
Distributed transactional reads:
the strong, the quick, the fresh & the impossible∗

Alejandro Z. Tomsic
Sorbonne Université, Inria, LIP6, Paris

Manuel Bravo
IMDEA Software Institute, Madrid†

Marc Shapiro
Sorbonne Université, Inria, LIP6, Paris

18 September 2018

Abstract

This paper studies the costs and trade-offs of providing transactional
consistent reads in a distributed storage system. We identify the
following dimensions: read consistency, read delay (latency), and data
freshness. We show that there is a three-way trade-off between them,
which can be summarised as follows: (i) it is not possible to ensure
at the same time order-preserving (e.g., causally-consistent) or atomic
reads, Minimal Delay, and maximal freshness; thus, reading data that
is the most fresh without delay is possible only in a weakly-isolated
mode; (ii) to ensure atomic or order-preserving reads at Minimal Delay
imposes to read data from the past (not fresh); (iii) however, order-
preserving minimal-delay reads can be fresher than atomic; (iv) reading
atomic or order-preserving data at maximal freshness may block reads
or writes indefinitely. Our impossibility results hold independently of
other features of the database, such as update semantics (totally ordered
or not) or data model (structured or unstructured). Guided by these
results, we modify an existing protocol to ensure minimal-delay reads
(at the cost of freshness) under atomic-visibility and causally-consistent
semantics. Our experimental evaluation supports the theoretical results.

∗Preprint from 19th International Middleware Conference, 10–14 December 2018,
Rennes, France
†Work partially done as a student at Université Catholique de Louvain and Universidade

de Lisboa

1

http://2018.middleware-conference.org/
http://2018.middleware-conference.org/

Stable
Freshness

Concurrent
Freshness

Latest
Freshness

Committe
d

vis
ibilit

y
O-P

res
erv

ing

Visib
ilit

y

Atomic
Visib

ilit
y

Rea
d Is

olat
ion

Freshness

D
el

ay

M
in

im
a
l

D
e
la

y
B

o
u
n
d

e
d

D
e
la

y
U

n
b

o
u
n
d

e
d

(m

u
te

x)

Figure 1 The three-way trade-off. The boxed areas represent possible guarantee/
read delay/freshness combinations. Upwards and right is better performance;
guarantees are stronger from back to the front planes.

1 Introduction

This paper studies the costs of reading data in a distributed, transactional
storage system. In particular, we try to understand whether it is possible
to provide strong read guarantees while ensuring both fast performance and
fresh data. Intuitively, stronger guarantees will come with higher costs. A
recent paper from Facebook (whose performance is strongly read-dominated)
states:“stronger properties have the potential to improve user experience and
simplify application-level programming [. . . but] are provided through added
communication and heavier-weight state management mechanisms, increasing
latency [. . .] This may lead to a worse user experience, potentially resulting in
a net detriment” [8]. Is this wariness justified, i.e., is it inherently impossible
to combine fast reads with strong guarantees, or can the situation be improved
by better engineering? This paper provides a formal and operational study of
the costs and trade-offs. Our main finding is that there is a three-way trade-off
between read guarantees, read delay (and hence latency), and freshness, and
that some desirable combinations are impossible.

It is well known that non-serialisable models, such as Snapshot Isola-
tion [15] or Highly-Available Transactions [13], can improve availability and
performance. Therefore, in this paper, we do not necessarily assume that
updates are totally ordered.1 Furthermore, we allow weakening the read

1 Enforcing a total order of transactional updates enables Consistency under Partition

2

guarantees: in addition to Atomic Visibility, offered by classical transactional
models, we also consider (the weaker) Order-Preserving Visibility, enforced
by recent causally-consistent systems [37], and (the weakest) Committed
Visibility, offered by Read Committed isolation [11].

Finally, we consider the freshness dimension, because (as we show) de-
creasing the read delay sometimes forces to read a version of the data that is
not the most recent. Reading outdated data further incurs multi-version over-
head and, under strong consistency, increases aborts and reduces throughput
[42].

Figure 1 illustrates the three-way trade-off between the guarantees, delay,
and freshness of transactional reads. For instance, under Order-Preserving
and Atomic Visibility, it is possible to read with no extra delay (compared
to a non-transactional system), but then the freshest data is not accessible.
Transactions that access the freshest data with no extra delay are only
possible under Committed Visibility. However, we show that minimal-delay
Order-Preserving reads allow observing updates of concurrently-committed
transactions. As we will see in our evaluation section, this allows for a
significant freshness improvement over Atomic Visibility, which forces reading
data that was stable (written and acknowledged) before the transaction sends
its reads. If, on the other hand, the application requires the freshest data,
under either Atomic or Order-Preserving Visibility, this is possible only under
a protocol where reads and writes are mutually exclusive, e.g., a read might
be delayed (blocked, or in a retry loop) indefinitely by writes, or vice-versa.

This work includes the following contributions:

• A formal study of the trade-offs between the read guarantees, delay, and
freshness of transactional reads. We prove which desirable combinations
are possible and which are not.

• Guided by the results of our analysis, we modify an existing system that
exhibits delays and derive three novel minimal-delay protocols. Each
protocol trades freshness for isolation differently. AV provides Atomic
Visibility and Stable Freshness, OP provides Order-Preserving Visibility and
Concurrent Freshness, and CV Committed Visibility and Latest Freshness.
We provide detailed protocol design, including pseudo-code.

• An evaluation of these protocols to empirically validate our theoretical
results. In our measurements, we compare the introduced protocols to
the protocol from which they derive. Our minimal-delay protocols exhibit
similar latency. CV always observes the most recent data, whereas freshness
degrades negligibly for OP, and severely under AV.

(CP); but, conversely, Availability under Partition (AP) requires accepting concurrent
updates [45].

3

2 Model and Requirements

In a typical distributed application deployment, we are interested in the
database (data storage) tier. The database is distributed, i.e., data is parti-
tioned across many servers within a data centre. Each partition is possibly
replicated across several data centres. Clients, representing application logic,
access data by contacting the appropriate servers within the data centre. To
increase performance, a multi-read/multi-write interface enables the appli-
cation to access multiple database servers at once in parallel. multi-write
operations respectively.

2.1 Transactions

The application consists of transactions. A transaction consists of any number
of reads, followed by any number of writes, and terminated by an abort (writes
have no effect) or a commit (writes modify the store; in what follows, we
consider only committed transactions). The transaction groups together
low-level storage operations into a higher-level abstraction, with properties
that help developers reason about application behaviour.2 These are often
summarised as the ACID properties (Atomicity, Consistency, Isolation, and
Durability).

Atomicity ensures that, at any point in time, either all of a transaction’s
writes are in the store, or none of them is. This guarantee is essential for
ensuring some common data invariants, such as equality or complementarity
between two data items (e.g., the symmetry of the friendship or the like
relationship in a social network application [17]). They are also instrumental
to keep materialised views, e.g., when adding a friend to a friends list, by
updating a friends count instead of computing this count on reads [14].
Consistency is the requirement that each of the application’s transactions
individually transitions the database from a valid state to another valid
state. Durability means that later transactions will observe the effect of this
transaction after it commits. Isolation characterises non-interference between
concurrent transactions.

In the interest of performance and availability, we do not assume strong
consistency or isolation (e.g., serialisability). Specifically, neither writes nor
reads are necessarily totally ordered, and we consider several read guarantees.
Interestingly, our results are independent of the write model, e.g., totally
ordered or not. Atomicity and durability will be taken for granted in the rest
of this paper.

2 A model that does not support transactions is identical to one where each individual
read or write operation is wrapped in a transaction that commits immediately.

4

For simplicity we assume that a transaction reads a data item at most
once (and similarly for writes). The set of item states read by a transaction
is called its snapshot. Our study distinguishes some important properties of
a snapshot, explained in the next few sections: snapshot guarantees, delay,
and freshness.

2.2 Snapshot guarantees

Snapshot guarantees constrain the states of the data items that can be accessed
by a given snapshot. The stronger guarantees provide higher isolation, and
thus facilitate reasoning by the application developer. As we shall see,
the weaker ones enable better performance along the freshness and delay
metrics. We distinguish three levels, which will be defined formally later (in
Section 3.1): Committed, Order-Preserving, and Atomic Visibility.

At the weakest level, Committed Visibility, a snapshot may include
any updates that have been committed. As it sets no constraints between
items, it allows many anomalies. Committed Visibility is equivalent to the
read guarantees of Read Committed isolation [11].

Recently, systems have proposed causally-consistent-snapshot reads [37],
which strengthen Committed Visibility by ensuring there are no happens-
before-order [7] anomalies among the item states included in the snapshot.
We consider Order-Preserving Visibility, a generalisation of this property.
Order-Preserving Visibility ensures that the snapshot preserves some (partial
or total) order relation O. O might be the (partial) happens-before order, or
the total order of updates in the context of a strong isolation criterion such
as Serialisability or Snapshot Isolation [15, 16].

Order-Preserving Visibility ensures that transactions do not observe gaps
in a prescribed (partial or total) order relation. Consider, in a social network,
the data items photos and acl representing user Alice’s photo album and the
associated permissions. The set of their states (initially photos0 and acl0)
follows a given order →. Alice changes the permissions of her photo album
from public to private (new state acl1), then adds private photos to the album
(state photos2). Thus, acl0 → acl1 → photos2. Unlike Committed Visibility,
Order-Preserving Visibility disallows the situation where Bob would observe
the old permissions (acl0) along with the new photos (photos2), missing out
on the restricted permissions (acl1). This pattern, where the application
enforces a relation between two data items by issuing updates in a particular
order, is typical of security invariants [45]. It also helps to preserve referential
integrity (create an object before referring to it, and destroy references before
deleting the referenced object).

Atomic Visibility is the strongest. It is order-preserving, and addi-
tionally disallows the “read skew” [15] (also known as broken reads [14])

5

phenomenon: if the transaction reads some data item written by another
transaction, then it must observe all updates written by that transaction
(unless overwritten by a later transaction). In a system where atomic updates
ensure Alice is in Bob’s friends list if and only if Bob is in Alice’s, Atomic
Visibility ensures a transaction will observe both updates, or none. It also
ensures observing materialised views consistently [14]; for instance, observing
that the cardinality of a friends list updated atomically with a friends count
match.

Atomic Visibility is the read guarantee provided by Serialisability, Cur-
sor Stability and Repeatable Reads ANSI isolation [11], of every strongly-
consistent (totally-ordered) criteria (e.g., Parallel Snapshot Isolation [46],
Non-Monotonic Snapshot Isolation [42], Snapshot Isolation [15], Update Se-
rialisability [32], and Strict Serialisability [29]), and the weakly-consistent
Transactional Causal Consistency [9, 38], and Read Atomicity [14].

