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Abstract

The design of garbage collectors combines both theoretical aspects (safety
and liveness) and practical ones (such as efficiency, inobtrusiveness, ease of
implementation, fault tolerance, etc.). Although distributed GC is an instance
of a consistency problem, practical designs often use weaker, “conservative”
safety conditions, and/or weaker, “incomplete” liveness conditions. We re-
port on our experience designing a number of distributed garbage collection
algorithms in different settings, and explore the various design dimensions.
The cost of each design alternative depends on the scale of the distributed
system.

Garbage collection (GC) has captured the interest of the language community
for years [30]. In distributed systems (i.e., subject to partial failures, and where
communication is costly), GC has received comparatively little attention until
recently. In this paper we describe the problem and report our experience with a
few solutions. Generalizing from this experience, we explore various design issues
along a number of relatively independent dimensions. This analysis allows a better
understanding of the trade-offs and, hopefully, to better adapt future distributed
garbage collectors to their environment.

*To be presented at the Seminar on “Unifying Theory and Practice in Distributed Systems,”
Dagstuhl Int. Conf. and Res. Center for Comp. Sc., Dagstuhl (Germany), September 1994.



1 Distributed Garbage Collection

Garbage collection (GC) considers a program’s data as a graph, in which edges
represent references and vertices, objects. The mutator is the application program
that modifies the graph by allocating new objects and assigning reference variables.
Objects reachable from a distinguished “root set” of vertices (usually the stack and
the variables of the program) are live; the others are garbage. The collector is the
system component that detects and reclaims garbage.

A GC algorithm must be correct: both safe, i.e., it reclaims only garbage objects,
and live, i.e., it eventually reclaims all collectable garbage! However, proving
correctness is far from enough. Practical issues, such as efficiency, inobtrusiveness,
tolerance to faults, and simplicity govern whether an algorithm will be implemented
and used.

1.1 GC algorithms and distributed systems

GC algorithms come in two main families. A counting algorithm counts the
number of references to an object. Counting is incomplete because cycles of
garbage are not collectable. Counting is easy to distribute because it only performs
local operations. A tracing algorithm walks the graph to discover which objects
are live (the others are garbage). Tracing is complete? but hard to distribute in
a large-scale system, because of its global nature, and because it has phases that
need to be synchronized.

Many recent distributed garbage collection designs [14, 16, 17, 26] subdivide the
system into disjoint spaces, each with its own “local root” and its own tracing
collector.> An object that is the target of a cross-space reference is added to its
local root-set, because it should not be collected even if it is locally unreachable.

"For some algorithms, which we call incomplete hereafter, not all garbage is collectable. For
instance a reference counting algorithm cannot collect cycles of garbage, even though it is live.

2For practical reasons, some implementations called “conservative” [6] choose to overestimate
the set of reachable objects; hence they may be incomplete.

3 As we will see in Section 3, the interpretation of what a space is can vary.



1.2 GC as a consistency problem

The local collectors are not synchronized with one another. Therefore inconsisten-
cies may arise.

Consider for instance the following example. Assume a system with asynchronous
messages, and no special mechanisms to keep track of sent references. Space
A holds the last reference to object z, sends it to space B, then deletes this
reference. Suppose B collects before receiving the reference to x, and A collects
after removing it. Then it would appear that z is unreachable although a reference
to it is in transit.

A consistent snapshot would solve the inconsistency problem, but would be
overkill. Because a conservative overestimate of the reachable set is safe, the
distributed GC problem is easier than the general consistency problem. Incon-
sistencies are permissable as long as they are on the conservative side. Practi-
cal considerations favor safe but conservative (and/or incomplete) designs over
strongly-consistent ones.

In summary, the management of remote references is a specialized consistency
protocol, that we will call the Reference Consistency Protocol hereafter. It is
composed of two sub-protocols. Recording when an object becomes remotely
reachable occurs as the mutator assigns remote references; therefore it is a mutator-
level protocol. Detecting when is becomes unreachable is a distributed collector,
which can use either counting or tracing, or some combination.

2 Qur distributed GC protocols

Before we start exploring the design space, it may be useful to consider some
specific examples of collectors. This section briefly overviews two of our designs.

