
Matchmaking in multi-player on-line games: studying user
traces to improve the user experience

Maxime Véron, Olivier Marin, Sébastien Monnet
Sorbonne Universités, UPMC Univ Paris 06, Équipe REGAL, LIP6, F-75005, Paris, France

CNRS, UMR 7606, LIP6, F-75005, Paris, France
Inria, Équipe REGAL, F-75005, Paris, France

Email: firstname.lastname@lip6.fr

ABSTRACT

Designing and implementing a quality matchmaking service
for Multiplayer Online Games requires an extensive knowl-
edge of the habits, behaviors and expectations of the players.
Gathering and analyzing traces of real games offers insight
on these matters, but game server providers are very protec-
tive of such data in order to deter possible reuse by the com-
petition and to prevent cheating. We circumvented this issue
by gathering public data from a League of Legends server
(information over more than 28 million game sessions). In
this paper, we present our database which is freely available
online, and we detail the analysis and conclusions we draw
from this data regarding the expected requirements for the
matchmaking service.

Categories and Subject Descriptors

H.2.4 [Systems]: Multimedia databases; I.2.1 [Applications

and Expert Systems]: Games; B.8.2 [Performance and

Reliability]: Performance Analysis and Design Aids

General Terms

Measurement,Performance

Keywords

Multimedia databases, Games, MatchMaking

1. INTRODUCTION
In the digital gaming industry, software support architec-

tures such as game engines and online services call for con-
stant enhancement to keep up with technological advances
and user expectations. In the case of matchmaking for Mul-
tiplayer Online Games (MOGs), the crucial service that al-
lows players to find opponents, current solutions raise impor-
tant issues regarding player experience. They often lead to
mismatches where strong players face weak ones, a situation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NOSSDAV ’14, March 19 - 21 2014, Singapore, Singapore
Copyright 2014 ACM 978-1-4503-2706-0/14/03. . . $15.00.
http://dx.doi.org/10.1145/2578260.2578265

which satisfies none of the players involved. Furthermore,
response times can be very long: ranging up to hours of
waiting until a game session can begin.

However, most game production teams focus on improving
graphics and playability to compete with one another. As a
consequence, game supporting software such as engines and
middleware services consists mainly of legacy components
that are widely reused and often quite old. While this pro-
vides the ability to cut game production costs and to build
upon time-proven solutions, it prevents some much awaited
improvements to the overall game experience. For instance
most player communities would welcome better schemes to-
wards the elimination of malicious player behaviors and truly
efficient matchmaking.

The improvement of game supporting softwares requires
an extensive study of how they behave when used by real
players. To do so, it is crucial to obtain and analyze data
from real platforms. Such data is very hard to get by be-
cause game developers want to prevent its reuse by their
competitors and by potential cheaters.

In this paper, we focus on acquiring real game data. We
use data gathered from a popular online game server [1] to
show that mismatches and response times are indeed critical
issues for matchmaking. Our main contributions are the
following.

1. We describe our freely available dataset which covers
information about over 28 million game sessions [2].

2. We give a detailed analysis of the acquired data and
highlight the main issues raised by one of the game’s
crucial services: namely its matchmaking.

The paper is organized as follows. Section 2 introduces
the League of Legends matchmaking, our study case. Sec-
tion 3 presents our dataset and describes how we retrieved
the data, then Section 4 focuses on the matchmaking mech-
anism. Section 5 presents related works before Section 6
concludes.

2. OUR STUDY CASE: MATCHMAKING IN

LEAGUE OF LEGENDS
This section describes our study case: the matchmaking

service of League of Legends (LoL). LoL is a popular game
with a community regrouping over 12 million players world-
wide per day in 2012 ; this ensures an abundance of user
traces from a genuinely successful online game.

It is a competitive game where ranking is a central el-
ement; as such, ranking is a precious metric for studying

player behaviours and extrapolating quality of service. Fi-
nally it is a session-based game with relatively short sessions,
averaging around 34 minutes according to the game devel-
opers. Its matchmaking service is used often and plays an
important role in the overall game experience.

