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Context
• Internet services are at the core of modern 

business and organizations. 

• Costumers demand quality of service
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Geo-replication
• Deploy multiple physical replicas of the service. 

• Clients interact with the closest replica. 

• Coordinate executions to ensure consistency
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Challenges in Data Availability
• Difficult to ensure data invariants and availability at the same time. 

• Strong consistency: coordinate execution across replicas. 

• High-Latency, low availability. 

• To ensure availability, cloud applications tend to trade strong 
consistency for weaker models 

• These weaker models do not ensure data invariants 

• Solution: Strengthen consistency selectively
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• Databases with multiple consistency levels 

• Research: Explicit consistency, RedBlue 
consistency, Pileus 

• Commercial: Amazon DynamoDB, Basho Riak, 
Microsoft DocumentDB 

• Hard to figure out the minimum consistency 
necessary to maintain global invariants

Challenges in Data Availability

CISE model
• Generic model that expresses most existing consistency models 

• Each operation acquires a set of tokens 

• Conflict relation over tokens 

• Operations with conflicting tokens cannot run concurrently 

• First Proof Rule to check correctness of weakly consistent 
applications (Gotsman et al, POPL’16) 

• Assumes causality and commutativity of non-conflicting 
operations 

• Polynomial time analysis
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Not yet usable by 
programmers

Verification tools in industry 
• Full automation and integration 

• Scalability 

• Precision 

• Fast reporting 

- Calcagno et al, NFM’15, POPL’09 
INFER: static analysis tool integrated in Facebook’s 
software development process



What is missing for full 
automation?

• Spec synthesis 

• Invariant deduction 

• Pre/post conditions synthesis  

• Extensive research on the subject

Writing invariants is hard
• Static analysis techniques able to deduce 

invariants 

• Shape analysis deduce data structure invariants 

• Use of “good” applications traces to extract 
invariants 

• In the end some invariants will have to be written 
down by the programmer

Invariants templates

• Well-known invariants: 

• Relational database integrity constraints  

• Lower and upper bounds to data values 

• Consistency in 3D proposes other classes of 
invariants (Marc’s morning talk)
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• Sequential reasoning 
• no explicit concurrent 

access to data 

Inv
templates

Correct-by-design methodology
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IPA Analysis
• Transforms the application operations so that they 

become invariant-preserving by design. 

• Some invariants can be preserved by modifying the 
effects of operations. 

• Proposes an algorithm that is capable of 
generating those modifications. 

• Maintain the observable effects of each operation.
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Proposed methodology
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Conclusions
• Developing applications for weak consistency is hard. 

• CISE analysis allows the programmer to develop 
applications assuming initially a sequential setting. 

• Analysis detects what are the problematic operations if 
executed on geo-replicated setting. 

• Assumes casual order and commutativity for non-
coordinated operations. 

• Need to define a methodology and simple tools to help 
programmers building correct cloud applications.