2.3 Delay

Perceived low latency keeps users engaged and directly affects revenue [26,
36, 43]. Furthermore, read latency is an important performance metric
for services that are heavily read-dominated, such as social networks. For
instance, serving a Facebook page requires several rounds, where each round
reads many items, and what is read in one round depends on the results of
the previous ones; this amounts to tens of rounds and thousands of items for
a single page [17]. For read-intensive applications, it is paramount to avoid
read delays [8]. Under existing systems, servers often delay a response to a
read request. Read delay scenarios include wating for a lock to be released,
for physical clocks to catch up, or for a protocol (such as Two-Phase Commit
[34]) to finish execution.

The fastest protocol exhibits Minimal Delay: distributed reads can
address multiple servers in parallel, and any one server always responds with
commited data immediately, i.e., in a single round-trip, without blocking or
coordinating with other servers. Intuitively, this design makes it difficult to
ensure strong snapshot guarantees. Examples include Linkedin’s Espresso
[41] and Facebook’s Tao [17]. We will consider Minimal-Delay as our baseline,
and will characterise protocols by estimating the added delay above this
baseline.

Bounded Delay means that parallel reads are not supported, that a
bounded number of retry round-trips may occur to read from a server, and/or
that a server may block for a bounded amount of time before replying to
a read request. An example is Eiger, which requires a maximum of three
round-trips to storage servers to read from a snapshot that preserves Atomic
Visibility under happens-before order [38].

6

Mutex reads/writes means that a read might be delayed indefinitely
by writes, or vice-versa, because the protocol disallows the same data item
from being read and written concurrently to ensure a given isolation property
(e.g., Google’s Spanner strictly-serialisable transactions [21]).

2.4 Freshness

Another important metric is how recent is the data returned by a read.
Users prefer recent data [3]; some strongly-consistent criteria (e.g., Strict
Serialisability) might require data to be the latest version; and in others (e.g.,
Snapshot Isolation) serving recent data makes aborts less likely and hence
improves overall throughput [40, 42]. Storing only the most recent version
of a data item enables update-in-place and avoids the operational costs of
managing multiple versions.

However, many protocols require maintaining multiple versions of a data
item to read consistently. Serving an old item state may be faster than
waiting for the newest one to become available; indeed, it would be easy for
reads to be both fast and consistent, by always returning the initial state.

Freshness is a qualitative measure of whether snapshots include recent
updates or not. The most aggressive is Latest Freshness, which guarantees
that, for every data item that a server stores, it returns the most recent
version that it has committed so far. Intuitively, systems like Espresso and
Tao [17, 41], which do not make snapshot guarantees, can read with minimal
delay under Latest Freshness.

The most conservative is Stable Freshness, under which, for any read
request in a given transaction, the server returns data taken from a snapshot
that is stable for that transaction, i.e., all versions included in the snapshot
are known to be committed by the time the transaction starts.

The intermediate Concurrent Freshness does not necessarily return
the latest version, but allows a transaction to read updates committed after
its starting point, i.e., not stable. For instance, a transaction TR can read
updates from a committed transaction TU that ran concurrently with TR.
COPS is a system that exhibits Concurrent Freshness [37].

2.5 Optimal reads

We say a protocol provides optimal reads if it ensures both Minimal Delay
and Latest Freshness. An optimal-read protocol is one that supports parallel
reads, and where a server is always able to reply to a read request immediately,
in a single round trip, with the latest committed version that it stores.

7

3 The three-way trade-off

In this section, we study the three-way trade-off between transactional reads
semantics, delay and freshness. In summary, our analysis concludes the
following:

(i) Impossibility of optimal order-preserving reads. Ensuring optimal reads
is not possible under Order-Preserving or Atomic Visibility (Section 3.2).

(ii) Order-Preserving Visibility with Minimal Delay and Concurrent Fresh-
ness. Order-Preserving Visibility can ensure Concurrent Freshness at
Minimal Delay (Section 3.3.2).

(iii) Atomic Visibility with Minimal Delay forces Stable Freshness. To ensure
Minimal Delay, Atomic Visibility forces transactions to read from a
stable snapshot, i.e., a snapshot consisting of updates known to have
committed in the past (Section 3.3.3).

(iv) Consistent reads with Latest Freshness. To guarantee reading the
freshest data, Order-Preserving and Atomic Visibilities require reads
and updates mutually exclusive (Section 3.4).

3.1 Notation and Definitions

Notation. A committed update transaction creates a new version of the
data items it updates. For some data item (or object) x ∈ X , where X
is the universe of object identifiers, we denote a version xv ∈ V , where V
denotes the universe of versions. We assume an initial state ⊥ consisting of a
initial version x⊥ for every x ∈ X . If versions follow a partial or total order
O = (V,≺), we say a version xi is more up-to-date (or fresher) than a version
yj when yj ≺ xi.

The database is partitioned, i.e., its state is divided into P ≥ 1 disjoint
subsets, where all the versions of a given object belong to the same partition.
Throughout the text, we use the terms partition, server and storage server
interchangeably.

Definitions. We define the three types of snapshots introduced in subsection
2.2 formally:

Definition 1 (Committed snapshot) A committed snapshot S is any sub-
set of V that includes exactly one version of every object x ∈ X . S denotes
the set of all committed snapshots.

Definition 2 (Order-Preserving Snapshot) Given a partial or total or-
der of versions O = (V,≺), a committed snapshot SO ∈ S preserves O if
∀xi, yj ∈ SO, @xk ∈ V such that xi ≺ xk ≺ yj. Intuitively, there is no gap
in the order of versions visible in an order-preserving snapshot. We denote
SO ⊆ S the set of committed snapshots preserving order O.

8

px

py

pz
atomicxi≺yj,zk

xi

yj

zk
T T’

x⊥

y⊥

z⊥

committed
order and atomicity
violations possible

order-preserving
(atomicity
violation)

atomic
(no violations)

Figure 2 The three snapshot guarantees

Definition 3 (Atomic Snapshot) Given an order O, an order-preserving
snapshot SA ∈ SO is atomic if ∀xi, yj ∈ V such that xi, yj were written by
the same transaction, if xi, yk ∈ SA then yk ⊀ yj, i.e., it disallows “broken
reads”. We denote SA the set of atomic snapshots for order O, SA ⊆ SO.
Definition 4 (Snapshot guarantee) Given some order O, we say that a
read protocol guarantees Committed (, Order-Preserving or Atomic) Visibility
if it guarantees that every transaction reads from a Committed (, Order-
Preserving, or Atomic, respectively) snapshot.

We illustrate the three types of snapshots in Figure 2. The figure shows
a system consisting of three partitions, px, py, and pz, each storing a single
object x, y, and z, in an initial state x⊥, y⊥, z⊥, respectively. Two transactions
T and T ′ have committed updates in order x⊥, y⊥, z⊥ ≺ xi ≺ yj , zk. T
updates only partition px, whereas T ′ updates py and pz atomically. The figure
highlights three possible snapshots. Under Atomic Visibility, only the atomic
snapshot is admissible, precluding both order violation (both T and T ′’s
updates are included) and read skew (as both yj and zk are included). Under
Order-Preserving Visibility, the atomic and the order-preserving snapshots
are both admissible. The latter precludes order violations, but not read skews
(e.g., the snapshot includes yj from transaction T ′, and not zk). Finally, under
Committed Visibility, all three depicted snapshots are admissible because
order violations and read skews are allowed. The snapshot at the left of the
picture exhibits two anomalies: an order violation, and a read skew. The
order violation occurs by reading x⊥ and yj , as x⊥ ≺ xi ≺ yj , and xi is
not read. The read skew occurs by reading z⊥ and yj , as yj was created
atomically with zk, which is not read.

3.2 Impossibility of optimal order-preserving reads

Proposition 1 Order-Preserving (or Atomic) reads cannot ensure optimal
(delay and freshness).

9

Proof. We prove this proposition by contradiction. Assume that there
exists a read-optimal protocol that guarantees Order-Preserving (or Atomic)
Visibility, w.r.t. order O = (V,≺). Consider the execution in Figure 3a where,
initially, partition px stores x⊥ and py stores y⊥. Two transactions Tu and
Tu′ write xk at px and yj at py respectively, establishing the following order:
x⊥, y⊥ ≺ xk ≺ yj . For instance, under causal order, this can result from an
execution where a transaction reads x⊥, and updates x, creating xk, and
later another transaction reads xk and updates y, creating yj . A Tr, running
concurrently with Tu and Tu′ , reads objects x and y in parallel from px and
py. Tr reaches px before the creation of xk, and py after the creation of
yj . To satisfy read optimality, partitions must reply immediately with the
latest version they store, namely x⊥ and yj , observing an order violation3 .
Contradiction. �

3.3 Freshness compatible with Minimal Delay

In this subsection we explore which are the maximum freshness degrees
achievable for each snapshot guarantee, under the requirement of Minimal
Delay.

3.3.1 Optimal reads under Committed Visibility

Proposition 2 A read protocol that guarantees Committed Visibility can be
optimal.

Proof. Committed Visibility imposes no restrictions to the committed versions
a transaction can read. Therefore, to serve a request under this model, a
partition can reply immediately with the latest object version it stores. �

3.3.2 Order-Preserving Visibility and Concurrent Freshness

Proposition 3 Order-preserving minimal-delay reads can ensure Concurrent
Freshness.

We prove this proposition by sketching a read protocol with such charac-
teristics, followed by a correctness proof. In Section 4, we present a protocol
with these characteristics.

Consider a protocol that orders its updates following some order O =
(V,≺), and where reads preserve O. When a read transaction starts, the
protocol assigns it an O-preserving stable snapshot SO (subsection 2.4). Read
requests are sent to their corresponding partition in parallel. A partition can

3 A similar situation occurs with the execution of Figure 3b, where reading x⊥ and yj
results in a read skew.

10

px

py

Tu Tu’

Tr

xk

yj

x0

y0

≺
(a) Ordered updates

px

py

Tu

Tr

xk

yj

x0

y0

(b) Atomic updates
Figure 3 Concurrent distributed read and update transactions

reply immediately with the version in SO or with a more up-to-date version
that is compatible with SO. An object version yj is compatible with a given
order-preserving snapshot SO if replacing version ys ∈ SO by yj results in an
order-preserving snapshot. Formally:

Definition 5 (Compatible version) Given an order O = (V,≺), a ver-
sion yj ∈ V and an order-preserving snapshot SO, an object version yj /∈ SO

is compatible with SO, if ∀xi ∈ SO, @xk ∈ V such that xi ≺ xk ≺ yj.