2.1 League of Legends: a brief overview
League of Legends is a multiplayer online battle arena

(MOBA) video game developed and published by Riot Games.
LoL players are matched in two opposing sides comprising
five teammates each. Both teams fight in an arena in order
to destroy the enemy team’s main building called nexus.

The LoL server definition of a game is the brawling session
that pits players against each other inside the arena. We will
therefore use this term to refer to the players’ games history.

Three factors are crucial to the gaming experience: wait-
ing times, matching accuracy, and server response times.
With an average waiting time of 90 seconds in between ses-
sions, players can spend a lot of time waiting for a session to
begin (see Subsection 4.1). This is especially true for very
skilled players: their scarcity makes it harder to match 10
such players together. Matching players with disparate skill
levels reduces waiting times significantly, however it can re-
flect poorly on the experience. Unskilled players will feel
helpless against much stronger opponents, while the latter
will spend time on an unchallenging session with little or
no reward to look forward to. Orthogonal to these issues,
server response time is crucial in this game which requires
extremely sharp reflexes. Lags caused by the servers often
increase the ping by up to 300%, which severely impedes the
gameplay.

LoL is a competitive game where ranking takes a signif-
icant part, both in terms of matchmaking and in terms of
player status. Rank defines the skill level of a player, and
rank improvement is the main goal of most LoL players.
Once players are ranked, they get placed in competition cat-
egories called Leagues, and subcategorized into Divisions.
This ranking, as it can evolve quickly over time, needs to
be computed precisely and that is why most games use the
Elo rating system. The Elo rating system [3] was invented
as an improved method for calculating the relative skill lev-
els of chess players. Today many other games, including
multiplayer competitions, have adapted it for their own use.
Thereafter, we use ranking, Elo, or MMR (short for Match-

Making Rating) to talk about player ranking values.
The formulas used in League of Legends for ranking cal-

culations have not been disclosed publicly. However, most
ranking implementations share the same bases inherited from
the original Elo rating system. Riot Games developers do
divulge interesting information about the matchmaking in
LoL through its website and dedicated forums [4] , though.
Based on this information and on our own data analysis, we
inferred the general rules that guide LoL player matching
and describe them in subsection 2.3.

2.2 Elo ranking
In order to introduce the gaming matchmaking concepts

we need to briefly introduce the Elo ranking and its defini-
tions.

The Elo rating system [3] was invented as an improved
method for calculating the relative skill levels of chess play-
ers. Today many other games, including multiplayer com-
petitions, have adapted it for their own use. Thereafter, we

use ranking, Elo, or MMR (short for MatchMaking Rating)
to talk about player ranking values.

It is assumed that a person’s performance varies from
game to game according to an approximately normal dis-
tribution; a person’s Elo rating is the mean of that distri-
bution. A person with a high Elo is someone who performs
better on average than a player with a low Elo. This score
is determined by win/loss statistics with respect to other
players. For players A and B with respective Elo ratings of
Ra and Rb, the probability Ea of a victorious outcome for
player A is computed as follows:

Ea = 1

1+10(Rb−Ra)/400

For every difference of 400 points, the team/player with
the highest score is ten times as likely to win as the other
team/player. This is the standard computation for Chess
and it may differ in League of Legends. The actual outcome
of a game is compared to the expected outcome and each
team/player rating is adjusted accordingly. As a result, the
score of a victorious team changes less if it was expected
to win than if it was expected to lose. Successive games
eventually bring each player/team to a point where they are
expected to win 50% of the time against opponents of equal
score.

A player’s change in rating is linear to the difference be-
tween the expected outcome and the actual outcome.

Ranew = Raold +K ∗ (Sa− Ea)

Sa is the result of the game and is presumably 1 for a win
and 0 for a loss.

Parameter K in the formula determines the magnitude of
the score change. A dynamicK value is associated with each
player to inhibit Elo changes after games between evenly
matched opponents and to prevent inflation of the highest
Elo ratings. The reason for the latter is that excessive Elo
differences produce a feeling of unachievable goal for new
players. In chess, the initial K value is big (25 for the 30
first games) resulting in large changes in Elo. Thus a player
can rapidly find her/his correct place in the ranking system.
As the number of wins and losses becomes more even, K
decreases gradually (K = 15 to 7).

