, n◦ 2, p. 99-115, 2003.

Vallecillo A., Hernández J., Troya J. M., “New issues in object interoperability”, Object-
Oriented Technology, vol. 1964 of Lecture Notes in Computer Science, Springer, p. 256-
269, 2000.

W3C, “Web Service Description Language (WSDL)”, 2001, Available at
http://www.w3.org/TR/wsdl.

W3C, Web Service Choreography Description Language (WS-CDL) 1.0, World Wide Web Con-
sortium. 2004, Available at http://www.w3.org/TR/ws-cdl-10/.

Yahiaoui N., Traverson B., Levy N., “Classification and Comparison of Adaptable Platforms”,
in Canal et al. (2004), p. 55-61, 2004. Available at http://wcat04.unex.es/.

Yellin D., Strom R., “Protocol specifications and components adaptors”, ACM Transactions on
Programming Languages and Systems, vol. 19, n◦ 2, p. 292-333, 1997.