Lemma 1 Given an order-preserving snapshot SO, replacing any number of
versions xo ∈ SO by xi /∈ SO, such that xi is compatible with SO, results in
an order-preserving snapshot SO′ .

Proof. Assume by contradiction that the resulting snapshot SO′ is not order-
preserving w.r.t. order O = (V,≺). According to Definition 2, this implies
that ∃xi, yj ∈ SO′ , xk ∈ V : xi ≺ xk ≺ yj . Since SO is order-preserving, if
the versions returned by read partitions were those in SO, i.e., xo and yo, no
inconsistency could have been created. Now consider the case where only
one compatible version with SO, e.g., yj , is more up-to-date than yo ∈ SO

(yo ≺ yj). By Definition 5, @xk ∈ V : xo ≺ xk ≺ yj . Finally, assume that
both xi, yj /∈ SO are more up-to-date compatible versions of objects x and y.
As they are compatible with SO, by Definition 5, (i)@xk : xo ≺ xk ≺ yj and
@yl : yo ≺ yl ≺ xi. Moreover, we know that (ii)xo ≺ xi and yo ≺ yj . (i) and
(ii) imply yj ⊀ xi and xi ⊀ yj . Therefore, there cannot exist xk : xi ≺ xk ≺ yj .
Contradiction. �

Lemma 2 The above protocol guarantees Order-Preserving Visibility.

Proof. This follows directly from Lemma 1. �

Lemma 3 The above protocol allows Concurrent Freshness.

Proof. We prove this lemma by describing a sample execution. Assume
transaction Tr starts with stable snapshot S = {xo, yo}. Tr sends a read
request for objects x and y to partitions px and py respectively. Concurrently,
update transactions create versions xu and yv establishing the following order
between them: xo, yo ≺ xu ≺ yv. Tr’s request arrives to px after xu and yv
are committed. By Definition 5, px can reply with xu, a more up-to-date
version. However, py can only reply with yo, as yv is not compatible with S

11

(∃xu ∈ V : xo(∈ S) ≺ xu ≺ yv). As xu is committed by an update transaction
concurrent to Tr, this execution exhibits Concurrent Freshness. �

Lemma 4 The above protocol guarantees minimal delays

Proof. The protocol reads versions in parallel. In the absence of fresher
committed updates than those in SO, a partition can reply immediately with
versions belonging to SO, which is stable and, therefore, already committed.
In the presence of fresher and compatible committed updates, a partition can
reply to a request with those, immediately. �

Proof of Proposition 3. This follows directly from Lemmas 1, 4, 2 and 3. �

3.3.3 Stable Freshness under Minimal-delay Atomic Visibility

Proposition 4 A minimal-delay read protocol that guarantees Atomic Visi-
bility requires Stable Freshness.

The intuition is that, due to the minimal-delay requirement, a partition
receiving a read request from a transaction Tr cannot know whether other
partitions accessed by Tr are returning updates of a concurrent update
transaction Tu or not, which forces it to read from a stable snapshot to avoid
Read Skews.

Proof. Assume by contradiction that there exists a minimal-delay protocol
that guarantees Atomic Visibility and allows a transaction to read updates
committed by other concurrent transactions (Concurrent Freshness). Consider
the example execution in Figure 3b. A transaction Tr sends parallel requests
to read objects x and y from partitions px and py respectively. A concurrent
transaction Tu commits versions xk and yj . Assume that Tr’s request reaches
py after Tu commits. By Definition 3, py can return yj only if it is certain
that Tr will read xk from px. Due to the minimal-delay requirements, px does
not have access to such information, since reads can be executed in parallel
and no extra communication among partitions is allowed. Given that Tr can
reach px before Tu commits xk, py cannot risk returning yj , and must ignore
Tu. Therefore, a partition can only return a version of an update transaction
Tu if it knows Tu had committed at all its updated partitions by the time Tr

sent its read requests. This implies that Tr has to read from stable snapshot,
which contradicts our assumptions. �

3.4 What is possible under Latest Freshness?

Proposition 5 Order-Preserving (and Atomic) Visibility require mutually-
exclusive reads and updates to guarantee Latest Freshness.

12

Lemma 5 It is not possible to guarantee Order-Preserving or Atomic Visi-
bility with Latest Freshness under Bounded Delay.

Proof. Consider again the sample execution of Figure 3a (where x⊥, y⊥ ≺
xk ≺ yj). To ensure Latest Freshness, partitions must reply to read requests
with the latest committed version they store. If px returned x⊥ and py
returned yj , Tr would observe an inconsistent result (by missing xk). The
protocol could retry reading from px to read xk, thus ensuring reading a
version compatible with yj . If such request arrived to px before Tu created xk,
px could block until xk was applied to read it. During the blocking period,
a concurrent update transaction may have written a new version xm such
that yj ≺ yw ≺ xm. To satisfy Latest Freshness, px would be forced to reply
with xm, inconsistent with the version read from py: yj . If updates are not
stopped, this situation can repeat itself indefinitely, making reading with
Bounded Delay impossible. �

Lemma 6 A read protocol can ensure Order-Preserving (and Atomic) Visi-
bility and Latest Freshness by enforcing mutually-exclusive reads and updates.

Proof. We prove this is possible by following the proof of Lemma 5. In the
execution of Figure 3a, Tr can retry indefinitely reading the latest versions
of x and y until the results belong to an order-preserving snapshot. The
equivalent holds for building an atomic snapshot under the execution of
Figure 3b. �

Proof of Proposition 5. This follows directly from Proposition 1, and Lemmas 6
and 5.

3.5 Isolated reads with Bounded Delay and Concurrent Fresh-
ness.

Lemma 7 A read protocol can ensure Order-Preserving (and Atomic) Visi-
bility and Concurrent Freshness under Bounded Delay.

Proof. Consider again the execution in Figure 3a where read transaction
Tr executes concurrently with update transactions Tu and Tu′ . If px returns
x⊥ and py returns yj , it is possible to issue a second round to force px to
return xk, which would ensure Order-Preserving Visibility and Concurrent
Freshness. The same holds for ensuring Atomic Visibility in the example
execution in Figure 3b. �

Many existing systems exhibit these properties (see Section 6).

13

4 Minimal-delay protocol design

In this section, we apply our trade-off analysis to the design of protocols.
We design three novel minimal-delay protocols, called CV, OP and AV. Our
protocols are a modification of Cure [9]. Cure ensures Transactional Causal
Consistency (TCC), i.e., Causal Consistency (where updates follow causal
order) and snapshot reads ensure Atomic Visibility. It exhibits Bounded
Delays and Concurrent Freshness. We use the insights of the analysis: to
remove the delays of Cure one must degrade either read semantics or freshness.
AV provides the same isolation guarantees as the base protocol. It achieves
Minimal Delay by degrading freshness to stable. OP is the first protocol
to provide causally-consistent snapshot reads (Order-Preserving Visibility)
and atomic updates. It exhibits Concurrent Freshness. CV ensures Read
Committed Isolation, i.e., Committed Visibility and atomic updates. It
achieves Latest Freshness.

4.1 Base protocol and changes

Cure associates a snapshot timestamp to a transaction when it starts. When
committing updates, a transaction creates object versions which are stored
with a commit timestamp. Timestamps are vector clocks sized with the
number of sites. Each position in a vector is assigned by the protocol using
the physical clocks of servers.

Updates. The protocol can be characterised as Deferred Update Replication
(DUR), i.e., a transaction buffers updates while executing and sends them
to storage servers when committing [44]. A 2PC ensures that the updates
of a transaction are applied in an all-or-nothing fashion, and that commit
timestamps respect causal order. I.e., that a transaction’s commit timestamp
is bigger than that of the object versions the transaction read.

Reads. When reading, a transaction sends a read request to a partition
including its snapshot timestamp. A partition receiving a request must
reply with the version with the maximum commit timestamp smaller than
the snapshot timestamp of the request. In Cure, the snapshot timestamp
associated to transactions is not necessarily stable. A partition that receives a
read request must delay a response when (i) an instance of 2PC is committing
a transaction wich needs to be included in the snapshot, and/or (ii) the clock
at the partition is behind the snapshot timestamp.

Changes. Our protocols remove the blokcing situations of Cure by applying
the following modifications:

• AV degrades freshness. Specifically, it ensures that the snapshot assigned
to a transaction is stable.

14

• OP degrades visibility to Order-Preserving. Given an initial stable snapshot,
a partition is allowed to return a more up-to-date compatible version
(Definition 5).

• CV degrades read guarantees to Committed Visibility, allowing a partition
to return the latest committed version.

To minimise delays of update transactions, all protocols implement a low-
latency 2PC protocol, called presumed commit [35]. Under this optimisation,
a transaction is considered to be committed after a successful prepare phase,
i.e., after every involved partition has persisted a prepare record including its
updates. A client can, then, receive a response after a single round-trip of
communication with updated partitions.

4.2 Protocols

Setting and notation. All designs consider M fully-replicated sites. Every
site partitions data into N partitions. All sites follow the same partitioning
scheme, i.e., for each partition pmn , n = 1...N at a given site m, there exists a
partition pkn storing the same objects at every other site k : k = 1...M, k 6= m.
Updates are replicated across sites asynchronously. We refer to partitions
storing the same set of objects at different sites as sibling partitions. Each
transaction executes entirely within a site.

API. The data access APIs are multi reads and multi updates. A client can
group any number of read or update operations respectively, and execute
them against the storage servers in parallel. A transaction comprises any
number of such multi-operations.

All algorithms share a general skeleton. In what follows, we look at their
points in common. In Section 4.3, we address each algorithm’s particularities.
There are two types of processes involved in a transaction’s execution: a
transaction coordinator (TC), and the partition servers.

4.2.1 Transaction Coordinator Algorithm

The server that receives a new transaction starts a new TC process. The TC
lives throughout the execution of the transaction and terminates once the
transaction commits or aborts.

Init. A TC initialises (Algorithm 1, Lines 30-35) on a client’s first read
or update request. It initialises the write set for the transaction WST ,
the associated snapshot ssT , the transaction’s commit time ctT , and the
dependency vector clock depT (used for creating a causal order of updates).