According to our findings, League of Legends uses a sim-
ilar system with dynamic K values as we found a K value
field when we polled the servers. All players start with an
Elo of 1200 for their 10 first games. From there they are
assigned a score, and changes occur smoothly according to
the wins and losses.

2.3 Matchmaking in League of Legends
League of Legends players can join several types of games,

associated with different queues on the servers. A group of
persons joining the same queue in order to play together in
the same team is called a premade. A premade can com-
prise from one to five players. Normal games do not count
towards official ranking, whereas ranked games do and are
only open to seasoned players (above level 30). Our study
focuses mainly on ranked games since they draw together
players whose statistics are more likely to be representative
of the game’s core community. Also, fair matchmaking is
more critical for ranked games since they induce real stakes
for the players.

According to Riot Games developers, matchmaking in
LoL is based on: player ranking, the experience of each
player (number of games played), and the size of the pre-
made.

Player ranking weighs most since it has the highest im-
pact on the outcome of the game. LoL tries to match teams
as fairly as possible: it computes the average of the player
ranking values for each team, and then uses these averages
to match teams similarly to one-versus-one fights. This so-
lution speeds up the matching of multiple players, yet it may
result in an unbalanced game if two players with very differ-
ent rankings join in a premade since the least skilled player
is likely to face a highly ranked opponent. In a competitive
context, this kind of quick fix is very unsatisfactory.

Adding the personal number of played games as a match-
ing criterion alleviates this issue, but it also increases the
average waiting time drastically [5](roughly around 50%).
This shows the direct impact on the average waiting time of
adding a single preference to the matching system.

Premades also increase the waiting time, and can even
induce unbalanced battles. If the matching system cannot
find an opposing team with a premade of the same size and
level in the allotted time (roughly 30 seconds for a normal
game), it gathers single players with higher individual ranks
to build an opponent team. The higher rank is supposed
to compensate for lesser coordination in the opposing team,
but usually leads to a victory of the higher ranked players.

3. GATHERING DATA ABOUT LEAGUE OF

LEGENDS
In order to acquire data for our study, we gathered public

information from a League of Legends server. The resulting
data set covers information about more than 28 million game
sessions obtained over a month of crawling, and is freely
available as a database [2]. This section describes the nature
of the data we acquired and our retrieval method.

3.1 The nature of the retrieved data
We distinguish three categories of data among the dataset

we acquired:

Avatar information: The first category, regroups data that
characterizes a player’s status inside the game. This
category is common to many games such as World of
Warcraft or Diablo 3, where the main purpose is avatar
evolution and competitiveness. For example, the items
that an avatar possesses or the damages dealt to others
are fields that can be found in every role playing game
and in every first-person shooter. This category is by
far the largest, accounting for 43 data fields out of 77.

Company handlers: The second category, gathers content
that is specific to League of Legends. The company
handlers are variables that exist only to help the com-
pany maintain the game, such as player identification
numbers and timestamps. This 13 data fields of this
category helped sorting our players in the database.
Although it represents data specific to League of Leg-
ends, some of it allows analysis for business related
concerns. Such is the case with data about skins that
players apply to their avatars. Skins are add-ons that
players buy in exchange for real money in LoL. Relat-
ing the summoner level of the players in the game with

the first time they played with a skin provides insight
about the moment players tend to buy their first skins,
and which kind of skin they first buy.

Data related to the matchmaking of the game: The
third and last category intersects with the previous
categories: it includes avatar information and precise
network latency monitoring. The userServerPing re-
veals the average latency incurred by a player during
the game. The timeInQueue data field is also crucial
for our analysis as it represents the waiting time before
a player gets matched with other players. We also use
some avatar data in our LoL matchmaking analysis,
such as the number of kills dealt by the avatar (kill),
and the number of times it died (num death), in order
to detect imbalanced games.

3.2 Services used to retrieve data
To retrieve LoL information we used a free open source

code [6] to pack/unpack the contents of the messages sent
to the game server.

