The Actions-Constraints approach to replication:
Definitions and Proofs

Marc Shapiro, Karthik Bhargavan
Microsoft Research Cambridge
7 J J Thomson Ave., Cambridge CB3 0FB, UK
tel. +44 1223 479 739, fax +44 1223 479 999

27 March 2004

Technical Report
MSR-TR-2004-14

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract: Replicated information raises the major issue of consistency.
We have developped a simple, formal framework, in order to better under-
stand and compare consistency properties of replication protocols. The
framework is both formal and implementable. Our language is simple
enough to prove interesting properties, yet sufficiently powerful to spec-
ify diverse systems.

In our model, each site maintains its local view of data, of actions to ex-
ecute, and of the constraints that define legal execution schedules. Adding
actions increases the number of possible schedules; adding constraints re-
duces scheduling non-determinism. We ezhibit significant subsets of ac-
tions that are progressively more determined and show a number of useful
properties. The system is consistent if every action is eventually scheduled
and local executions converge. We compare different possible formulations
of the consistency property and prove them to be mutually equivalent. This
underscores the deep commonalities between diverse protocols. One of our
formulations can be used to characterise consistency in partially replicated
systems, i.e., where a site has visibility of only a subset of data, actions
and constraints. Finally, we show how a number of protocols from the
literature are modeled in the action-constraint framework.

1 Introduction

In a distributed system, information is often replicated, but since a site’s view of
remote state is partial and possibly stale, consistency is a major issue. Despite
the large variety of replication protocols [18], we lack a common framework for
understanding and comparing them. It is especially difficult to reason about
optimistic systems and about partial replication.

This paper presents such a framework, based on actions, i.e., reified oper-
ations, and constraints, i.e., reified invariants that the system is responsible
for maintaining. Our constraints are very simple and have been implemented
efficiently. Specification of a replicated system is modular in that users, appli-
cations, objects, and protocols each contribute some part of the constraints.

Within this framework, we identify the significant building blocks that are
common to all replication protocols. We study several properties relevant to
consistency in protocols. We give a precise meaning to the intuitive concepts
underlying consistency, and to consistency itself. We compare four different
formulations of consistency, including Eventual Consistency from the literature,
and Mergeability, a generalisation of serialisability. We show that they are
all mutually equivalent. We extend the Mergeability conditions to encompass
partial replication. The Mergeability formulation clarifies that in the general
case, consistency entails consensus; however we study sufficient conditions for
consistency that can be evaluated locally, and describe a new protocol based on
this insight. Furthermore, we model and we prove the consistency properties
of diverse kinds of protocols from the literature: a timestamped-write protocol,
serialisable transactions, and a partial replication transaction protocol.

At a deep level, all consistent replication algorithms are equivalent since they

T Before
—— = > MustHave

Figure 1: Example constraints. a, 8 and «y form a parcel, an atomic (i.e., all-or-
nothing) execution. «y executes only if ¢ also executes. ¢ is causally dependent
on €. € and ¢ mutually exclude each other. Only two actions out of the three
v, 6 and k can execute. If both x and k execute, x comes first.

are based on the same primitives and satisfy the same formal properties. They
differ mainly by the subset of the constraint repertoire that they use and by the
transition rules.

The paper proceeds as follows. Section 2 provides a high-level overview.
Then we review the main data structures and their properties in Section 3.
Then we move on to how a replicated system and consistency in Section 4.
Partial replication is the topic of Section 5. Section 6 applies our approach to
some protocols from the literature. Section 7 compares with related work, and
Section 8 contains conclusions and suggestions for future work.

2 Overview

This section overviews of our approach informally (later sections define all the
terms precisely). The main objects are actions, or reified operations, and con-
straints, which constrain scheduling. Each site maintains a local view of known
actions and constraints, called the site’s multilog.! A site’s multilog evolves as
local clients submit actions and constraints, and as it receives remote multilog
contents. The current local state is the result of running a valid schedule com-
puted from the current local multilog. Adding actions increases the number of
possible schedules; adding constraints reduces the scheduling non-determinism.

Constraints are of two types: ordering (—) and implication (I>). One might
imagine other useful constraint types; what we have is both sufficiently simple
to prove useful properties and sufficiently powerful for our current purposes.
Our choice of constraints enables the implementation of an efficient, optimising
scheduler [15].> The same constraint language specifies invariants at different

1A log is an ordered record of local actions [9]. A multilog is unordered, contains actions
from several sites, and also contains constraints.
2 The present choice of constraints does not support dynamic data dependencies, whereby

levels: user intents, for instance “run action 3 only if « succeeds;” data seman-
tics, for instance “action o and S mutually exclude each other” (conflict), and
replication protocol decisions, such as “serialise action « before §.”

