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State machine replication

•Fundamental approach to fault tolerance 
✦ Google Spanner 
✦ Apache Zookeeper 
✦ Windows Azure Storage 
✦ MySQL Group Replication 
✦ Galera Cluster, …
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State machine replication is intuitive & simple

•Replication transparency 
✦ For clients 
✦ For application developers 

•Simple execution model 
✦ Replicas order all commands 
✦ Replicas execute commands deterministically and in the 

same order
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Configurable fault tolerance but bounded 
performance

•Performance is bounded by what one replica can do 
✦ Every replica needs to execute every command 
✦ More replicas: same (if not worse) performance
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Scaling performance with partitioning

•Partitioning (aka sharding) application state
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Problem #1: How to order commands in a partitioned system?
Problem #2: How to execute commands in a partitioned system?

Scalable performance 
(for single-partition commands)

Servers

Th
ro

ug
hp

utPartition Px

Partition Py



Ordering commands in a partitioned system

•Atomic multicast  
✦ Commands addressed (multicast) to one or more partitions 
✦ Commands ordered within and across partitions 

• If S delivers C before C’, then no S’ delivers C’ before C
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Executing multi-partition commands
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Solution #1: Static partitioning of data
Solution #2: Dynamic partitioning of data

Partition X

Partition Y
C(x,y) : { x := y }

x x x

y y y



Solution 1: Static partitioning of data

•Execution model 
✦ Client queries location oracle to determine partitions 
✦ Client multicasts command to involved partitions 
✦ Partitions exchange and temporary store objects needed to 

execute multi-partition commands 
✦ Commands executed by all involved partitions 

•Location oracle 
✦ Simple implementation thanks to static scheme
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How to execute multi-partition commands?
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Static scheme, step-by-step
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query oracle

receive result

deliver command
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send result
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Solution 2: Dynamic partitioning of data

•Execution model (key idea) 
✦ Turn every command single-partition 
✦ If command involves multiple partitions, move objects to a 

single partition before executing command 

•Location oracle 
✦ Oracle implemented as a “special partition” 
✦ Move operations involve oracle, source and destination 

partitions

11



Dynamic scheme, step-by-step
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query oracle

one 
partition?

receive result

deliver command
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Termination and load balance

•Ensuring termination of commands 
✦ After retrying n times, command is multicast to all partitions 
✦ Executed as a multi-partition command 

•Ensure load balancing among partitions 
✦ Target partition in multi-partition command chosen randomly
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Oracle: high availability and performance

•Oracle implemented as a partition 
✦ For fault tolerance  

•Clients cache oracle entries 
✦ For performance 
✦ Real oracle needed at first access and when objects change 

location 
✦ Client retries command if cached location is stale
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Dynamically (re-)partitioning the state

•Decentralized strategy 
✦ Client chooses one partition among involved partitions 
✦ Each move involves oracle and concerned partitions 
✦ No single entity has complete system knowledge 
✦ Good performance with strong locality, but… 
✦ …slow convergence 
✦ Poor performance with weak locality
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Dynamically (re-)partitioning the state

•Centralized strategy 
✦ Oracle builds graph of objects and relations (commands) 
✦ Oracle partitions O-R graph (METIS) and requests move 

operations to place all objects in one partition 
✦ Near-optimum partitioning (both strong and weak locality) 
✦ Fast convergence 
✦ Oracle knows location of and relations among objects 
✦ Oracle solves a hard problem
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Social network application (similar to Twitter)

•GetTimeline 
✦ Single-object command => always involves one partition 

•Post 
✦ Multi-object command => may involve multiple partitions 
✦ Strong locality 

• 0% edge cut, social graph can be perfectly partitioned 

✦ Weak locality 
• 1% and 5% of edge cuts, after partitioning social graph
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all schemes scale! 
(by design)
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Conclusions

•Scaling State Machine Replication 
✦ Possible but locality is fundamental 

• OSs and DBs have known this for years 

✦ Replication and partitioning transparency 

•The future ahead 
✦ Decentralized schemes with quality of centralized schemes 
✦ Expand scope of applications (e.g., data structures) 
✦ “The inherent limits of scalable state machine replication”
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THANK YOU!!!

More details: 
http://www.inf.usi.ch/faculty/pedone/scalesmr.html 
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