
Eventual Consistency

Marc Shapiro and Bettina Kemme

None

In a replicated database, the consistency level defines whether and how the
values of the replicas of a logical object may diverge in the presence of updates.
Eventual consistency is the weakest consistency level that guarantees conver-
gence. Informally, it requires that all replicas of an object will eventually reach
the same, correct, final value, assuming that no new updates are submitted to
the object.

Eventual consistency is an important correctness criteria in systems with a
lazy, update-anywhere strategy, also referred to as optimistic replication (q.v.).
Update operations can be submitted and executed on any node, and the propa-
gation of updates occurs lazily after commit. Conflict resolution and reconcilia-
tion must ensure that all replicas (copies) of a logical object eventually converge
to the same value. Different objects are considered independent.

In a system where updates are continuously submitted, eventual consistency
can be defined by a weak form of schedule equivalence [1]. A schedule Sx

n

describes the sequence of update operations node n performs on its replica of
object x. An element of Sx

n represents the execution of an operation wi that
operates on x, submitted by some user. Sx

n contains wi for an operation, if wi

was received by n, but either not executed, or aborted due to conflict resolution.
Typically, two schedules are defined equivalent by restricting how the order

of operations in the two schedules may differ. However, for eventual consistency
only the convergence of object values matters. Thus, equivalence is defined by
comparing the final state of the replicas. Two schedules are said state equivalent
when, starting from the same initial state, they produce the same final state.
For instance: (i) schedules S = w1w2 and S′ = w2w1 are state-equivalent if w1

and w2 commute; (ii) schedules S = w1w2 and S′ = w2 are state-equivalent if
w2 sets the state of the object to a completely new value (e.g., x := 2).

Eventual consistency of a replicated object x is defined by the following
conditions, which must hold at all times, at any node n with a replica of x [1].
It is assumed that all replicas have the same initial state.

• There is a prefix of the schedule Sx
n that is state-equivalent to a prefix of

the schedule Sx
n′ of any other node n′ holding a replica of x. Such a prefix

is called a committed prefix of Sx
n.

• The committed prefix of Sx
n grows monotonically over time, i.e., the set

of operations and their relative order remains unchanged.

1



• For every operation wi submitted by a user, either wi or wi eventually
appears in the committed prefix of Sx

n (but not both, and not more than
once).

• An operation wi in the committed prefix satisfies all its preconditions (e.g.,
the state of the object immediately before the execution of the operation
fulfills certain conditions).

As an example, assume operation w1 sets x to 2, and w2 sets it to 5. Op-
eration w1 is submitted and executed at n1 while w2 is first executed at n2.At
this time the local schedules are S1 = w1 and S2 = w2 and the committed
prefix at both nodes is the empty schedule. Now w1 is propagated to n2 and
w2 is propagated to n1. When n1 receives w2 it must detect that w1 and w2

are concurrent and conflict. Conflict reconciliation could prioritize one of the
operations, e.g., w1. Then, w2 is simply not executed and the new schedule is
Sx

1 = w1w2. At n2, when w1 arrives, the conflict is also detected, w2 is undone,
w1 is executed and the final schedule is S2 = w2w1. At this time, S1 and S2 are
themselves the committed prefixes. Note that further concurrent operations on
x might move the schedules further, but the extensions would still be tentative
and only become committed once they are reconciled at all replicas.

Optimistic Replication and Resolution, WAN Replication, Consistency Mod-
els for Replicated Data

References

[1] Y. Saito and M. Shapiro. Optimistic Replication. ACM Computer Surveys,
37(1): 42-81, 2005.

2