Figure 1 shows some example constraints. The user has ensured that the
three actions «, and v will either execute or non-execute atomically with cycle
ab>BAB>YAYD>a. Action § depends causally upon €, shown by € = d Ad > €.
Actions € and (¢ conflict; the cycle e =+ (A { — € ensures that they mutually
exclude each other. We have described practical applications and systems using
constraints elsewehere [15, 20].

A replication protocol propagates actions and constraints to the different
sites in a manner described by transition rules written in first-order logic. Fur-
thermore, the protocol may decide to add constraints to ensure consistency. For
instance, to ensure once and for all that action e is executed, it would add INIT[>€
to some local multilog. Before deciding, the protocol might negociate between
sites (in this example, to choose between executing e or ¢); our model does
not directly deal with this negociation, modeled as temporary non-determinism
and/or as protocol-specific transition rules.

Multilogs grow monotonically: once added, an action or constraint is never
removed. Hence, only irrevocable decisions appear as constraints (this simplifies
the logic, and anyhow, revocable information does not contribute to correctness).

3 The data structures and their properties

We define the different data structures used in the formalism and study their
properties. This section makes no reference to sites or to time; these will be
added later on.

3.1 Actions and schedules

An action is an instance of an arbitrary operation (which can read or write
shared data) with its parameters. Once submitted, an action does not change.
Actions are application-specific and not interpreted by our framework. Actions
are assumed deterministic: executing the same action twice from the same state
has the same result.

We note A the (finite) set of actions a, 3,v.... We distinguish a special
action INIT. To « corresponds the non-action noted @, a placeholder with no
effect.

A schedule is an ordered set of actions and non-actions that starts with INTT:

Definition 1 (Schedule) A schedule S = (L,<g) consists of a set of actions
LU {iNiT}, where L C A, a mapping from L to {0,1}, and a strict total order
<g, where INIT <g z for all x € L.

an action can fail if the shared state violates some arbitrary predicate. We can express the fact
that action « fails and cannot be scheduled, by setting & — «, but the dynamic dependency
is lost. We discuss alternatives in Section 8.

The intuition is the following. L is a set of actions available for scheduling.
Depending on factors to be explained shortly, the system orders the actions
a € L and and chooses, for each one, whether to ezecute it (mapped to 1,
action « € S) or to non-execute it (mapped to 0, non-action & € S). Hence our
notations:

aesS .
€ } a executes in S

S = dap
aes .
S = ap } « non-executes in S

sched(a,S) iff a € L «is scheduled in S

where A and p are arbitrary sequences (possibly empty) of actions and non-
actions.

The schedule containing only INIT is called the empty schedule. All other
schedules are non-empty.

Let us note as a.op the operation corresponding to action «, and the initial
state as e. The state after executing S = INIT a 87 is State(S) = v.0p(B.op(a.op(€))).

Most actions commute with one another, i.e., the result of State(Saf) =
State(Spa) for any S. The non-commutativity property indicates this is not
the case:

Definition 2 (Non-Commutativity) The non-commutativity relation < is
defined over A x A. Two actions a and B do not commute iff the result of aff

may differ from Ba:

a+ dgﬂs such that

(SaB # LV SBa# 1)
A Saf # SBa

A non-action has no effect: Ya € A,VS : State(S@) = State(S). It com-
mutes with every action or non-action.

Two schedules are equivalent if they execute and non-execute the same ac-
tions, and non-commuting actions execute in the same order in both.

Definition 3 (Schedule Equivalence) Schedules S and T are equivalent, if
and only if they contain the same actions and non-actions, and non-commuting
actions execute in the same order:

S=T < VaeAd:aeSeaeTANaeSsaceT)
ANVa,BEA:ae fAa€eESABES= (a<sB=a<rf))

This is an equivalence relation over schedules. This definition of equivalence
is stronger than necessary but sufficient for our purposes.

3.2 Multilogs and constraints

A multilog is a data structure containing actions and constraints. A schedule
is sound if it is safe with respect to the contents of some multilog. We define
constraints formally herein as a relation between actions in a schedule.
A site’s local view of the global state is a distinguished multilog, the site-
multilog; it executes some site-schedule computed from the site-multilog.
Formally, a multilog is a data structure M = (K, —, >) where:

e K C Ais a set of actions,

e — (the Before constraint) is a relation over Ax A (not acyclic, nor reflexive,
nor transitive),

e > (the MustHave constraint) is a transitive and reflexive relation over
(AU {iN1T}) X (AU {INIT}).