2.1 The SGP distributed GC protocol and SSP Chains

One design combines the Shapiro-Gruber-Plainfoss¢ (SGP) collection protocol
with the Stub-Scion Pair Chains (SSP Chains) reference mechanism. It is designed
for a classical distributed system, i.e., with no shared memory, partial failures, and
unreliable and costly messages.



Sending the reference of some object = from its space A to some other space B
creates a reference incoming into A and outgoing from B. The “exported” object «
is added to the root set of A; exports are counted. The SGP protocol [26] actually
uses a conservative, fault-tolerant variant of counting.

We call stub the data structure recording an outgoing reference and scion the one
added to the local root for an incoming reference. When sending a reference,
the presentation protocol (the application-level protocol for marshalling arguments
into messages) creates a scion; when receiving it creates a stub. When a stub
becomes locally unreachable, the local collector reclaims it. Periodically, spaces
exchange idempotent live messages that list the set of stubs that are still reachable;
the receiver deletes the scions corresponding to stubs that are not listed in the live
message.

Message failures are tolerated by a conservative ordering of actions and by idem-
potent messages; race conditions are avoided by timestamping all messages and
data structures, and ignoring messages that are inconsistent with the data structures.
Crashes are tolerated by making space termination appear atomic with respect to
reference exports.

The SGP protocol works hand-in-hand with a reference mechanism called SSP
Chains [25]. This is an efficient and fault-tolerant variant of forwarders [15, 12],
meaning that a reference is implemented by a chain of point-to-point links (rather
than by a global identifier).

It is interesting to note that an error was found in the SSPC protocol after it
had been accepted for publication [24] and a proof written [27]. The error went
unnoticed because a certain configuration was implicitly, and wrongly, assumed
not to occur. The bug was corrected by making the main data structures immutable,
at the expense of a slight complication of the user interface [25].

We have implemented SSP Chains on a Unix system, with a graphical demonstra-
tion. Details, lessons learned, and performance results can be found in Plainfos’s
thesis [22]. We are currently working on a formal proof.

2.2 Garbage collecting a distributed shared memory

Currently we are working on collecting a distributed shared persistent memory
system with local caching of shared chunks of memory and a lock-based coherence
protocol [11]. A reference is a virtual-memory pointer, described by auxiliary data



structures (which we continue to call stubs and scions even though they are not
used as indirections).

In order to not interfere with coherence, the GC works on old data (because if an
object was garbage in the past, it still is). Because a consistent snapshot would be
impractical, the GC compensates for inconsistencies by being more conservative.
Initially, the GC conservatively assumes that all objects in a mapped chunk are
reachable. As better information is received from clients, the GC can refine its
view and reclaim unreachable objects.

A global trace of the whole persistent memory (even considering only old data)
would also be impractical. Therefore the GC does partial traces: for each chunk, a
trace of all the cached copies of the chunk, irrespective of what site has it cached;
and for each site, a site-wide trace of all chunks that happen to be cached on it
at some particular instant. The site-wide trace thus reclaims cycles of garbage
among groups of chunks, somewhat like Lang’s mechanism [18]. The grouping
is heuristic; we expect that it will be a good heuristic thanks to the well-known
locality properties of caching.

3 The design space for distributed GC and referencing

This preliminary experience has us speculate on the dimensions of the design space
for distributed garbage collection and referencing.

Our basic model subdivides the universe into disjoint spaces, although the inter-
pretation of the nature of a space will vary (see Section 3.4 hereafter). Distributed
garbage collection comprises three interrelated tasks: (i) tracking remote (i.e., inter-
space) references; (ii) detecting remotely-unreachable objects; (iii) reclaiming the
garbage.

Reference tracking consists of registering references that traverse spaces bound-
aries. Most systems use Bishop’s [4] scheme of an outgoing indirection data
structure (a stub) at the source side locating an incoming indirection (a scion) on
the target side.

Asdiscussed in Section 1.2, distributed garbage detection is the problem of keeping
scions consistent with stubs. As such, it is made more complex by concurrency and
message and space failures (see Sections 3.1 and 3.2). Therefore, it is necessary to
make explicit the failure assumptions.



Reclaiming garbage is typically done by an inferior, local GC that traces a single
space, unsynchronized with other local collectors. A local GC interfaces with the
distributed detector via the reference tracking, by considering scions as part of its
root set.