Reads. When receiving a read request for a list of object keys (Line 1), the
TC splits them by partition by calling the GET_PARTS function (Line 4)

15

Algorithm 1 Transaction Coordinator tc at site n
1: function read_objects(keys)
2: If (!initiated) init()
3: result = ∅
4: read_partitionsT=GET_PARTS(keys)
5: for all 〈p, keysp 〉 ∈ partitionsT do
6: send 〈read, keysp, ssT 〉 to p
7: for all 〈p, keysp 〉 ∈ partitionsT do
8: receive 〈partition_result〉 from p
9: result = result ∪ {partition_result}
10: If (protocol == OP)
11: commit_vc=maxv(v.commit_vc ∈ result)
12: depT=maxv(depT , commit_vc)
13: return result.values
14: function update_objects([〈key, update〉])
15: If (!initiated) then init()
16: WST = WST ∪ {[〈key, update〉]}
17: return ok
18: function commit()
19: ctT=depT [n] +1
20: updated_partitionsT = GET_PARTS(WST .keys)
21: for all 〈p, updatesp 〉 ∈ updated_partitionsT do
22: send 〈prepare, updatesp, depT , ctT 〉 to p
23: for all 〈p, keysp 〉 ∈ updated_partitionsT do
24: receive 〈prepared, timep〉 from p
25: If (protocol 6= CV) then ctT=max(ctT , timep)
26: send ok to client
27: for all 〈p, updatesp 〉 ∈ updated_partitionsT do
28: send 〈commit, ctT 〉 to p
29: terminate()

30: function init()
31: WST=∅
32: If (protocol == OP or AV)
33: ctT = ⊥
34: depT = ssT = get_stable_vector()
35: initiated = true

16

and sends a read request to each partition in parallel (Line 6). Once it
receives all responses (Line 7), it returns the read values to the client.

Updates and commit. When a client submits an update, the transaction
coordinator buffers it (Line 16) in its write set. If the transaction updates the
same data item multiple times, they are applied (by the commit protocol) in
the order they are submitted. This is useful when updating data structures
such as counters, sets, lists, etc. When the client calls commit (Line 18), if
the transaction updated multiple partitions, the TC starts an instance of the
2PC protocol among the updated partitions (Lines 21-28). In the prepare
phase, the TC sends, in parallel, a prepare message containing partition’s
updates to each updated partition (Line 22). The participants reply with a
prepare time, a proposed commit timestamp for the transaction. Once it has
received the response from every participant, the TC i) computes the commit
time of the transaction as the maximum proposed prepare time, ii) replies
to the client confirming that the transaction has committed, and iii) sends
the commit instruction, including the commit timestamp, to all participants.
If the transaction updated a single partition, we collapse the prepare and
commit messages. This optimisation is not depicted in the pseudocode. An
abort will occur only if requested by the client, or in case of a failure. The
abort path discards the transaction updates. The protocol, identical to that
of presumed commit [35], is not depicted in the pseudocode.

4.2.2 Partition Servers Algorithm

A partition server stores versions of the objects in its partition and replies to
requests from transaction coordinators that access those objects.

Reads. When a partition receives a read request from a TC, it replies
with the most up-to-date version of each requested object that satisfies the
algorithms’ visibility criteria (Lines 17-20).

Updates and commit. A partition server participates in instances of 2PC
coordinated by some TC. In the first phase, the partition server receives a
prepare message containing updates (Line 7). It persists those updates to
stable storage (not depicted in the pseudocode), and replies with a prepared
message; a positive vote to commit the transaction. At this stage, these
updates are persisted but not accessible by other transactions, as the transac-
tion has not yet committed. Later, if the partition server receives a commit
message (Line 13), it makes updates visible to future readers.

Update propagation. Under replication, a partition server propagates
committed updates asynchronously to sibling partitions at remote sites.
When a partition receives a remote transaction’s updates, it applies them
locally and makes them available to future read operations. CV makes

17

Algorithm 2 Partition m at site n pnm
1: upon receive 〈read, keys,ssT 〉 from tc
2: result=∅
3: for all k ∈ keys do
4: v= newest ki ∈ ver[k] : cond(ki, ssT)
5: result = result ∪ {v}
6: send 〈result〉 to tc

7: upon receive 〈prepare, upd, depT , ctT 〉 from tc
8: If (protocol 6= CV)
9: time = MAX(read_clock(), ctT)
10: prepared = prepared ∪ 〈tc, upd, depT , time〉
11: Else prepared = prepared ∪ 〈tc, upd〉
12: send 〈prepared, time〉 to tc

13: upon receive 〈commit, ctT 〉 from tc
14: prepared = prepared \〈tc, upd, depT , time〉
15: update_versions(〈upd, depT , ctT , n〉)
16: to_send=to_send ∪ {〈upd, depT , ct〉}

17: function cond(ki, depT)
18: If (protocol==CV) then return true
19: If (protocol==OP) then return ki.dep ≤ depT
20: Else return ki.cv ≤ depT

21: function update_versions(upd, depT , ct, n)
22: for all 〈k,val〉 in upd do
23: If (protocol = CV) then ver[k] = {val}
24: Else ver[k] = ver[k]∪ {〈val, depT , ct, n〉}

18

updates visible as they arrive. The stabilisation protocol run by AV and
OP ensures a remote update is made visible to readers respecting causal
consistency, as explained in the next section.

4.3 Correctness

We discuss here the differences between the three protocols and focus on their
correctness.

Consistent Reads. OP and AV provide across-object isolation. When a
TC executes the first read (or update), it assigns the transaction a snapshot
timestamp ssT , which is used as a pivot to compute versions consistent with
the target isolation level. ssT is assigned the partition’s stable vector SV m

n ,
which denotes the latest stable snapshot known by the partition where the
TC runs (Line 34). In Section 4.4, we describe how each partition maintains
this vector.

A TC includes ssT in each read request it sends to partition servers
(Line 6). When a server receives a request, it responds with the most up-
to-date version that complies with the requested snapshot, according to a
COND function parametrised by protocol:

• Under CV, COND returns the latest committed version.

• Under AV, COND ensures that versions do not violate an atomic snapshot
that preserves causal order. COND returns the newest version with
a commit vector smaller than ssT (Alg. 2, Line 20). It ensures causal
consistency, since the snapshot is stable, i.e., all updates with cv ≤ ssT
have been applied. It satisfies Minimal Delay, as partitions can reply
immediately. It also guarantees Atomic Visibility (the absence of fractured
reads) because all updates of a given transaction commit with the same
commit timestamp (as explained later in this section).

• Under OP, COND ensures that versions belong to a causal-order-preserving
snapshot. A partition server returns either the version belonging to the
stable snapshot ssT , as above, or with a more up-to-date version compatible
with ssT , if available (see Definition 5). A version is compatible if its
associated dependency vector is not larger than ssT (Alg. 2, Line 19).

AV and OP provide causal consistency, which ensures all session guaran-
tees [48]. We explain how these are ensured in Appendix A.

Causal order of updates. OP and AV ensure updates are causally ordered.
A transaction creates an object version with a commit timestamp, and a
dependency vector dep. dep indicates a version is ordered causally after all
versions with commit vector cv ≤ dep. A commit vector cv is created by
replacing, in dep, the entry of the site where the version was committed by its

19

Algorithm 3 Stabilisation for AV and OP at pnm
1: periodically
2: If (prepared 6= ∅)
3: stablen = min(time ∈ prepared) - 1
4: Else stablen = read_clock()
5: vecp[n] = stablen
6: send 〈stable, vecp〉 to pn

k , ∀k ∈ P, k 6= m
7: If (to_send 6= ∅)
8: for all 〈updp, dep, ct〉 ∈ to_send : ct ≤ stablen do
9: send 〈updates, updp, dep, ct〉 to pj

mj 6= n

10: Else send 〈heartbeat, stablen〉 to pj
m, j 6= n

11: upon receive 〈stable, vecp〉 from all pn
k , k 6= m

12: SV n
m=minv(vecp), # ∀pjm

13: upon receive 〈updates,updates, dep, ct〉 from pjm

14: update_versions(updates, dep, ct, n)
15: vecp[j] = ct
16: # update known committed transactions from site j

17: upon receive 〈heartbeat,stablej〉 from pjm

18: vecp[j] = stablej
19: # update stable time from site j

commit timestamp ct. To establish a correct causal order, these algorithms
must ensure a version’s cv is larger than its dep. The transaction coordinator
ensures this by picking a ct which is larger than the transaction dependencies
(in Alg. 1, Line 19). To ensure that dep is larger than the cv of its predecessors:

• Under OP, a transaction may read a version with cv larger than ssT . After
receiving a read response, the TC updates the transaction’s dependency
vector depT to the maximum cv of a version read (Alg. 1, Line 12).

• AV’s read algorithm ensures that a transaction will never read a version with
cv larger than ssT . Therefore, it suffices to assign ssT to the transaction’s
dependency vector depT (Alg. 1, Line 34).

As Cure, OP and AV ensure that every update of a transaction is assigned
the same cv by choosing a transaction’s ct as the maximum proposed time
by an updated partition (Alg. 1, Line 25). This is used by AV’s read protocol
to ensure Atomic Visibility.

4.4 Stabilisation protocol

Under OP and AV, a transaction uses the knowledge of a stable snapshot to
read consistently and with Minimal Delay. A stabilisation protocol among all
partitions in the system computes stable snapshots at each site periodically.
Algorithm 3 describes this protocol. It includes the following steps:

20

1. When a partition server commits a transaction, it adds the transaction’s
updates to to_send, the list of updates to be sent to sibling partitions at
remote sites (Alg. 2, Line 16).

2. Periodically, updates in to_send are propagated to sibling partitions
(Line 9). A partition sends updates in commit timestamp (ct) order.
A prepared transaction can commit with ct bigger than the prepared
time proposed by the partition. A local stable time stablen is set to be
smaller than the minimum prepared time of the transactions prepared
at the partition server (Line 3). To ensure updates are sent in ct order,
only updates with ct ≤ stablen are sent to sibling partitions (Line 8). If
to_send is empty, the partition sends a heartbeat message (Line 10).

3. Each partition server maintains a vector vecp with an entry per site.
An entry j indicates that partition p of site i has delivered locally all
updates with commit time ct ≤ vecp[j] from its sibling partition at site
j. The local entry of the vector is set to stablen, as the ct of prepared
transactions is not defined.

4. Periodically, each partition server sends its vecp to the other partition
servers of its site (Line 6).

5. each partition pnm computes SV n
m, the latest stable snapshot known by

pnm, as the minimum of all vecp received (Line 12).