K is called the set of actions known in M, and — and [> together are called the
constraints known in M. The set of all multilogs is noted M.

Both constraint types are relations between two actions and a schedule. —
represents an ordering constraint on schedules: if @ — 3 then a may never follow
B in any schedule. [> is an implication constraint: if a > §, then executing a
implies to execute also 3.

Definition 4 (Well formed schedules) Schedule S = (L, <g) is well formed
with respect to multilog M = (K, —,>) iff all actions known in M are scheduled,
and only those, i.e., if L = K.

Definition 5 (Sound schedules and sound multilogs) S is —-sound with
respect to M iff it is well formed and it obeys M ’s Before constraints: VYo, €
A:a—=pf = (@eSABES=a<sf).

S is D>-sound if it is well formed and obeys M’s MustHave constraints:
Vo, € A:a>f = (e S=peSI).

Schedule S is sound with respect to M if it is both —-sound and >-sound.
The set of sound schedules with respect to M 1is noted X(M).

A multilog M is sound iff it can generate a sound schedule, i.e., iff (M) #
0.

For instance, the multilogs ({a}, @, {INIT>a}) and ({a}, {a — a}, D) are both
sound, whereas ({a}, {a — a}, {INIT > a}) is not.

Lemma 1 If S is a sound schedule: a> = (B€S=a¢?9).

Proof: By contradiction: Assume § € S and a € S. Then 8 € S; but then S
is not a schedule, a contradiction.

3.3 Extension and union of multilogs

A multilog M' = (K',—',>") extends M = (K,—,>>), noted M C M', if all
known actions and constraints of M arein M': (K C K')A(=C-=")A(> C).
The extends relation is a partial order over M.

We define a union operation over multilogs.

Definition 6 (Multilog union) Let My = (K1,—1,>1), My = (K2, —2,>2)
and M = (K,—,>). The union operation is defined by:

K=K UK,

M=MUM;:{ — = (21U =)
>=(>1UDs)
The notation MUK’ (where K' C A) is used as shorthand for MU(K', @, ©).

Similarly, M U{a — B} is shorthand for M U (0, {(«,8)}, D), and M U{a > S}
is shorthand for M U (0, @, {(«, 8)}).

For any multilogs M; and Ma, it is the case that M; C M; U M>. Note that
the union of sound multilogs is not necessarily sound.?

3.4 Equivalence of multilogs; congruence

Definition 7 (Equivalent Multilogs) Two multilogs are equivalent if they
generate the same set of sound schedules. My = M iff (M) = £(M>)

Lemma 2 (Multilog Equivalence and >, —) Suppose M = (K, —,1>). Then
the following are true:

1. M=MUap«a
2. Ifa> B and B>y, then M =M Ua > 1y.
S Ifa—Band B — v and INIT> ... > S, then M =M Ua — 7.

The proof is left to the reader.
Although Before is not transitive in general, intermediate guaranteed actions
make it transitive: If « — 8 and 8 — v and 8 € Guar(M) then o — ~.

Definition 8 (Congruence) A equivalence relation R C M x M on multilogs
is said to be a congruence if: whenever MRM' then for all extensions E, (M U
EYR(M'UE).

Lemma 3 Multilog equivalence = is a congruence.

This means that we can replace a multilog by an equivalent multilog at any
time because no present or future decision can be affected. To simplify upcoming
proofs we identify M and its equivalence class.

3Remember we are identifying a multilog with its equivalence class. So M C M’ really
means that there exists M" = M’ such that (K C K”") A (=C=")A (> C).

3.5 Significant subsets

In general, when an action is first submitted, it is not known whether it will ex-
ecute nor in what order, as this will be decided later during the execution of the
replication protocol. For instance actions can be aborted and reordered [7, 22].
This uncertainty is represented in our framework as non-deterministic schedul-
ing. Eventually however the status of each action becomes more determined as
constraints are added. Note that constraints are irrevocable.*

The significant subsets in Definition 9 contain actions whose scheduling is
partially or completely determined, and constitute the basic building blocks of
any replication protocol.

Definition 9 The significant subsets of M are the following:

Guaranteed: Guar(M) is the smallest set satisfying: (1) INIT € Guar(M).
(2)VB € A: if a € Guar(M) and a 1> 3, then § € Guar(M).