Below we list some of the major dimensions of the design space. This cannot be
an exhaustive list. We ignore such secondary issues as persistence, clustering, the
design of the local GC, and the influence of GC on the design of applications.

Along each dimension a number of solution points are possible that differ by their
functionality and/or cost. The scale of the system influences cost and feasibility of
algorithms. Scale is a relative concept that is hard to characterize precisely; rather,
we define scalability as a property related of an algorithm: it is scalable if its cost
increases much slower than the the number of spaces or of sites in the system.
For instance, tracing does not scale because of the need to synchronize with every
space.

3.1 Communication semantics

The points along this axis range from instantaneous and reliable, to asynchronous,
failure-prone messaging. The cost of such communication depends on the nature
of spaces (Section 3.4), on the scale, and on the system configuration.

For instance, on a shared-memory multiprocessor, it is easy to make communica-
tion appear instantaneous and reliable. In a large-scale distributed setting on the
contrary, the natural communication paradigm is unreliable, asynchronous mes-
sages. Furthermore, if a space can crash and recover (Section 3.2), then even
so-called reliable transport protocols become lossy?

Asynchronous messages and failures complicate garbage detection by introducing
apparent inconsistencies. We believe that any GC algorithm could probably be
made tolerant of these problems by the techniques used in SGP, i.e., idempotent
messages and timestamps; although to our knowledge, this has not been done for
any other algorithm.

An interesting point along this axis is the causally-ordered protocols [2]. They
don’t scale well, but they make it easier to maintain consistency.

*For instance an open TCP connection must be re-established after a crash; the outcome of
messages sent while the connection was breaking is unknown.



For alarge-scale system, it is most reasonable to choose a communication semantics
near the unreliable end of the axis; see also the conclusion of Section 3 .4.

3.2 Space failure semantics

We discuss now the failure semantics of spaces. Ignoring Byzantine failures, this
axis extends from failure-free spaces (or, equivalently, spaces that fail but recover
intact), to fail-silent spaces, with or without consistent failure detection. This
dimension is again related to scale: for instance on a multiprocessor partial failures
(of asingle processor) are assumed not to occur; whereas in a large-scale distributed
system, a space can fail independently of the others.

Failure detection is important because objects that were reachable only from a
failed space are garbage. Failure detection based solely on time-outs or channel
failures is inconsistent because (for instance) a transient overload could cause
some space to be considered terminated, whereas it continues to execute. Then,
reachable objects could be unsafely reclaimed, as in the Network Objects system
[3]. Consistent failure detection is of course harder to achieve [23].

Reference tracking (see Section 3.3) is related to failure detection, since it must dis-
tinguish a reference from a failed space. This precludes straightforward reference
counting; indeed, a scion must record the name of its client space.

3.3 Reference Consistency Protocol

The Reference Consistency Protocol governs how stubs and scions are created and
maintained consistent, i.e., how the mutators create scions and how the partial,
asynchronous GCs propagate reachability information. This item is related to
Section 3.1, since it is not an issue when the communication protocol is atomic,
and a causal protocol makes it simpler.

The two main points on this axis are the standard GC algorithms, counting and
tracing. Most published algorithms combine counting and tracing to some degree.
For instance in Dickman [7] most, but not all, unreachable scions are detected by
counting; the remainder are detected by a complementary global trace.

Counting variants are either non-fault-tolerant [1,21, 29] or fault-tolerant [26] (see
related Sections 3.1 and 3.2). The former are of course simpler than the latter.



They also differ on how they deal with cycles of garbage: by migration [4], by a
complementary trace [7], or not at all [1,21, 29, etc.].

Tracing is feasible only in a small-scale system. Variants within the tracing family
include global tracing [16, 28], centralized tracing [17], tracing in groups [18], and
timestamped asynchronous global tracing [14]. Although all require some global
synchronization, the cost of such synchronization is very variable. For instance,
Lang’s algorithm [18] requires a number of global barriers; Ladin’s [17] works
best with globally synchronized clocks (although it is not a requirement); Hughes
[14] assumes a global clock and periodically executes a distributed termination
algorithm.

A counting, fault-tolerant Reference Consistency Protocol is arguably the best
trade-off for a large-scale system.