This protocol ensures that the snapshot is stable since (i) no local
partition will commit a transaction with commit time smaller than vecp[i],
and (ii) no remote update will be received from a remote site j with commit
time smaller than vecp[j].

5 Evaluation

We empirically explore how the results of the three-way trade-off in Section 3
affect real workloads. We evaluate Cure and the three minimal-delay protocols
presented in Section 4: CV, OP and AV.

5.1 Implementation

All protocols were built on the Antidote database [4], an open-source platform
built using the Erlang programming language. Antidote uses the Riak-core
distributed hash table (DHT) to partition the key-space evenly across physical
servers [47]. Object versions are stored in a per-partition in-memory key-value
store. During the evaluation, updates were not persisted to durable storage.

Under OP, AV and Cure, a linked list of recent updates is stored for each
key. Old versions are garbage collected by a naive mechanism that truncates
version lists that contain more than 50 versions, keeping the latest 20.

21

5.2 Setup

Hardware. All experiments were run on a cluster located in Rennes, France,
on the Grid5000 [31] experimental platform using fully-dedicated servers,
where each server consists of 2 CPUs Intel Xeon E5-2630 v3, with 8 cores/CPU,
128GB RAM, and two 558GB hard drives. Nodes are connected through
shared 10Gbps switches. The ping latency measured within the cluster during
the experiment was approximately 0.15 ms.

Configuration. Within the cluster, we configured two logical sites consisting
of 16 machines each. Each site is comprised of 512 logical partitions, scattered
evenly across the physical machines. Nodes within the same DC communicate
using the distributed message passing framework of Erlang/OTP running
over TCP. Connections across separate DCs use ZeroMQ sockets [5], also over
TCP, where each node connects to all other nodes to avoid any centralisation
bottleneck. The stabilisation protocol is run every 10ms for OP, AV, and
Cure. This value has a negligible impact in throughput and freshness, as
noted as well in other systems with similar stabilisation mechanisms [9, 28].

Workload generation. The data set used in the experiments consists of
100k keys per server, totalling 1.6 million keys. Objects are registers with the
last-writer wins (LWW) policy [33], where updates generate random 100-byte
binary values. All objects were replicated at all sites. A custom version
of Basho Bench is used to generate the workload [1]. Google’s Protocol
Buffer interface is used to serialise messages between Basho Bench clients
and Antidote servers [18]. To avoid across-machine latencies, two instances
of Basho Bench run at each server, which issue requests to the Antidote
instance running on it. Each run of the benchmark was run for two minutes,
the first minute being used as a warm-up period. A variable number of clients
repeatedly run read-only and update transactions. We run first instances
with high update rate and number of clients. This rapidly populates the store
up-to a point where memory utilisation remains constant due to garbage
collection, and response times stabilise. Operations within a transaction
select their keys using a power-law distribution, where 80% of the operations
are directed to 20% of the keys.

5.3 Experiments

We expect to observe a similar latency response for all minimal-delay protocols,
and a slight degradation for Cure, which may block for a small amount of
time under clock skew or due to reading concurrent updates. We expect to
observe lower latency for CV, as it does not incur the overheads of multi-
versioning. Moreover, we expect to observe Order-Preserving visibility to
exhibit significantly better freshness than Cure and AV, which implement

22

Atomic Visibility. We run each experiment in two configurations: the cluster
configured as a single DC, or logical split into two DCs. We observed very
similar results under both configurations. In what follows, we only present
the results of the latter.

Workloads. We run experiments under two workloads which run different
read-only transactions. Under the first workload, a read-only transaction
reads a number of objects in parallel, in a single round, i.e., in a single call. In
the second workload, we try to mimic Facebook’s multi-read operations, by
issuing read-only transactions that make many calls, each reading a number
of objects in parallel. Under both workloads, each client repeatedly executes a
read-only transaction followed by an update transaction in a closed-loop (zero
think time). An update transaction performs blind updates over a subset of
the objects read by the previous transaction. Under every evaluated protocol,
this is equivalent to running a single transaction that executes reads followed
by updates. We use the separation to simplify the latency measurement of a
transaction’s read phase.

We vary the number of client threads and measure how latency, and
freshness change as load is added to the system. Throughput is measured in
operations per second, where each operation is a read or write in a transaction.
We measure staleness as follows. When a partition server receives a read
request, it logs asynchronously the number of versions needed to skip to
guarantee the required isolation property. For Cure, it also logs the cases
where it has to wait due to clock skew or for other transactions to commit.
We process these logs offline.

Single-shot read-only transactions. A single-round transaction performs 100
reads in parallel. Update transactions perform two, 10 or 100 updates,
generating an update rate of approximately 2, 9 and 50% respectively.

Multi-shot read-only transactions. The multi-round experiment mimics the
Facebook social network, where a transaction reads thousands of objects in
tens to dozens of rounds, and updates represent 0.2% of the workload [17].
In this workload, a read-only transaction executes 10 rounds of 100 parallel
reads each (totalling 1000 reads). An update transaction performs two, 100
or 1000 updates, generating an update rate of approximately 0.2, 9 and 50%
respectively.

5.3.1 Throughput results.

Due to space limitations, we do not include throughput figures. We explain
briefly the behaviour we observed during both experiments. Graphs and a
detailed explanation can be found in an extended version of this work [49].

23

CV exhibits the highest throughput. The other protocols must manage
multiple versions; since CV only requires the most recent version, it does
not have this overhead. All other protocols exhibit throughput similar to
one another throughout the evaluation space. The difference in throughput,
between CV and the other protocols, is negligible for workloads with a low
rate of updates. It grows to 15% for a workload with ≈10% of updates, and
to 35% for 50% of updates. Under Cure, AV and OP, a higher proportion of
updates increases (i) the frequency of garbage collection, and (ii) the number
of updates running concurrently with a read operation. The latter increases
the overhead of traversing version lists to find a version that satisfies a given
snapshot.

5.3.2 Single-shot read-only transactions

In this section, we present the results of latency and freshness of the first
experiment.

Latency. Figures 4a, 4b and 4c show the latency of single-shot read-only
transactions. All protocols exhibit a similar trend: increasing the offered load
increases latency. CV, AV and OP exhibit minimal delays and, therefore,
exhibit very similar latency. CV does not incur the overhead for searching for
a compatible version, and has slightly lower latency than OP and AV. Cure
exhibits delays. For low update rates, Figures 4a and 4b show that, under
small number of client threads, Cure exhibits extra (up to 1.9X) latency
due to clock skew between servers. At high update rate (Figure 4c), read
operations in Cure wait for update transactions to commit frequently. This
causes the latency gap between this protocol and the remaining ones when
the number of client threads is large. In Appendix B, we analyse these effects
in more depth.

Freshness. Figures 4d, 4e and 4f show the freshness response as the
number of client threads increases, for different update rates. Plots display
the percentage of read operations that returned the most up-to-date version
available at the contacted server. CV is not present in the figures as it always
returns the latest version. Figures 4g, 4h and 4i display a CDF showing
how stale a read version is under 480 client threads for each update rate. We
observe that:

• OP outperforms the other protocols under all workloads. Its freshness
response remains nearly constant: over 99.8% of reads observe the latest
version under all configurations. This shows that Concurrent Freshness
allows this protocol to behave nearly optimally.

• Under the 2%-writes workload (Figure 4d), OP exhibits, 0.2% of stale
reads in the worst case, while Cure 2% (10X), and AV 3% (15X). Figure
4g shows how fresh reads were under 480 client threads. All protocols

24

160 320 480 640
Number of client threads

0

5

10

15

20

25

L
a
te
n
c
y
[m

s
]

(a) latency w:2

160 320 480 640
Number of client threads

0

5

10

15

20

25

L
a
te
n
c
y
[m

s
]

(b) latency w:10

160 320 480 640
Number of client threads

0

5

10

15

20

25

L
a
te
n
c
y
[m

s
]

(c) latency w:100

160 320 480 640

Number of client threads

0
10
20
30
40
50
60
70
80
90
100

F
re
s
h
re
a
d
s
[%

]

(d) freshness w:2

160 320 480 640

Number of client threads

0
10
20
30
40
50
60
70
80
90
100

F
re
s
h
re
a
d
s
[%

]

(e) freshness w:10

160 320 480 640

Number of client threads

0
10
20
30
40
50
60
70
80
90
100

F
re
s
h
re
a
d
s
[%

]

(f) freshness w:100

1 2 3 4 5 6

Returned version (1 = latest)

0
10
20
30
40
50
60
70
80
90
100

C
D
F
[%

]

(g) CDF w:2-th:480

1 2 3 4 5 6

Returned version (1 = latest)

0
10
20
30
40
50
60
70
80
90
100

C
D
F
[%

]

(h) CDF w:10-th:480

1 2 3 4 5 6

Returned version (1 = latest)

0
10
20
30
40
50
60
70
80
90
100

C
D
F
[%

]

(i) CDF w:100-th:480

160 320 480 640

Number of client threads

1.0

1.2

1.4

1.6

1.8

2.0

M
V
O
v
e
r
h
e
a
d

(j) MV oh. w:2

160 320 480 640

Number of client threads

1.0

1.2

1.4

1.6

1.8

2.0

M
V
O
v
e
r
h
e
a
d

(k) MV oh. w:10

160 320 480 640

Number of client threads

1.0

1.2

1.4

1.6

1.8

2.0

M
V
O
v
e
r
h
e
a
d

(l) MV oh. w:100
Figure 4 Single-shot read-only-transactions

read, most of the times, the latest or second most recent version. OP read,
in the worst case, the third most recent version, while the remaining two
protocols, the fourth. Cure exhibits, under the same conditions, 1.2% (6X)
and, AV, 1.8% (9X) stale reads, meaning that potentially every transaction
observes stale versions.

• Under 10% of writes (Figure 4e), OP does not further degrade its freshness,
and reads observe the same percentage of stale versions, whereas freshness
degrades significantly for AV, which shows 25% (125X) stale reads in the
worst case, and Cure, which shows 22% (110X). Figure 4h shows that OP
read mostly fresh versions and, in the worst case, the fourth most-recent
version. Cure and AV show a higher frequency or returning the second (≈

25

20%), third (≈ 5%) and fourth (≈ 2%) most recent versions. As each read
transaction executes 100 reads, this means that this potentially affects every
transaction. In the worst case, these two protocols read the 12th-to-latest
version, not shown in the picture to display them more clearly.