Dead: Dead(M) is the smallest set satisfying: (1) Va € A: if B1,...,Bm €

Guar(M), where m is any natural integer, and « — 1 — ... = By —
a, then o € Dead(M). (2)Va € A:if 8 € Dead(M) and a1> 3, then o €
Dead(M).

Serialised: Serialised(M) def {a€AVBeAaef=>a—> VB —oaVpe
Dead(M)}

Decided: Decided(M) def Dead (M) U (Guar (M) N Serialised (M))

Stable: Stable(M) %' Dead(M) U {a € Guar(M) N Serialised(M)|VB € A :
B — a = € Stable(M)}

An action becomes guaranteed or dead when it is irrevocably executed or
non-executed, respectively. It becomes serialised when irrevocably ordered with
respect to non-commuting, non-dead actions. These two transitions can occur
in any order.

Once it is either dead, or both guaranteed and serialised, it is said decided:
both its execution or non-execution status and its ordering relative to other
actions are final. An action is stable when either dead, or guaranteed and all
its predecessors are themselves stable. (We shall prove, in Section 4.3, that
decided actions eventually become stable.) Stability means that the outcome of
the action will never change. In a practical implementation, stable actions can
be garbage-collected from multilogs.

3.5.1 Guaranteed and dead actions

We consider a multilog M = (K,—,>) and the associated sound schedules
¥(M), and some multilog M’ that has the same constraints. An action is

4This simplifies the logic, and besides, revocable information would not contribute to cor-
rectness.

guaranteed iff it executes in every sound schedule of any M', and dead iff it
executes in no sound schedule of any M'.

Theorem 1 Consider a multilog M = (K, —,>). If M is sound:

o Guar(M)={a € AU{INIT}HVK' : K' C A,¥S € Z(M') : o € S}, where
M = (K', =,).

o Dead(M) ={a € AIVK' C A,VS € X(M'") : a ¢ S}, where M' = (K',—
D).

Note how these subsets are characterised by the known constraints, and are
independent of known actions. Proof of the first equality is left as an exercise
for the reader. The second proof follows.

Dead=rnot executed: Assume f,...,8, € Guar(M) anda = 81 — ... —
Bm — a. Then any schedule S where a € S violates —-soundness. If
~ > B where 8 € Dead(M) then ~y violates >-soundness. Thus, neither a
nor v may execute in a sound schedule.

Dead<not executed We wish to prove that, if a is not executed in any sound
schedule, then a € Dead(M). By contradiction: assume a ¢ Dead(M).
Also assume VK' C A VS € ¥(M') : a ¢ S, where M' = (K',—,>).
For a ¢ K' nothing can be concluded. However, for a € K' the above
is equivalent to VS € X(M') : @ € S. Choose one such K’ and one such
S. We can write S = Aap. Since a ¢ Dead(M) then for every cycle
a—= B = ... = Bm — a, there exists ¢ such that 8; ¢ Guar(M). If §;
is in A, let X' be the same as A\ with §; replaced with f;, and equal to A
otherwise. Similarly for u. Let S’ = N ay'. Since S is —-sound, S’ is also.
Furthermore, since o ¢ Dead(M) and S is >-sound, S’ is also >-sound.
Conclusion: S’ is sound, a contradiction.

QED

If the multilog is sound, a guaranteed action must be known: Guar(M) C K.
To make some action a become guaranteed, it is sufficient to add the con-
straint INIT D> a.

Lemma 4 (Guaranteed and Dead sets are disjoint) M is a sound mul-
tilog if and only if no action is both guaranteed and dead: (M) # 0 <+—
Guar(M) N Dead(M) = O.

Proof:

(=) By contradiction. Consider schedule S € X(M). Consider action a €
Guar(M) N Dead(M). Since a € Guar(M), then o € S. Since a €
Dead(M), either a = By — ... = B, = a (where the §; are guaranteed),
or 38 € Dead(M) : at> 8 such that 8 — S. In the either case, S is not
sound, a contradiction.

(<) Assume Guar(M) N Dead(M) = @. Hence Vo € A : INIT > a = (a0 —
a) ANVB € Dead(M)—(a > (). Construct a schedule S that executes only
guaranteed actions: a € K \ Guar(M) = @ € S. Order S according to
Before: this is possible since we just assumed there are no cycles of —
and that > can be satisfied. Furthermore, S is closed for >. Hence S is
sound, and ¥(M) # Q.

