
Consistency made easy:
building correct-by-design

cloud applications
Carla Ferreira

Universidade NOVA de Lisboa

RainbowFS Workshop on Consistency in Distributed Storage Systems
3 May 2017, Paris

Context
• Internet services are at the core of modern

business and organizations.

• Costumers demand quality of service

2

DC1
High-latency for
remote replicas

Geo-replication
• Deploy multiple physical replicas of the service.

• Clients interact with the closest replica.

• Coordinate executions to ensure consistency

DC1

DC2

High-latency
between DCs

Challenges in Data Availability
• Difficult to ensure data invariants and availability at the same time.

• Strong consistency: coordinate execution across replicas.

• High-Latency, low availability.

• To ensure availability, cloud applications tend to trade strong
consistency for weaker models

• These weaker models do not ensure data invariants

• Solution: Strengthen consistency selectively

Challenges in Data Availability
• Difficult to ensure data invariants and availability at the same time.

• Strong consistency: coordinate execution across replicas.

• High-Latency, low availability.

• To ensure availability, cloud applications tend to trade strong
consistency for weaker models

• These weaker models do not ensure data invariants

• Solution: Strengthen consistency selectively

• Databases with multiple consistency levels

• Research: Explicit consistency, RedBlue
consistency, Pileus

• Commercial: Amazon DynamoDB, Basho Riak,
Microsoft DocumentDB

• Hard to figure out the minimum consistency
necessary to maintain global invariants

Challenges in Data Availability

CISE model
• Generic model that expresses most existing consistency models

• Each operation acquires a set of tokens

• Conflict relation over tokens

• Operations with conflicting tokens cannot run concurrently

• First Proof Rule to check correctness of weakly consistent
applications (Gotsman et al, POPL’16)

• Assumes causality and commutativity of non-conflicting
operations

• Polynomial time analysis

CISE model
• Generic model that expresses most existing consistency models

• Each operation acquires a set of tokens

• Conflict relation over tokens

• Operations with conflicting tokens cannot run concurrently

• First Proof Rule to check correctness of weakly consistent
applications (Gotsman et al, POPL’16)

• Assumes causality and commutativity of non-conflicting
operations

• Polynomial time analysis

Current CISE tools

state

op1
op2
…
 opn

Code

state
invariants

pre/post op1
pre/post op2
…
pre/post opn

Spec

Java, C, … Z3, Boogie

Programmer
writes

Current methodology

non-commutative ops

conflicting ops
Code

Spec
CISE

Analysis

Boogie

Current methodology

conflicting ops

non-commutative ops

violate invariants

break convergenceCode

Spec
CISE

Analysis

Boogie

Current methodology

Code

Spec
CISE

Analysis

Boogie

CRDTs
Library

conflicting ops

non-commutative ops

Current methodology

conflicting ops

non-commutative ops
Code

Spec

Coordination
CISE

Analysis

Boogie

Current methodology

Code

Spec

Coordination
CISE

Analysis

Boogie

Not yet usable by
programmers

Verification tools in industry
• Full automation and integration

• Scalability

• Precision

• Fast reporting

- Calcagno et al, NFM’15, POPL’09
INFER: static analysis tool integrated in Facebook’s
software development process

What is missing for full
automation?

• Spec synthesis

• Invariant deduction

• Pre/post conditions synthesis

• Extensive research on the subject

Writing invariants is hard
• Static analysis techniques able to deduce

invariants

• Shape analysis deduce data structure invariants

• Use of “good” applications traces to extract
invariants

• In the end some invariants will have to be written
down by the programmer

Invariants templates

• Well-known invariants:

• Relational database integrity constraints

• Lower and upper bounds to data values

• Consistency in 3D proposes other classes of
invariants (Marc’s morning talk)

Correct-by-design methodology

Code

Inv

Spec
synthesis

Inv
templates

Code

Inv

Spec
synthesis

CISE
analysis

Inv
templates

Correct-by-design methodology

Code

Inv

Spec
synthesis

Program
verifier

• Sequential reasoning
• no explicit concurrent

access to data

Inv
templates

Correct-by-design methodology

state

op1 =
 inst1; inst2; …
op2 =
 inst1; inst2; …

…

 opn =
 inst1; inst2; …

Code

Spec
synthesis

Verification frameworks provide mainstream language APIs

state
invariants
op1 =

pre: P1
post: Q1

op1 =
pre: P1
post: Q1

…
op1 =

pre: P1
post: Q1

Spec

state

op1 =
 inst1; inst2; …
op2 =
 inst1; inst2; …

…

 opn =
 inst1; inst2; …

Code
state
invariants
op1 =

pre: P1
post: Q1
transf(inst1; inst2; …)

op1 =
pre: P1
post: Q1
transf(inst1; inst2; …)

…
op1 =

pre: P1
post: Q1
transf(inst1; inst2; …)

Spec

Spec
synthesis

Verification frameworks provide mainstream language APIs

Program
verifier

non-commutative ops

conflicting ops

Code

Inv

Spec
synthesis

CISE
analysis

+
Program
verifier

CRDTs
LibraryCRDTs

Library

Inv
templates

Correct-by-design methodology

non-commutative ops

conflicting ops

Code

Inv

Spec
synthesis

CISE
analysis

+
Program
verifier

CRDTs
LibraryCRDTs

Library

IPA
analysis

Inv
templates

Correct-by-design methodology

IPA Analysis
• Transforms the application operations so that they

become invariant-preserving by design.

• Some invariants can be preserved by modifying the
effects of operations.

• Proposes an algorithm that is capable of
generating those modifications.

• Maintain the observable effects of each operation.

non-commutative ops

conflicting ops

Code

Inv

Spec
synthesis

CISE
+

IPA
+

Program
verifier

CRDTs
LibraryCRDTs

Library

Inv
templates

Correct-by-design methodology

Proposed methodology

Code

Inv

Spec
synthesis

CISE
+

IPA
+

Program
verifier

CRDTs
Library

Coordination✓

Inv
templates

Conclusions
• Developing applications for weak consistency is hard.

• CISE analysis allows the programmer to develop
applications assuming initially a sequential setting.

• Analysis detects what are the problematic operations if
executed on geo-replicated setting.

• Assumes casual order and commutativity for non-
coordinated operations.

• Need to define a methodology and simple tools to help
programmers building correct cloud applications.