• Under 50% of writes (Figure 4f), we observe the biggest difference between
all protocols: OP still suffers from up to 0.2% of stale reads, while Cure
from up to 41% (205X) and AV 49% (245X). Figure 4i shows that, for 480
threads OP read, in the worst case, the 6th-to-latest version. Cure the
18th and AV the 19th. Cure and AV frequently show significantly stale
versions, up to the sixth (≈ 2%) version is potentially observed by every
transaction. The oldest version returned by AV was the 19th to latest, and
by Cure, the 18th to latest.

Multi-version overhead. We compute the multi-version overhead as the
extra work required, for a read operation, to find and store a version that
respects a required isolation level, with respect to a single-versioned protocol
(e.g., CV). For instance, under this metric, a read that returns the second-
to-latest version has an overhead of 2X over the baseline. This metric is
computed in practice as the area over the lines of the CDFs. We compute this
metric as the overall overhead observed during the entire execution. Figures
4j, 4k and 4l show the results under this workload.

For all workloads, OP shows a very low overhead, under 1.002X over an
optimal protocol. AV presents a maximum overhead of 1.03X, 1.35X, and
1.87X under 2, 10 and 100 updates per transaction, respectively, while Cure
1.02X, 1.31X and 1.7X.

Conclusion. We have observed the effects of the three-way trade-off in
action. Under this workload, strengthening the semantics from Committed
to Order-Preserving visibility incurs a negligible overhead in terms of latency
and freshness. However, strengthening the semantics to Atomic Visibility
penalises freshness significantly. Both protocols we have experimented with
exhibited a high degradation in freshness. Cure exhibits better freshness than
AV at a latency cost that increases with contention.

5.3.3 Multi-shot read-only transactions.

We perform the same analysis under the multi-shot workload. Figure 5 shows
the results. Results follow the same trend as those of the previous workload.
However, some effects get diminished while others get augmented. In what
follows, we refer to the differences between results.

Latency. Figures 4a, 4b and 4c show the latency response of all protocols
under this workload. These transactions exhibit significantly higher —around
10X— latency than single-shot transactions, as they incur 10 rounds of 100

26

reads each. The trend of all systems is very similar to that of single-shot
transactions: CV outperforms the remaining protocols, and the difference
becomes larger as update rate augments. One difference with respect to
single-shot transactions is that OP exhibits slightly worst performance than
the other systems. This happens because of OP’s mechanism for enforcing
causal order: every time a transaction coordinator receives a read response,
it must recompute the transaction’s causal dependencies (Algorithm 1, Lines
11 and 12). Under this workload, each transaction coordinator performs
this computation 1000 times. Nevertheless, the protocol could be modified
to avoid this situation by performing such computation in parallel with
subsequent read operations, which we have not experimented with.

Freshness and multi-version overhead. Figures 5d, 5e and 5f show the
freshness response as the number of client threads increases, for different
update rates. Figures 5g, 5h and 5i display a CDF showing how stale a
read version is under 320 client threads for each update rate. The trend is
similar to that of single-shot read-only transactions: OP outperforms the
remaining protocols under all configurations, and Cure and AV degrade
freshness significantly as contention is added to the system. For all protocols,
the effect of staleness gets magnified with respect to that of single-shot
transactions. This occurs because transactions are long lived, which renders
interleaving with update transactions more frequent. The worst-case scenarios
are 5% of stale updates for OP, while 62% for AV, and 55% for Cure. In
terms of oldest versions read under contention (50% of updates and maximum
client load), OP returned, at most, the 7th-to-latest version, while Cure the
28th and AV the 31st. Figures 5j, 5k, and 5l show the multi-version-overhead
results under this workload. Graphs follow a similar-but-magnified trend too
as that of single-shot reads, where overhead peaks at 1.05X for OP, 2.2X for
Cure, and 2.4X for AV.

Conclusion. Under this workload, as transactions live long time, all pro-
tocols exhibit similar latency, including Cure, which is not latency optimal.
In terms of freshness, we observe that protocols with Atomic Visibility get
highly penalised as contention increases.

6 Related Work

Impossibility results. The CAP theorem proves that, in a replicated sys-
tem, it is impossible to guarantee strong consistency (C), high availability (A),
and partition tolerance (P) at the same time [30]. Under partition, system
designers must decide between remaining available but weakly-consistent
(AP), or remaining strongly-consistent but not available (CP). Strong consis-
tency requires, at the minimum, ensuring that single object updates respect

27

160 320 480 640
Number of client threads

0

50

100

150

200

250

L
a
te
n
c
y
[m

s
]

(a) latency w:2

160 320 480 640
Number of client threads

0

50

100

150

200

250

L
a
te
n
c
y
[m

s
]

(b) latency w:100

160 320 480 640
Number of client threads

0

50

100

150

200

250

L
a
te
n
c
y
[m

s
]

(c) latency w:1000

160 320 480 640

Number of client threads

0
10
20
30
40
50
60
70
80
90
100

F
re
s
h
re
a
d
s
[%

]

(d) freshness w:2

160 320 480 640

Number of client threads

0
10
20
30
40
50
60
70
80
90
100

F
re
s
h
re
a
d
s
[%

]

(e) freshness w:100

160 320 480 640

Number of client threads

0
10
20
30
40
50
60
70
80
90
100

F
re
s
h
re
a
d
s
[%

]

(f) freshness w:1000

1 2 3 4 5 6

Returned version (1 = latest)

0
10
20
30
40
50
60
70
80
90
100

C
D
F
[%

]

(g) CDF w:2 th320

1 2 3 4 5 6

Returned version (1 = latest)

0
10
20
30
40
50
60
70
80
90
100

C
D
F
[%

]

(h) CDF w:100 th320

1 2 3 4 5 6

Returned version (1 = latest)

0
10
20
30
40
50
60
70
80
90
100

C
D
F
[%

]

(i) CDF w:1000 th320

160 320 480 640

Number of client threads

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
V
O
v
e
r
h
e
a
d

(j) MV oh. w:2

160 320 480 640

Number of client threads

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
V
O
v
e
r
h
e
a
d

(k) MV oh. w:100

160 320 480 640

Number of client threads

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
V
O
v
e
r
h
e
a
d

(l) MV oh. w:1000
Figure 5 Multi-shot read-only transactions

a total monotonic order, which requires synchronous replication. This result
has motivated designs that foster latency to eschew both strong consistency
and read isolation [8], properties frequently mixed. This effect has been
exacerbated by the fact that all existing AP designs that enforce isolation
exhibit delays. This work shows that the performance of read isolation is
orthogonal to update-order enforcement. Moreover, the presented algorithms
are available under partition and exhibit minimal delays.

Lu et al. prove that no protocol can achieve Strict Serialisability (which
implies Atomic Visibility) and Minimal Delay [39]. Therefore, their work
proves that the upper-left corner of Figure 1 is unachievable under this model.
Strict Serialisability requires that, if an update transaction TU commits

28

updates at time tU , all transactions that start after tU , in real time, observe
TU ’s updates. This requirement disallows that a transaction reads from
an outdated snapshot. Intuitively, knowing the latest set of committed
transactions at a given point in time requires coordination, which implies
added delay. Their result is complementary to ours.

Didona et al. prove that a minimal-delay causally-consistent (order-
preserving) distributed read protocol forces expensive updates [25]. Their
work considers a more-restrictive model; a client, which coordinates a trans-
action, is not allowed to contact a partition server (and vice-versa) outside
the scope of the transaction. This forbids a client to receive asynchronous
notifications regarding stable snapshots. This is instrumental to achieve
Minimal Delay and progress in our protocols. Without this restriction, that
result is similar to Proposition 1.

Attiya et al. determined bounds on the response times of Sequential
Consistency and Linearisability, consistency guarantees of single objects [12].
The results of that work can be used to help determining the delays of
implementations that rely on blocking to ensure a given isolation property
(e.g., Strict Serialisability requires linearisable objects).

Systems. We relate the properties of existing systems to the trade-off.
Table 1 summarises the discussion.

Weak Isolation. Systems that are designed for high-availability and low latency
under replication are those that do not require a per-object monotonic total
order of updates, and thus avoid synchronous replication. Surprisingly,
minimal-delay designs with read isolation are missing from the literature, as
they all incur delays.

No Isolation. Espresso [41], Tao [17], Yahoo’s PNUTS [20], Amazon’s Dynamo
[24], Twitter’s Rainbird [2], and Google’s BigTable [19] ensure optimal reads
but no atomic updates or read isolation. Cassandra offers atomic updates
and no isolation. Reads are only prevented from observing partial updates
within a row [23].

Committed Visibility. In MySQL cluster, reads may block waiting for a
transaction to commit [6]. We introduce CV, a protocol providing atomic
updates and optimal committed reads.

Order-Preserving Visibility. All systems we discuss provide snapshot reads
that preserve causal order. None supports all-or-nothing updates. Similarly
to Cure [9], GentleRain [28], Orbe [27] and ChainReaction [10] block to wait
for concurrent transactions to commit and for clocks to catch up. COPS
[37] incurs multiple read-rounds. In Contrarian [25], a transaction executes
a communication round to any partition server to obtain a stable snapshot,
followed by the read phase. COPS-SNOW [39] offers Minimal Delay and
Concurrent Freshness. It removes the second round of reads in COPS by

29

System Atomic  
Updates

Update
Ordering Model Read  

Isolation Delay Freshness

PNUTS - - - minimal latest
Dynamo - - - minimal latest
Rainbird - - - minimal latest
BigTable - - - minimal latest
Espresso - - - minimal latest
Tao - - - minimal latest
Cassandra - - - minimal latest
MySQL Cluster - RC Committed bounded latest
CV (this paper) - RC Committed minimal latest
COPS Partial Causal O. Preserving bounded concurrent
COPS-SNOW Partial Causal O. Preserving minimal concurrent
GentleRain Total Causal O. Preserving bounded concurrent
Orbe Partial Causal O. Preserving bounded concurrent
ChainReaction Partial Causal O. Preserving bounded concurrent
Contrarian Partial Causal O. Preserving bounded stable
OP (this paper) Partial Causal O. Preserving minimal concurrent
Cure Partial TCC Atomic bounded concurrent
Eiger Partial TCC Atomic bounded concurrent
RAMP Partial RA Atomic bounded concurrent
AV (this paper) Partial TCC Atomic minimal stable
Jessy Partial NMSI Atomic bounded concurrent
Blotter Partial NMSI Atomic bounded concurrent
Walter Partial PSI Atomic bounded stable
Occult Partial PSI Atomic mutex R/W concurrent
GMU Partial US Atomic bounded concurrent
Clock-SI Monot. TO SI Atomic bounded concurrent
CockroachDB-SI Monot. TO SI Atomic bounded concurrent
CockroachDB-SSI Monot. TO Ser. Atomic mutex R/W concurrent
Spanner ROTX Monot. TO Ser. Atomic bounded stable
Spanner Monot. TO Stict Ser. Atomic mutex R/W latest
Rococo Monot. TO Stict Ser. Atomic mutex R/W latest
Rococo-SNOW Monot. TO Stict Ser. Atomic mutex R/W latest

�1

Table 1 Guarantees, delay and freshness for several published systems.