QED

Lemma 5 (— must be acyclic in Guar(M)) M is a sound multilog if and
only if there is no cycle of — where all actions are guaranteed: X(M) # @ <
Aar,...;an,n>0:01,...,0n € Guar(M)ANa; = ... = ap = oq.

The proof is immediate, from Lemma 4.
It follows that @ — o = a € Dead(M). To make an action a become dead,
it is sufficient to add the constraint a — a.

Lemma 6 (— Acyclic implies Sound) If the relation — is acyclic, Dead(M) =
@. Then M is sound.

Proof: The property Dead(M) = O derives from the definition of the dead set.
If Dead(M) = @ then Guar(M) N Dead(M) = @, or (according to Lemma 4)
M is sound.

It may tempting to conclude that if all actions commute, this implies sound-
ness. However this is not true, because even commuting actions may be ordered
by —. Here is a counter-example: suppose a and 8 commute, they are both
guaranteed, and a = A — a.

Another tempting conjecture is that a multilog is sound if all cycles of —
contain a dead action. This is untrue because, if the multilog is unsound, a
dead action might also be guaranteed, as in the following counter-example:

({a}, {a = a}, {INIT > a}).

Theorem 2 Consider some multilog M € M. For any multilog M' € M that
extends it (M C M') the following properties are true:

e Guar(M) C Guar(M')

Dead(M) C Dead(M")

Serialised(M) C Serialised (M")

Decided (M) C Decided(M")

Stable(M) C Stable(M")
e X(M)=0=>XM")=0
If follows that if M is not sound, M' remains unsound.

The proof is left as an exercise to the reader.

3.5.2 Serialised and decided actions

An action is serialised before another if the former always executes before the
latter (in any schedule where they both execute). Serialisation is defined only
between non-commuting actions: if « <> 3, action « is serialised before g if and
only if @ — B (remember that we identify a multilog with its equivalence class).

Note that the “serialised before” relation is not transitive nor anti-symmetric;
indeed it is possible to have both & — 8 and 8 — «a.

A non-dead action « is serialised in M if it is ordered relative to all non-
commuting actions that execute. Once the status of an action cannot change,
i.e., once it is guaranteed/dead and (if guaranteed) serialised, it is said decided.

3.6 Prefixes

We study several kinds of prefixes. A simple prefix schedule conforms to the
intuitive definition. A strong prefix is a prefix of all sound schedules of a mul-
tilog. A monotonic strong prefix remains a strong prefix of all extensions of its
defining multilog.

P is a prefix of sound schedule S € ¥(M), noted P<S, iff common non-
commuting actions are in the same order, and additional actions of S come after
those of P.

Formally:

Definition 10 (Prefix of a schedule) Consider some multilog M € M, a
schedule S = (L, <g) where S € X.(M), and another schedule P = (J,<p).

P<S Eva,peA:
a€EP=a€eS
NeeEPABEPNas fha<pfB=>a<gf
N e PANBEPABESANa B=2>a<sf

If P is a prefix of S, one can write § = PA.

Lemma 7 (Prefix and equivalence) Consider prefix P of schedule S: Then
any schedule P' equivalent to P is also a prefix of S, and P is a prefix of any
schedule S’ equivalent to S.

P«S = (PP=P=P'kS)AN(S'=85= Pk

The proof is left as an exercise for the reader, by direct application of the
definition of prefix and equivalence.

3.6.1 Strong prefix of a multilog

An interesting special case is when P is a prefix of all sound schedules in ¥ (M);
we say P is a strong prefiz of M, which we note P<KX.(M).

10

Definition 11 (Strong Prefix)

P<S(M) ¥ S € S(M) = P<S

The empty schedule (the schedule containing only INIT) is a strong prefix of
any sound multilog.

Lemma 8 (Strong prefix, guaranteed and dead)
Consider schedule P that is a strong prefix of multilog M : PKX(M).

1. An action executed in P is guaranteed in M: Vo € A :a € P = « €
Guar(M)

2. An action non-executed in P is dead in M: Vo € A : @ € P = a €
Dead (M)

Proof: 1: c € P=> (VS € ¥(M),a€ S) © a € Guar(M). 2. a€ P= (VS €
Y(M),a€S) < ac Dead(M). QED.

Note that actions in a strong prefix are not necessarily decided. Here
is a counter-example: consider A = {a, 3} such that @ + §, and M =
({a}, 9, {1N1T > a}). Then P = INITa is a strong prefix of M even though
« is not decided.