LoL servers follow a function call paradigm to handle re-
quests. A message must be constructed in such a way that
it identifies the right function from the right service and
contains the function parameters.

An example of a typical request is : <”summonerService”
”getSummonerByName” ”darkKnight67”>.

Our first task was to examine all LoL services (there are
over a hundred) to identify the ones associated with game
statistics. Among the latter, we identified two specific ser-
vices: the first handles the recent games history of players,
and the second provides statistics about any given game once
its identifier is known.

More specifically in terms of LoL server requests, we used
the getSummonerByName function of the summonerService

to translate accountId values into what RiotGames stores
internally as summonerId values. Once this summonerId is
obtained we can then call getRecentGames on the player-

StatsService to get an array of games from the LoL server.
Each player history contains 10 games or less, depending

on the number of games played during the last seven days.
LoL servers process game data as a hashMap of (key,

value) couples, but send it through the network as raw con-
tent. A big part of our work was to redefine a proper Java
class describing game statistics, with which we could grab
all the fields sent by the server when requesting for games
histories. Once this was achieved we fed all possible sum-

monerId values to the server to obtain games histories data,
and stored it into a database for long-term usage. This al-
lowed efficient searches and statistical computations for our
analysis presented in section 4.

After thorough verification, we discovered that the LoL
servers we queried fail to fill in some data fields and hand
out invalid NULL values instead. Unfortunately, such is the
case for data that we deemed really valuable for our analysis:
in particular the predicted win percent, and the KCoefficient

that is used to compute the Elo gain.

4. ANALYSIS FOR MATCHMAKING SYS-

TEMS
This section presents our analysis of the data concerning

the LoL matchmaking service.
We evaluate the impact of this service on the game ex-

perience in terms of waiting time, matching precision, and
server response time.

4.1 Influence of ranking on waiting times
Our first assessment concerns the distribution of LoL play-

ers in terms of ranking, displayed as the solid line in Figure 1.
Besides allowing correlations between player skills and qual-
ity of service, such information is very valuable for design-
ing and evaluating new matchmaking solutions. The initial
ranking value for LoL beginners is 1200, which explains why
there is a large majority of players around and just above
this value. As expected the number of players diminishes
as the ranking increases, since it requires increasing skills
to attain higher rankings. An obvious consequence of this
distribution is that matching highly ranked players together
is harder, and thus should take more time.

Figure 1 illustrates this issue through the dashed line
which represents the average waiting time with respect to
player ranking. Above rank 1700 the average waiting time
increases exponentially. It actually reaches up to 45 min-
utes for the highest ranks, but we did not include this in the
graph to preserve its readability, as most waiting times are
below 100 seconds.

In the LoL dedicated forums, Riot Games developers state
that they aim for an average waiting time that will not ex-
ceed 30 seconds. Our observations show that the slowdown
incurred by the vast majority of players brings the overall
average waiting time closer to 90 seconds. One might con-
sider 90 seconds an acceptable duration; however further
calculations show that, out of 825000 ranked game requests,
65259 took more than 5 minutes to get matched, affecting
all player ranks alike. This amounts to 7.9% of matches that
fail to start within an acceptable time-frame.

We draw an important conclusion from these observations:
the current LoL matchmaking system does not scale well.
Both curves top out simultaneously around the Elo value of
1200. In our opinion, this demonstrates the bottleneck effect
of the matchmaking service trying to deal with huge num-
bers of similarly skilled players. Considering our information
covers more than a month of crawling, this conclusion is un-
likely to result from temporary server issues.

4.2 Impact of the matching distance on the game
experience

Our next assessment studies the impact of the matching
distance on the gaming experience. The matching distance is
computed by taking the distance between the average rank-
ing of players of the same team and the one of the enemy
team. This value is close to what Riot Games uses for its
game.

