
Scaling State Machine Replication

Fernando Pedone
University of Lugano (USI)
Switzerland

State machine replication

•Fundamental approach to fault tolerance
✦ Google Spanner
✦ Apache Zookeeper
✦ Windows Azure Storage
✦ MySQL Group Replication
✦ Galera Cluster, …

2

State machine replication is intuitive & simple

•Replication transparency
✦ For clients
✦ For application developers

•Simple execution model
✦ Replicas order all commands
✦ Replicas execute commands deterministically and in the

same order

3

Configurable fault tolerance but bounded
performance

•Performance is bounded by what one replica can do
✦ Every replica needs to execute every command
✦ More replicas: same (if not worse) performance

4

Servers

Th
ro

ug
hp

ut

How to scale state machine replication?

Scaling performance with partitioning

•Partitioning (aka sharding) application state

5

Problem #1: How to order commands in a partitioned system?
Problem #2: How to execute commands in a partitioned system?

Scalable performance
(for single-partition commands)

Servers

Th
ro

ug
hp

utPartition Px

Partition Py

Ordering commands in a partitioned system

•Atomic multicast
✦ Commands addressed (multicast) to one or more partitions
✦ Commands ordered within and across partitions

• If S delivers C before C’, then no S’ delivers C’ before C

6

Partition Px

Partition Py

C(x)

C(y)

C(x,y)

Scalable SMR

Atomic multicast

Multi-Paxos

Network

Executing multi-partition commands

7

Solution #1: Static partitioning of data
Solution #2: Dynamic partitioning of data

Partition X

Partition Y
C(x,y) : { x := y }

x x x

y y y

Solution 1: Static partitioning of data

•Execution model
✦ Client queries location oracle to determine partitions
✦ Client multicasts command to involved partitions
✦ Partitions exchange and temporary store objects needed to

execute multi-partition commands
✦ Commands executed by all involved partitions

•Location oracle
✦ Simple implementation thanks to static scheme

8

How to execute multi-partition commands?

9

Partition X

Partition Y
C(x,y): x := y

x x x

y y y

y y y

x x x

Cached entries

Static scheme, step-by-step

10

query oracle

receive result

deliver command

all local
objects?

send result

Client Server

multicast command
to involved partitions

end

execute command

Yes

send needed
objects/signal to
remote partitions

No

start

wait for objects/
signal from remote

partitions

Solution 2: Dynamic partitioning of data

•Execution model (key idea)
✦ Turn every command single-partition
✦ If command involves multiple partitions, move objects to a

single partition before executing command

•Location oracle
✦ Oracle implemented as a “special partition”
✦ Move operations involve oracle, source and destination

partitions

11

Dynamic scheme, step-by-step

12

query oracle

one
partition?

receive result

deliver command

all local
objects?

send result

Client Server

move objects
to one partition

No

multicast command
to partition

Yes

end
No

retry?
Yes

execute
command

Yes

result = retry

No

start

Termination and load balance

•Ensuring termination of commands
✦ After retrying n times, command is multicast to all partitions
✦ Executed as a multi-partition command

•Ensure load balancing among partitions
✦ Target partition in multi-partition command chosen randomly

13

Oracle: high availability and performance

•Oracle implemented as a partition
✦ For fault tolerance

•Clients cache oracle entries
✦ For performance
✦ Real oracle needed at first access and when objects change

location
✦ Client retries command if cached location is stale

14

Dynamically (re-)partitioning the state

•Decentralized strategy
✦ Client chooses one partition among involved partitions
✦ Each move involves oracle and concerned partitions
✦ No single entity has complete system knowledge
✦ Good performance with strong locality, but…
✦ …slow convergence
✦ Poor performance with weak locality

15

👍

"

👍

"

P1 P2

Dynamically (re-)partitioning the state

•Centralized strategy
✦ Oracle builds graph of objects and relations (commands)
✦ Oracle partitions O-R graph (METIS) and requests move

operations to place all objects in one partition
✦ Near-optimum partitioning (both strong and weak locality)
✦ Fast convergence
✦ Oracle knows location of and relations among objects
✦ Oracle solves a hard problem

16

👍

"

👍

"

Social network application (similar to Twitter)

•GetTimeline
✦ Single-object command => always involves one partition

•Post
✦ Multi-object command => may involve multiple partitions
✦ Strong locality

• 0% edge cut, social graph can be perfectly partitioned

✦ Weak locality
• 1% and 5% of edge cuts, after partitioning social graph

17

 0

 30

 60

 90

 120

 150

1 2 4 8

Th
ro

ug
hp

ut
 (k

cp
s)

0% edge-cut

SMR
SSMR

DSSMR
DSSMRv2

SSMRMetis

1 2 4 8

Number of partitions

1% edge-cut

1 2 4 8

5% edge-cut

GetTimelines only (single-partition commands)

18

Throughput

Number of partitions

Classic SMR
Static

Dyn decentralized
Dyn centralized

Optimized static

Servers

Th
ro

ug
hp

ut

all schemes scale!
(by design)

 0

 20

 40

 60

 80

1 2 4 8

Th
ro

ug
hp

ut
 (k

cp
s)

Number of partitions

0% edge-cut

SMR
SSMR

DSSMR
DSSMRv2

SSMRMetis

Posts only, strong locality (0% edge cut)

19

Number of partitions

Classic SMR
Static

Dyn decentralized
Dyn centralized

Optimized static dynamic schemes
and optimized scale,
but not static

 0

 10

 20

 30

 40

1 2 4 8

Th
ro

ug
hp

ut
 (k

cp
s)

Number of partitions

1% edge-cut

SMR
SSMR

DSSMR
DSSMRv2

SSMRMetis

Posts only, weak locality (1% edge cut)

20

Number of partitions

Classic SMR
Static

Dyn decentralized
Dyn centralized

Optimized static
only optimized and
centralized dynamic schemes
scale

Conclusions

•Scaling State Machine Replication
✦ Possible but locality is fundamental

• OSs and DBs have known this for years

✦ Replication and partitioning transparency

•The future ahead
✦ Decentralized schemes with quality of centralized schemes
✦ Expand scope of applications (e.g., data structures)
✦ “The inherent limits of scalable state machine replication”

21

THANK YOU!!!

More details:
http://www.inf.usi.ch/faculty/pedone/scalesmr.html

Joint work with…
Long Hoang Le
Enrique Fynn

Eduardo Bezerra
Robbert van Renesse