Lemma 9 (Strong Prefix and Before) Consider action o ezecuting in PKX(M).
Consider an action such that § — «. Then either B executes in P, or [is
dead. Formally: « € PAB —+a = B € PV € Dead(M)

Proof: By contradiction. Consider @ and § such that € PAS = aAf ¢
PAB ¢ Dead(M). Since 3 is not dead, there exists a schedule S € Z(M): g € S.
Since f — « it follows that 8 <g a. Then P is not a strong prefix of M, a
contradiction. QED.

Lemma 10 (Prefix and serialisation order) The order of execution in a
strong prefit PKX(M) of non-commauting actions is their serialisation order:

Va,feA:a+ fAa,feEP = (a<pfB=>a—p)

Proof: If a — 8 then a <p 3. To prove the converse (by contradiction),
assume a <p (and a ¢+ § and =(a —). Consider some sound schedule S; if
P&Y(M) then S = dapfv. The schedule S’ = A\Fpav is sound but P is not a
prefix of S’, a contradiction.

Contrary to intuition, it is not the case that the set of decided actions form a
strong prefix. Here is a counter-example: o — § — « with {a,v} C Guar(M)
and 8 ¢ Guar(M) N Dead(M). Tt is always possible for an action that is
known but undecided, and commutes with all decided actions, to be scheduled
arbitrarily within the decided actions. In contrast, as we shall see shortly, stable
actions form a strong prefix.

11

3.6.2 Monotonic Strong Prefix

We are particularly interested in systems where a strong prefix remains a strong
prefix when the multilog is extended. We give a sufficient condition for extension
that maintains this property. The we show the relation between the monotonic-
ity property, and stability.

Definition 12 (Monotonic extension of multilog) Consider a multilog M.
Another multilog M’ is a monotonic extension of M if strong prefizes of M re-
main strong prefizes of M': M C M' N M<KXE(P) = M'«KX(P).

Not all extensions are monotonic in general, but the following weaker lemma
is always true.

Lemma 11 (Partial prefix monotonicity) Assume PKX(M) and M C M'.
The the following properties are true for all S' € L(M').

1.L.aeP=acl
2. aeP=>aecd
3. aePABeEPNa+BAa<pf=o>a<sg B

Proof: 1: o« € P = a € Guar(M) = o € Guar(M') = a € §'. 2: similar
reasoning. 3: « € PAB € PAa & fha<pf=a—-f=>a—-' =>a<g B.
QED.

The following theorem provides a sufficient condition for an extension of a
multilog to be a monotonic extension.

Theorem 3 (Monotonicity of strong prefix w.r.t. extension) Consider a
multilog M = (K,—,1>), a strong prefic PKX(M), and a multilog M' =
(K',—=',>") that extends M : M C M'. If every new action (i.e., every ac-
tion in K' not already scheduled in P) either is dead or is serialised after P,
then P remains o strong prefiz of M'. Formally, PKX(M'") if for all a, 5 € A:
(e e PAB € K'A—sched(B,P)) = a—' V3 € Dead(M').

The theorem follows directly from Lemma 11.

Theorem 4 (A monotonic strong prefix is stable) Let M € M be a mul-
tilog, and schedule P be a strong prefiz of M: PKX(M). If all multilogs M'
that extend M are monotonic extensions of M, then every action scheduled in
P is stable:

Va € A : sched(a, P) = o € Stable(M)

Proof: First we use induction over the length of P. Let’s write P = xo%1 - .- T,
where zy = INIT and either z; = a; or z; = @; for all j between 1 and n.

e Induction hypothesis: ag € Stable(M). Trivially true.

12

e Induction condition on m:
(VE,0 <k <m < n,a € Stable(M)) = a,, € Stable(M))

Assume z,, = @p; then a,, is dead (Lemma 8), hence trivially stable.
Alternatively, assume ., = au,; then a,, is guaranteed. Furthermore, any
ay, such that k& < m is before: ar <p a,,, and that is their serialisation
order if they do not commute (Lemma 10). Conversely, any ay such that
m < k' is guaranteed but serialised afterwards; it follows that —(ay —
Q)-

By the same reasoning, any action « in P is serialised before any non-commuting
action § such that 8 ¢ P but § € S’ € ¥(M') unless 8 € Dead(M'). QED.

Theorem 5 (Stable actions form a strong monotonic prefix) Consider a
sound multilog M and a sound schedule S € ¥(M). Construct schedule P such
that « € P& a € SAa € Stable(M) anda € P < a € S Aa € Stable(M)
and a,B € PNa <y B=a<p . Then PKX(M), and, for all M' such that
M C M', PKE(M').