Getting matched against opponents with extremely dif-
ferent skill levels usually results in a boring session: an out-
classed player will experience a half-hour of severe pound-
ing from the opponents, while a very superior player will
have a very unchallenging session. Even though a reason-

70

80

90

100

T
im

e
in

q
u
eu

e
(s
)

1,000 1,500 2,000

20

40

60

80

Ranking elo

#
p
la
y
er
s
(t
h
o
u
sa
n
d
s
o
f)

Time in queue Number of players

Figure 1: Distribution of the players ranks and their waiting
time to get matched

80

100

120

140

160

180

200

T
em

p
s
d
’a
tt
en

te
d
a
n
s
la

fi
le

(s
)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Distance in the matching

C
o
effi

ci
en

t
d
e
d
éf
éc
ti
o
n

Temps d’attente Defection coefficient

Figure 2: Matching distance and frequency of game defec-
tions

able amount of challenge in games is good, getting matched
with people from two leagues away is in any case truly dif-
ficult. This sometimes results in a player simply quitting
the game. It is important to keep in mind, however, that
defections are rare in LoL as they often lead to banishment
from the game.

For the purpose of our study, we first computed a coef-
ficient associated with the frequency of game defections; a
value of 1 corresponds to the highest number of defections
encountered for any given matching distance. Figure 2 cor-
relates these results with the average waiting time. Both
curves are inversely proportional, which means that a quick
matching resulting in a significant ranking difference often
leads to a defection. The two defection peaks observed be-
fore 300 and before 600 correspond to the ranking distances
between different Ranked Leagues in LoL. In other words,
players pitted against opponents in a different category of
competition are more likely to defect. This is a strong argu-
ment against opting for a bad match in order to speed up
the process.

4.3 Impact of latency on the game experience
Even though Sheldon et al. [7] show that latency bears

little importance in real time strategy games such as War-
craft 3, such might not be the case for MOBAs. Hence we
evaluated the impact of latency on LoL gameplay.

To begin with, we studied the distribution of the latencies
within the player population; Figure 3 presents our results.
It shows that the ping remains between 30ms and 50ms for
a vast majority of users. Since this is a very low value, our
first intuition was that the results from [7] stand true for
LoL. However on closer inspection, we observed that pings
above 100ms were found in more than 1.2 million games,
representing 7% of the total.

0 50 100 150 200
0%

0.5%

1%

1.5%

2%

Ping (ms)

P
er
ce
n
ta
g
e
o
f
th
e
p
la
y
er
b
a
se

Figure 3: Distribution of the players’ ping in League of Leg-
ends

Ranking is not a good metric for evaluating the effect of
latency on the gameplay, as lags will impede poorly skilled
and highly skilled players in similar ways. Besides it af-
fects single players instead of teams. Therefore, we used an-
other metric associated with player performance: the killed

death assist ratio, or KDA. It is possible to die, kill or as-
sist in killing enemy avatars multiple times in a LoL session.
Hence, the ratio between killing/assisting and dying gives a
good insight on the in-session performance of a player. The
formula used to compute the KDA is the following :

kda = assists+kills

max(deaths,1)

A KDA inferior to 1 reflects poorly on a player’s general
skills. A KDA of 0 could show a person that is disconnected
for all the game duration, or making everything possible to
avoid being helpful.

The dotted curve in Figure 4 illustrates the relation be-
tween the KDA and the ping. Since the KDA decreases
steadily as the ping increases, ultimately dividing the max-
imum KDA by a factor of 8, we conclude that latency does
indeed impede on playability.

To better understand the problem of latency, we also found
that among players that leave games, 16% of them have a
latency superior to 100ms. Even though this value might
be influenced by a user damaged connection, 100ms latency

0 50 100 150 200 250

2.6

2.8

3

3.2

3.4

Ping (ms)

K
D
A

ra
ti
o

Figure 4: Impact of the latency on the player performance

is far from meaning that the connection to break anytime.
Considering that the amount of players, leavers or not, with
a latency superior to 100ms is of 7%, we can correlate under-
going high latency and leaving games prematurely, as shown
also in [8]. MOBAs games are close to FPS games in this
characteristic that latency impacts strongly the gameplay.