30

rendering updates expensive. An update operation must update data struc-
tures of all the objects it causally depends on. Both of these systems rely on
metadata sized with the number of objects in the system to causally-order
updates. The introduced OP has the same read semantics without incurring
such costs, and furthermore providing atomic updates.

Atomic Visibility. Cure exhibits the blocking scenarios introduced in Section
4.1. The remaining considered systems incur multiple rounds of reads. Ex-
amples include Eiger [38] and RAMP [14]. This work introduced AV, the
first weakly-consistent protocol that achieves minimal delays and Atomic
Visibility. It implements TCC.

Strong Isolation. Cassandra offers single-object strong consistency through
synchronous replication, and no cross-object isolation [22].

Walter, Occult, Blotter, Jessy and GMU ensure causal order and enforce a
per-object total order by avoiding conflicting writes. They achieve Concurrent
Freshness with delays. Walter retries reads. Blotter, Jessy and GMU read
sequentially. Occult exhibits Unbounded Delays. A transaction attempts to
read from an atomic snapshot from sites that might be in an inconsistent
state. It aborts when it detects an inconsistency.

Clock-SI provides Snapshot Isolation. Its read algorithm is very similar
to that of Cure and GentleRain; it blocks in the case of clock skew or waiting
for transactions to commit. CockRoachDB offers Snapshot Isolation and
Serialisability, both ensuring Atomic Visibility. Under the former, reads might
block waiting for a transaction to commit. Under the latter, a read-only
transaction might abort (indefinitely) when it detects a serialisation conflict.

Spanner features two kinds of transactions. Strictly-serialisable trans-
actions rely on locks to ensure mutually-exclusive reads and writes (by
Proposition 5, this is unavoidable). Spanner’s read-only transactions exhibit
Bounded Delay as a server might need to wait for physical clocks to advance
past a transaction’s snapshot time. Rococo provides Strict Serialisability
(Atomic Visibility) under Latest Freshness. Its read algorithm issues an un-
bounded number of rounds to ensure its desirable guarantees. Rococo-SNOW
issues a bounded number of read rounds, and blocks updates when these
rounds do not attain Atomic Visibility and Latest Freshness. Once updates
are stopped, these are guaranteed.

7 Conclusion

We have explored the three-way trade-off between a transactional read al-
gorithm’s isolation guarantees, its delays, and its freshness, and analyse a
spectrum of possible points in the design space. Interestingly, order-preserving
minimal-delay reads can be fresher than (the strongest) atomic. Moreover,

31

reading the most up-to-date data and ensuring isolated reads, required by
strict serialisability, is only possible by implementing mutually-exclusive
reads and updates, which may delay reads indefinitely. We have used these
results to guide protocol design. Departing from an existing transactional
protocol exhibiting delays, we have created three minimal-delay variants: one
maintains its read guarantees by degrading its freshness, while the other two
improve freshness in different degrees by degrading read guarantees. The
evaluation of these three protocols supports the theoretical conclusions of the
trade-off.

Acknowledgments

This research is supported in part by European FP7 project 609 551 SyncFree
(2013–2016), by European H2020 project LightKone #732 505 (2017–2020),
and by the RainbowFS project of Agence Nationale de la Recherche, France,
number ANR-16-CE25-0013-01.

References

[1] Basho bench. http://github.com/SyncFree/basho_bench.

[2] Rainbird: Real-time analytics@ twitter. https://www.slideshare.net/
kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011.

[3] Twitter, inc. https://twitter.com/.

[4] AntidoteDB. http://syncfree.github.io/antidote/, 2015.

[5] ZeroMQ. http://http://zeromq.org/, 2015.

[6] MySQL :: MySQL NDB Cluster :: Limits Relating to Transaction Han-
dling in NDB Cluster. https://dev.mysql.com/doc/mysql-cluster-excerpt/
5.7/en/mysql-cluster-limitations-transactions.html, 2018.

[7] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and
Phillip W. Hutto. Causal memory: definitions, implementation, and
programming. Distributed Computing, 9(1):37–49, March 1995. doi:
10.1007/BF01784241. URL http://dx.doi.org/10.1007/BF01784241.

[8] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and
Kaushik Veeraraghavan. Challenges to Adopting Stronger Consistency
at Scale. In HOTOS, pages 13–13, Berkeley, CA, USA, 2015. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=2831090.2831103.

32

http://syncfree.lip6.fr/
http://LightKone.eu/
http://RainbowFS.lip6.fr/
http://github.com/SyncFree/basho_bench
https://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011
https://www.slideshare.net/kevinweil/rainbird-realtime-analytics-at-twitter-strata-2011
https://twitter.com/
http://syncfree.github.io/antidote/
http://http://zeromq.org/
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-limitations-transactions.html
https://dev.mysql.com/doc/mysql-cluster-excerpt/5.7/en/mysql-cluster-limitations-transactions.html
http://dx.doi.org/10.1007/BF01784241
http://dl.acm.org/citation.cfm?id=2831090.2831103

[9] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhong-
miao Li, Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc
Shapiro. Cure: Strong semantics meets high availability and low la-
tency. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pages 405–
414, Nara, Japan, June 2016. doi: 10.1109/ICDCS.2016.98. URL
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98.

[10] Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction:
A causal+ consistent datastore based on chain replication. In Euro.
Conf. on Comp. Sys. (EuroSys), pages 85–98, Prague, Czech Republic,
2013. doi: 10.1145/2465351.2465361. URL http://doi.acm.org/10.1145/
2465351.2465361.

[11] ANSI. X3. 135-1992, American National Standard for Information
Systems-Database Language-SQL, 1992.

[12] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus
linearizability (extended abstract). In SPAA ’91, SPAA ’91, pages
304–315, New York, NY, USA, 1991. ACM. ISBN 0-89791-438-4. doi:
10.1145/113379.113407. URL http://doi.acm.org/10.1145/113379.113407.

[13] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. Highly available transactions: Virtues and
limitations. Proc. VLDB Endow., 7(3):181–192, November 2013. doi:
10.14778/2732232.2732237. URL http://dx.doi.org/10.14778/2732232.
2732237.

[14] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion
Stoica. Scalable Atomic Visibility with RAMP Transactions. In SIG-
MOD, pages 27–38, New York, NY, USA, 2014. ACM. doi: 10.1145/
2588555.2588562. URL http://doi.acm.org/10.1145/2588555.2588562.

[15] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. A critique of ANSI SQL isolation levels. SIGMOD
Rec., 24(2):1–10, May 1995. ISSN 0163-5808. doi: 10.1145/568271.223785.
URL http://doi.acm.org/10.1145/568271.223785.

[16] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1987. ISBN 0-201-
10715-5.

[17] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. TAO: Facebook’s distributed data store
for the social graph. In USENIX ATC, pages 49–60, San Jose, CA,

33

http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98
http://doi.acm.org/10.1145/2465351.2465361
http://doi.acm.org/10.1145/2465351.2465361
http://doi.acm.org/10.1145/113379.113407
http://dx.doi.org/10.14778/2732232.2732237
http://dx.doi.org/10.14778/2732232.2732237
http://doi.acm.org/10.1145/2588555.2588562
http://doi.acm.org/10.1145/568271.223785

2013. USENIX. ISBN 978-1-931971-01-0. URL https://www.usenix.org/
conference/atc13/technical-sessions/presentation/bronson.

[18] Protocol Buffers. Google’s data interchange format, 2011.

[19] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. Bigtable: A Distributed Storage System
for Structured Data. ACM Trans. Comput. Syst., 26(2):4:1–4:26,
June 2008. ISSN 0734-2071. doi: 10.1145/1365815.1365816. URL
http://doi.acm.org/10.1145/1365815.1365816.

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel
Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2):1277–1288, August 2008. doi: 10.
1145/1454159.1454167. URL http://dx.doi.org/10.1145/1454159.1454167.

[21] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-
thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay
Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, and Dale Woodford. Spanner: Google’s globally-distributed
database. In Symp. on Op. Sys. Design and Implementation (OSDI),
pages 251–264, Hollywood, CA, USA, October 2012. Usenix. URL https:
//www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf.

[22] DATASTAX. Configuring data consistency in cassandra.
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/
dml_config_consistency_c.html, 2018.

[23] DataStax. How are Cassandra transactions different from RDBMS
transactions? https://docs.datastax.com/en/cassandra/3.0/cassandra/
dml/dmlTransactionsDiffer.html, 2018.

[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In Symp. on Op. Sys. Principles (SOSP),
volume 41 of Operating Systems Review, pages 205–220, Stevenson,
Washington, USA, October 2007. Assoc. for Computing Machinery. doi:
http://doi.acm.org/10.1145/1294261.1294281.

[25] Diego Didona, Rachid Guerraoui, Jingjing Wang, and Willy Zwaenepoel.
Causal consistency and latency optimality: Friend or foe? Proc. VLDB

34

https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
http://doi.acm.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1454159.1454167
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-16.pdf
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
http://docs.datastax.com/en/archived/cassandra/2.0/cassandra/dml/dml_config_consistency_c.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlTransactionsDiffer.html
https://docs.datastax.com/en/cassandra/3.0/cassandra/dml/dmlTransactionsDiffer.html

Endow., 11(11):1618–1632, July 2018. ISSN 2150-8097. doi: 10.14778/
3236187.3236210. URL https://doi.org/10.14778/3236187.3236210.

[26] Phil Dixon. Shopzilla site redesign: We get what we measure. In Velocity
Conference Talk, 2009.

[27] Jiaqing Du, Sameh Elnikety, Amitabha Roy, andWilly Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices and physical
clocks. In Symp. on Cloud Computing, pages 11:1–11:14, Santa Clara,
CA, USA, October 2013. Assoc. for Computing Machinery. doi: 10.1145/
2523616.2523628. URL http://doi.acm.org/10.1145/2523616.2523628.

[28] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.
GentleRain: Cheap and scalable causal consistency with physical clocks.
In Symp. on Cloud Computing, pages 4:1–4:13, Seattle, WA, USA,
November 2014. Assoc. for Computing Machinery. doi: 10.1145/2670979.
2670983. URL http://doi.acm.org/10.1145/2670979.2670983.