Proof: Consider some S € ¥(M'). Any action executed in S but not in P must
be after Pin S. (1) a € P = a € Guar(M) = a € S. (2) The execution order
in P is the serialisation order, therefore a <p 8 = a = = a <y B. (3)
Consider non-commuting actions a <+ such that « € P and s € SAB ¢ P.
Since a € Stable(M) it is serialised with respect to 8. The case @ — 3 is not
possible since 3 ¢ Stable(M), therefore § — «a. This is true for all S and all M’
such that M C M'. Furthermore, Stable(M) C Stable(M'). QED.

4 Evolution and consistency of distributed state

A replicated system is a collection of sites, with one distinguished multilog per
site, called site-multilogs. Each site computes sound schedules from its local
multilog, called site-schedules. Clients update their local site-multilog by sub-
mitting actions and constraints. Sites exchange messages to update their mul-
tilog contents. This evolution of site-multilogs over time is subject to transition
rules. The universal transition rules presented in this section simply describe
client submissions and messaging and apply to all replicated systems. Specific
protocols may have their own additional transition rules.

4.1 Site-multilog and site-schedule

Each site ¢ has a distinguished site-multilog that evolves over time ¢, noted
M;(t) = (K;,—i,>;)(t). The state of site 4 is the result of executing some
site-schedule S;(t) € X(M;(t)). Since there may be many sound schedules for a
given site-multilog, the current state is non-deterministic.

13

As the site-multilog evolves over time, the site-schedule also evolves to re-
main sound.?

We study the properties of M;(t) over time, as the client at site ¢ submits
new actions and/or constraints, as the replication protocol adds constraints,
and as sites communicate with one another. For simplicity we use a global time
notation but at no loss of generality, because we do not assume that a site can
observe the global time. Also with no loss of generality we assume discrete time.

For simplicity we use a global time notation but we do not assume that a
site can observe the global time. With no loss of generality we assume discrete
time. The following transition rule describes submissions and messaging and
applies to every protocol.

4.2 Universal transition rule

We describe replication protocols as rules governing how site-multilogs may
change over time. The following rule applies to every protocol: site-multilogs
change either because a local client submits new actions or constraints, or by
receiving contents from a remote site-multilog.

The site-multilog M;(t) takes new values over time only according to the
following legal transitions, where ¢ represents an arbitrary site, ¢ an arbitrary
time, and «, 3,7 ... arbitrary actions:

Transition Rule 1 (Universal transition rule) Site-multilog M;(t) evolves
over time according to the following legal transitions:
1. Nothing happens: M;(t + 1) = M;(¢)
2. A local client submits new actions or constraints: M;(t + 1) = M;(t) U
a1, -y, {(Bi,m), -+ (BmsYm) > {(01,€1)5- - -, (On, €4)}), where I >
0,m >0,n>0.
3. The site receives contents from a remote site-multilog: M;(t+1) = M;(t)U
o, -y, {(B1,7), - -+ By Ym) 3 {(01,€1)5 -« -, (On, €0)}), where I >
0,m > 0,n > 0 and where 3j # i,t' <t such that a1,...,04 € K;(t') and
{(/31771)5 R (/Bma')’m)} C—=; (tl) and {(615 6l)a SRR (6Tw en)}) C Dj(tl)'

By design, the three transitions are not always distinguishable. For instance,
when K; adds an action already known in K}, it is indifferent whether the clients
at ¢ and j submitted the same action redundantly, or whether it was submitted
at j and transmitted from j to ¢. The separate transitions are defined here as
they will be useful in the definition of eventual consistency (Section 4.4.1).

Later (Definition 13) we will introduce a property called mergeability, imply-
ing that every transition from M;(t) to M;(t'), where t' > t, preserves soundness.

Lemma 12 (Site multilog monotonically extends) A site multilog mono-
tonically extends itself over time, i.e., t <t' = M;(t) C M;(t").

5We do not assume S;(t)<S;(t + 1)). If this “prefix property” [22] is desired, it can be
obtained using appropriate constraints. Otherwise, the implementation should be capable of
rollback and replay. Once an action is stable, it will not be rolled back.