Taking this into consideration, our conclusion is that match-
making ought to include ping values as a criterion in order
to improve the overall game experience for MOBAs. How-
ever, LoL’s current matchmaking service fails to answer on
time for the highest majority of ranked players without any
extra criteria.

Our conclusion with respect to the experiments described
in this section is that a new matchmaking architecture would
lead to much needed improvements: reduced waiting times,
better gaming experience, and extended matching criteria
in order to satisfy players further.

5. RELATED WORK
The literature on distributed gaming is abundant. Yet we

have found no other paper about gathering and analyzing
such an amount of real user data to study matchmaking.

Most papers on distributed game traces focus either on
crawling methods [9, 10] or on very specific aspects of games
like positions and movements of player avatars over time [11,
12, 13]. Although our primary goal was to acquire and ana-
lyze data related to matchmaking, our traces can serve many
other purposes.

Some studies propose approaches to improve gaming expe-
rience. Chen et al. [8] show that latency impacts the length
of gaming sessions. The results of this study are consis-
tent with our database analysis where we observe that in-
creasing amounts of players leave the game early as latency
deteriorates. As a consequence, several works propose to
take latency into account in the matchmaking mechanism.
Agarwal and Lorch propose a latency-aware matchmaking
solution [14]; Zander et al. [15] also suggest to improve the
matchmaking system by adding more properties (eg. la-
tency). In [16], the authors propose an improved match-
making, there again by adding more information to feed the

matchmaking mechanism.
However, our study shows that the matchmaking system

in a popular game like League of Legends fails to reply on
time with few criteria. A matchmaking mechanism should
be multi-criteria but should also have short response times.

Other papers, such as [17, 18, 19], focus on designing dis-
tributed matchmaking approaches. Yet they lack real game
data/application traces to validate their approaches. These
solutions could take advantage of our publicly available data.

6. CONCLUSION
User traces enable to improve game software through care-

ful study and analysis. However, game companies seldom
make such data available. In this paper, we show how
to gather a huge quantity of publicly available information
about players of a very popular online game. We also ana-
lyze this information to draw conclusions about how to im-
prove a critical service for multiplayer online games, namely
matchmaking.

As a consequence of the work presented in this paper,
we are currently working on a fully distributed, peer to peer
matchmaking system. The database we acquired constitutes
a precious tool for testing our system with real application
data. We aim to offer better precision and response times
than current matchmaking service architectures. Our ap-
proach aims to make matchmaking more accurate and more
effective, all the while allowing a wider range of matching
criteria.

We strongly believe that our database can help design
future software solutions for gaming. A considerable spec-
trum of studies could use this information, and we think that
gathering this type of information automatically for recent
games could greatly improve the future of gaming solutions.

7. REFERENCES
[1] “League of legends,” 2013. [Online]. Available: http://

euw.leagueoflegends.com/

[2] “League of legends game traces database,” 2013.
[Online]. Available: http://pagesperso-systeme.lip6.fr/
maxime.veron/examples.html

[3] A. E. Elo, The rating of chessplayers, past and

present. New York: Arco Pub., 1978.

[4] “MatchMaking in league of legends,” 2013. [Online].
Available: http://euw.leagueoflegends.com/learn/
gameplay/matchmaking

[5] “League of legends community - general discussion -
matchmaking changes [1-16-2013].” [Online].
Available: http://na.leagueoflegends.com/board/
showthread.php?t=3016615

[6] “lolrtmpsclient - a lightweight rtmp client in java for
communicating with league of legends,” 2013. [Online].
Available: https://code.google.com/p/lolrtmpsclient/

[7] N. Sheldon, E. Girard, S. Borg, M. Claypool, and
E. Agu, “The effect of latency on user performance in
warcraft iii,” in Proceedings of the 2nd workshop on

Network and system support for games, ser. NetGames
’03. New York, NY, USA: ACM, 2003, pp. 3–14.

[8] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive
are online gamers to network quality?” Commun.

ACM, vol. 49, no. 11, pp. 34–38, Nov. 2006.

[9] Y. Guo and A. Iosup, “The game trace archive,” in
Proceedings of the 11th Annual Workshop on Network

and Systems Support for Games, ser. NetGames ’12.
Piscataway, NJ, USA: IEEE Press, 2012, pp. 4:1–4:6.