3.4 Nature of spaces and addressing within a space

This dimension concerns the relation of logical spaces with physical sites. The
simplest model is the classical one of a space being a process confined to a single
site, with no sharing of memory. A reference within a space just uses a memory
address. Inter-space references (Section 3.5) are easy to track, because they are
passed explicitly in messages.

A space can be composed of a small set of cooperating processes, possibly on
different sites. This is the model used by many multiprocessor collectors [9, 10, 19].
As long as the set uses a single addressing scheme, and assuming no independent
failures of one of the processes and reliable communication, this is very similar to
the classical model. However, the costs are different because of message-passing
between the processes, of synchronization of the trace phases over the set of
processes, and possibly of the mapping of addresses to per-process addresses.

We know of no design where a space is a replicated set of processes. This would
probably not pose any particular problem, as long as the processes in the group
remain consistent.

A space may also be a shared memory region distributed over several processes or
sites. If a single process can map more than one such region, the local collector
can then trace all the regions currently mapped in a process. Also, the Reference
Consistency Protocol must be aware of references created implicitly by reading
memory (see Section 3.5). In EOS [13], the regions are logically distributed but



physically centralized. In BMX [11], a region may be cached (either partially or
completely) at multiple sites at once; a consistency protocol maintains the caches
coherent; the per-process GC algorithm must not interfere with the cache coherence
protocol.

Spaces may also be hierarchically nested [18]. Nesting enables to better control
the different trade-offs; Lang uses it to do tracing at different rates at each level of
the hierarchy. Similarly, different design decisions for each of these dimensions
could be used at different levels of the hierarchy.

The most appropriate design for a large-scale system is probably hierarchical. At
a small scale, spaces might be distributed shared memory regions; at a higher level
of the hierarchy, disjoint domains communicating with causal messages; at yet a
higher level, disjoint domains using unreliable messages.

3.5 Cross-space reference scheme

This dimension (related to Section 3.3 and Section 3.4) describes the reference
mechanism across spaces. A key requirement is that all remote references must be
visible to the collector.

Many well-known distributed systems, for instance OSF-DCE [20], base their
references on global, universally unique identifiers (UUIDs). Identifiers that can be
arbitrarily manipulated by applications, as in OSF-DCE, or that can be freely stored
in files, as in Corba [8], may become invisible, precluding safe GC. Furthermore,
global identifiers do not scale well, because of their limited size, and because
locating the target object entails a reliable distributed search in the general case.
Finally, the semantics of global identifiers is ill-defined [5].

Systems with GC tend to use forwarding chains of stubs and scions [15]. For-
warding is more efficient than global identification in the general case, because a
chain locates its target without any search. The rules for forwarding ensure that
references are visible to the collector [25]. However, forwarding poses the problem
of short-cutting long chains [12, 25].

Some systems supplement the chains with global identifiers to ease short-cutting
and equality tests [15, 16], or to detect safety errors [3, 7]. Although they do not
have the hiding problem of systems that expose their UUIDs, they do have the
same scaling and semantic problems.

The stubs and scions are usually used as indirections [17, 25], but sometimes they



are just auxiliary data structures that describe direct pointers [11]. Although we
are not aware of any examples, one could also imagine direct addressing by global
identifiers similarly described by stubs and scions.

Note that short-cutting chains can be complicated if an object or a space can have
more than one name or if there is no way to derive a canonical name for it; this
would happen if an object could be an element of more than one space, or if the
naming of spaces is not flat (Section 3.4).

4 Conclusion

We have reported on our experience with a few different designs of distributed
garbage collectors and reference systems. Based on this experience, we listed
some of the most important design dimensions. Our experience also suggests that,
while correctness is necessary, it is far from being the only criterion in designing
such systems. Although distributed GC is an instance of a consistency problem,
inconsistencies that do not violate safety are acceptable. Indeed, they are close
to unavoidable when considering practical issues such as efficiency, scalability, or
fault-tolerance. Our experience also suggests that proofs, while necessary, must
be taken with a grain of salt. GC being a conceptually simple problem, we have
found a small set of example scenarios (not included here for lack of space) that
capture the essence of most protocols, and can be used to test them abstractly.
Applying these scenarios has been extremely useful, especially in the early phases
of a design.
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