[29] David Kenneth Gifford. Information Storage in a Decentralized Computer
System. PhD thesis, Stanford, CA, USA, 1981. AAI8124072.

[30] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. SIGACT News,
33(2):51–59, 2002. ISSN 0163-5700. doi: http://doi.acm.org/10.1145/
564585.564601.

[31] Grid’5000. Grid’5000, a scientific instrument [. . .]. https://www.grid5000.
fr/, retrieved April 2013.

[32] R. C. Hansdah and Lalit M. Patnaik. Update Serializability in Locking. In
ICDT ’86, pages 171–185, London, UK, UK, 1986. Springer-Verlag. ISBN
3-540-17187-8. URL http://dl.acm.org/citation.cfm?id=645497.658206.

[33] Paul R. Johnson and Robert H. Thomas. The maintenance of dupli-
cate databases. Internet Request for Comments RFC 677, Information
Sciences Institute, January 1976. URL http://www.rfc-editor.org/rfc.html.

[34] Butler Lampson and Howard E. Sturgis. Crash recov-
ery in a distributed data storage system. January 1979.
URL https://www.microsoft.com/en-us/research/publication/
crash-recovery-in-a-distributed-data-storage-system/.

[35] Butler W. Lampson and David B. Lomet. A New Presumed Commit
Optimization for Two Phase Commit. In VLDB, pages 630–640, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN
1-55860-152-X. URL http://dl.acm.org/citation.cfm?id=645919.672675.

[36] Greg Linden. Make data useful, 2006.

35

https://doi.org/10.14778/3236187.3236210
http://doi.acm.org/10.1145/2523616.2523628
http://doi.acm.org/10.1145/2670979.2670983
https://www.grid5000.fr/
https://www.grid5000.fr/
http://dl.acm.org/citation.cfm?id=645497.658206
http://www.rfc-editor.org/rfc.html
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
http://dl.acm.org/citation.cfm?id=645919.672675

[37] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Don’t settle for eventual: scalable causal consistency for
wide-area storage with COPS. In Symp. on Op. Sys. Principles (SOSP),
pages 401–416, Cascais, Portugal, October 2011. Assoc. for Computing
Machinery. doi: http://doi.acm.org/10.1145/2043556.2043593.

[38] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Stronger semantics for low-latency geo-replicated storage. In
Networked Sys. Design and Implem. (NSDI), pages 313–328, Lombard, IL,
USA, April 2013. URL https://www.usenix.org/system/files/conference/
nsdi13/nsdi13-final149.pdf.

[39] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt
Lloyd. The SNOW Theorem and Latency-optimal Read-only Transac-
tions. In OSDI’16, pages 135–150, Berkeley, CA, USA, 2016. USENIX
Association. ISBN 978-1-931971-33-1. URL http://dl.acm.org/citation.
cfm?id=3026877.3026889.

[40] Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia,
and Luis Rodrigues. When Scalability Meets Consistency: Genuine
Multiversion Update-Serializable Partial Data Replication. ICDCS,
pages 455–465, Washington, DC, USA, 2012. IEEE Computer Society.
ISBN 978-0-7695-4685-8. doi: 10.1109/ICDCS.2012.55. URL http:
//dx.doi.org/10.1109/ICDCS.2012.55.

[41] Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman,
Bhaskar Ghosh, Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Au-
radar, Chris Beaver, Gregory Brandt, Mihir Gandhi, Kishore Gopalakr-
ishna, Wai Ip, Swaroop Jgadish, Shi Lu, Alexander Pachev, Aditya
Ramesh, Abraham Sebastian, Rupa Shanbhag, Subbu Subramaniam,
Yun Sun, Sajid Topiwala, Cuong Tran, Jemiah Westerman, and David
Zhang. On Brewing Fresh Espresso: Linkedin’s Distributed Data Serving
Platform. In SIGMOD, pages 1135–1146, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2037-5. doi: 10.1145/2463676.2465298. URL
http://doi.acm.org/10.1145/2463676.2465298.

[42] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-
Monotonic Snapshot Isolation: scalable and strong consistency for geo-
replicated transactional systems. In Symp. on Reliable Dist. Sys. (SRDS),
pages 163–172, Braga, Portugal, October 2013. IEEE Comp. Society. doi:
10.1109/SRDS.2013.25. URL http://dx.doi.org/10.1109/SRDS.2013.25.

[43] Eric Schurman and Jake Brutlag. The user and business impact of server
delays, additional bytes, and http chunking in web search. In Velocity
Web Performance and Operations Conference, 2009.

36

https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final149.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final149.pdf
http://dl.acm.org/citation.cfm?id=3026877.3026889
http://dl.acm.org/citation.cfm?id=3026877.3026889
http://dx.doi.org/10.1109/ICDCS.2012.55
http://dx.doi.org/10.1109/ICDCS.2012.55
http://doi.acm.org/10.1145/2463676.2465298
http://dx.doi.org/10.1109/SRDS.2013.25

[44] Daniele Sciascia, Fernando Pedone, and Flavio Junqueira. Scalable
Deferred Update Replication. In DSN, pages 1–12, Washington, DC,
USA, 2012. IEEE Computer Society. ISBN 978-1-4673-1624-8. URL
http://dl.acm.org/citation.cfm?id=2354410.2355159.

[45] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. Consistency
in 3D. In Josée Desharnais and Radha Jagadeesan, editors, Int. Conf. on
Concurrency Theory (CONCUR), volume 59 of Leibniz Int. Proc. in Infor-
matics (LIPICS), pages 3:1–3:14, Québec, Québec, Canada, August 2016.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publish-
ing, Germany. doi: 10.4230/LIPIcs.CONCUR.2016.3. URL http://drops.
dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf.

[46] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transac-
tional storage for geo-replicated systems. In Symp. on Op. Sys. Principles
(SOSP), pages 385–400, Cascais, Portugal, October 2011. Assoc. for Com-
puting Machinery. doi: http://doi.acm.org/10.1145/2043556.2043592.

[47] Basho Technologies. Riak KV. http://basho.com/products/riak-kv/.

[48] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer,
Marvin M. Theimer, and Brent B. Welch. Session guarantees for weakly
consistent replicated data. In Int. Conf. on Para. and Dist. Info. Sys.
(PDIS), pages 140–149, Austin, Texas, USA, September 1994.

[49] Alejandro Z. Tomsic. Exploring the design space of highly-available
distributed transactions. PhD thesis, Sorbonne Université, 2018.

A Protocols: session guarantees

Read your writes. The algorithms presented in Section 4 do not ensure
the read your writes session guarantee, required by causal consistency. The
problem arises because updates must undergo the stabilisation process to
be available to further transactions. If a client’s transaction performs some
updates, a subsequent transaction by the same client might miss its latest
updates because they are not stable yet.

Read your writes can be enforced by a client caching its latest updates.
When receiving a read response, the client compares the version received with
the cached one (if any). If the cached version is fresher, the one returned by
the system is discarded. After a transaction finishes, a TC returns the latest
stable vector SV it is currently aware of. A client can invalidate all updates
with cv ≤ SV .

Monotonic Reads. Under AV and OP, monotonic reads are ensured if a
client always connects to the same server. However, if the server fails or

37

http://dl.acm.org/citation.cfm?id=2354410.2355159
http://drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf
http://basho.com/products/riak-kv/

(a) Wait due to committing update (b) Wait due to clock skew
Figure 6 Cure blocking scenarios, single-shot workload

becomes unreachable, a client might connect to a server where SV is behind
that of the ss of the client’s last transaction. This might lead to observing
less up-to-date data than what the client previously observed. This violates
the monotonic-reads session guarantee.

To ensure monotonic reads, a client informs a TC of its latest ss. When
a transaction commits, the TC returns the transaction’s ss. If a TC detects
that its SV is behind the client’s ss (SV < ss), it catches up as follows: if
the TC runs at the same site as the client’s latest transaction, it updates its
SV to ss immediately. This is possible because the snapshot was previously
observed as stable by another partition at the same site. If the TC runs at
a different site, TC has to block until the stabilisation protocol validates
SV ≥ ss.

B Evaluation of blocking in Cure

Single-shot RO transactions. The design of Cure is not latency optimal.
We plot, in Figure 6b, the percentage of read operations that blocked due to
clock skew. This effect is frequent under small number of client threads, and
dissipates as the system becomes more loaded. Under high load, the time it
takes to process a received read-request message is larger, and during this
time, lagging clocks can catch up. Figure 6a shows how, when keys become
highly contended (i.e., at high update rate and number of client threads),
waiting for an update operation becomes frequent. At maximum contention
—640 threads and 50% of updates— a read operation waits, on average, for
0.45 update operations to finish or, equivalently, each transaction waits for
an average of 45 updates to commit.

Multi-shot RO transactions. Under this workload, where transactions
execute for a long time, the blocking cases of Cure are significantly reduced
with respect to those of single-shot transactions. Figure 7a shows the per-
centage of read operations that blocked due to clock skew under Cure. As

38

(a) Wait due to committing update (b) Wait due to clock skew
Figure 7 Cure blocking scenarios, multi-shot workload

we see, the effect practically disappears —below 6% of reads block— under
all workloads. If we consider that each read round takes approximately 10ms,
rounds after the first one are very unlikely to block due to clock skew, where
most of waiting is expected to happen. The same occurs with blocking due
waiting for update transactions to commit, as shown in Figure 7b. Under
maximum contention, under 1% of read operations block due to this effect.

39

	Introduction
	Model and Requirements
	Transactions
	Snapshot guarantees
	Delay
	Freshness
	Optimal reads

	The three-way trade-off
	Notation and Definitions
	Impossibility of optimal order-preserving reads
	Freshness compatible with Minimal Delay
	Optimal reads under Committed Visibility
	Order-Preserving Visibility and Concurrent Freshness
	Stable Freshness under Minimal-delay Atomic Visibility

	What is possible under Latest Freshness?
	Isolated reads with Bounded Delay and Concurrent Freshness.

	Minimal-delay protocol design
	Base protocol and changes
	Protocols
	Transaction Coordinator Algorithm
	Partition Servers Algorithm

	Correctness
	Stabilisation protocol

	Evaluation
	Implementation
	Setup
	Experiments
	Throughput results.
	Single-shot read-only transactions
	Multi-shot read-only transactions.

	Related Work
	Conclusion
	Protocols: session guarantees
	Evaluation of blocking in Cure