[10] B. Zhang, A. Iosup, P. Garbacki, and J. Pouwelse, “A
unified format for traces of peer-to-peer systems,” in
Proceedings of the 1st ACM workshop on Large-Scale

system and application performance, ser. LSAP ’09.
New York, NY, USA: ACM, 2009, pp. 27–34.

[11] S. A. Tan, W. Lau, and A. Loh, “Networked game
mobility model for first-person-shooter games,” in
Proceedings of 4th ACM SIGCOMM workshop on

Network and system support for games, ser. NetGames
’05. New York, NY, USA: ACM, 2005, pp. 1–9.

[12] G. Armitage, “An experimental estimation of latency
sensitivity in multiplayer quake 3,” in Networks, 2003.

ICON2003. The 11th IEEE International Conference

on, 2003, pp. 137–141.

[13] J. Kinicki and M. Claypool, “Traffic analysis of avatars
in second life,” in Proceedings of the 18th International

Workshop on Network and Operating Systems Support

for Digital Audio and Video, ser. NOSSDAV ’08.
New York, NY, USA: ACM, 2008, pp. 69–74.

[14] S. Agarwal and J. R. Lorch, “Matchmaking for online
games and other latency-sensitive p2p systems,” in
Proceedings of the ACM SIGCOMM 2009 Conference

on Data Communication, ser. SIGCOMM ’09. New
York, NY, USA: ACM, 2009, pp. 315–326.

[15] S. Zander, I. Leeder, and G. Armitage, “Achieving
fairness in multiplayer network games through
automated latency balancing,” in Proceedings of the

2005 ACM SIGCHI International Conference on

Advances in Computer Entertainment Technology, ser.
ACE ’05. New York, NY, USA: ACM, 2005, pp.
117–124.

[16] O. Delalleau, E. Contal, E. Thibodeau-Laufer,
R. Ferrari, Y. Bengio, and F. Zhang, “Beyond skill
rating: Advanced matchmaking in ghost recon online,”
Computational Intelligence and AI in Games, IEEE

Transactions on, vol. 4, no. 3, pp. 167–177, 2012.

[17] V. Shafran, G. Kaminka, S. Kraus, and C. V.
Goldman, “Towards bidirectional distributed
matchmaking,” in Proceedings of the 7th int. joint

conference on Autonomous agents and multiagent

systems, ser. AAMAS’08, 2008, pp. 1437–1440.

[18] E. Ogston and S. Vassiliadis, “Local distributed agent
matchmaking,” in In Proc. of the 9th International

Conference on Cooperative Information Systems, 2001,
pp. 67–79.

[19] J. Manweiler, S. Agarwal, M. Zhang,
R. Roy Choudhury, and P. Bahl, “Switchboard: A
matchmaking system for multiplayer mobile games,”
in Proceedings of the 9th International Conference on

Mobile Systems, Applications, and Services, ser.
MobiSys ’11. New York, NY, USA: ACM, 2011, pp.
71–84.

http://euw.leagueoflegends.com/
http://euw.leagueoflegends.com/
http://pagesperso-systeme.lip6.fr/ maxime.veron/ examples.html
http://pagesperso-systeme.lip6.fr/ maxime.veron/ examples.html
http://euw.leagueoflegends.com/learn/gameplay/matchmaking
http://euw.leagueoflegends.com/learn/gameplay/matchmaking
http://na.leagueoflegends.com/board/showthread.php?t=3016615
http://na.leagueoflegends.com/board/showthread.php?t=3016615
https://code.google.com/p/lolrtmpsclient/

	Introduction
	Our study case: matchmaking in League of Legends
	League of Legends: a brief overview
	Elo ranking
	Matchmaking in League of Legends

	Gathering data about League of Legends
	The nature of the retrieved data
	Services used to retrieve data

	Analysis for matchmaking systems
	Influence of ranking on waiting times
	Impact of the matching distance on the game experience
	Impact of latency on the game experience

	Related work
	Conclusion
	References