14

The proof is immediate by the transition rules.
Theorem 6 (Guaranteed, dead, serialised, decided are monotonic)

Vi € sites,t <t' = Guar(M;(t)) C Guar(M;(t"))
ADead(M;(t)) C Dead(M;(t'))
ASerialised(M;(t)) C Serialised (M;(t"))
ADecided(M;(t)) C Decided(M;(t'))
AE(M;(t)) = O = B(M;(t') = O

The proof is immediate by Lemma 12 and Theorem 2.

A strong prefix does not in general remain a strong prefix over time. How-
ever, according to Theorem 3, if all new actions are serialised after the current
strong prefix, then it remains a strong prefix over time. According to Theorem 5,
the stable actions form a strong prefix that remains over time.

4.3 Liveness conditions

A system satisfies Eventual Action Propagation (EAP) if the actions K;(t)
known at 4 at time ¢ are eventually known at arbitrary site j: 3t' : K;(¢t) C
K;(t"). Eventual Constraint Propagation (ECP) is similar.

We specify the liveness conditions that will be useful when discussing con-
sistency.

Eventual Action Propagation is the property that any action known at some
site eventually becomes known at every other site.

Property 1 (Eventual Action Propagation (EAP)) Consider the set of
known action sets K;(t), varying over sites and time. For any pair of sites
i,j and for any time t, there exists a time t' when K;(t) C K;(t').

The similar property for constraints follows.

Property 2 (Eventual Constraint Propagation (ECP)) Consider the set
of known constraint sets —; (t) and 1>;(t), varying over sites and time. For any
pair of sites i,j and for any time t, there exists a time t' when —; (t) C—;
(") A>4(t) C MustHave;(t).

The above properties are insufficient to guarantee significant progress. Hence
the more relevant property:

Property 3 (Eventual Decision) A replicated system has the Eventual De-
cision property, if every submitted action is eventually decided: o € K;(t) =
t' : a € Decided (M;(t'))

Note that the Eventual Decision property is local to site .

Eventual Decision does not preclude the trivial implementation that makes
every action dead. This would be difficult to rule out formally, since an action
may always fail (see Footnote 2).

15

Theorem 7 (Eventual decision implies eventual stability) If a system has
the eventual decision property, then any known action is eventually stable:

(Va € A,a € K;(t) = 3t' : a € Decided(K;(t')))
=
(Va € A,a € K;(t) = 3t" : a € Stable(K;(t")))

Proof: Consider some o € Decided(K;(t)). « is serialised with respect to all 8
such that a <+ § . Consider a chain of guaranteed actions ...3; = ...8;... =
a. By soundness, we know it to be acyclic, hence it has a minimal element
Bo. By assumption, eventually By is decided; since [y is minimal it has no
predecessor by —; therefore when it is decided it is also stable. If Bq is the
only predecessor of $;, then f; is stable, and so on by induction. If £; has
several predecessors, proceed by induction over the number of predecessors and
by induction over their own predecessors. QED.

4.4 Consistency

In this section, we define some interesting properties on replicated systems:
the Eventual Consistency, the Common Monotonic Strong Prefix property, and
Mergeability. We show that Eventual Consistency and the Common Monotonic
Strong Prefix property are equivalent. Both imply Eventual Action Propa-
gation. Taken togethter with Eventual Action Propagation, the properties of
Eventual Decision and Mergeability are also equivalent to the Common Mono-
tonic Strong Prefix property, and hence to Eventual Consistency. Thus we have
four equivalent, alternative defintions of the intuitive notion of consistency.

4.4.1 Eventual consistency

We now compare different formulations of the consistency property. The first is
Eventual Consistency, which has been used in the literature to argue informally
the correctness of optimistic replication systems [2]. A system is Eventually
Consistent if, if every client stops submitting actions (and, presumably, con-
straints), then eventually every site will reach the same final value.

The first part says that there is some time T after which Transition 1.2 of
the universal transition rule (Section 4.2) does not fire. The second part says
that by some time 7", the site-schedules at every site are equivalent, and remain
equivalent at all later times. Formally:

Property 4 (Eventual consistency) A system is Fventually Consistent if, if
every client stops submitting, and submitted actions are decided, then eventually
every site will reach the same sound final value:
aT : Vi, t > T = Transition 1.2 does not fire at i
=
3T vt " i, > T A ST AS; () € S(M;(E')) AS; (") € B(M;(t"))
= S;(t") = S5;")

16

There are two objections to this definition. One, in real systems, clients
are not expected to ever stop submitting. Two, it provides no indication to
implementors how to achieve the consistency goal.

Note that an additional liveness condition is necessary to make Eventual
Consistency a useful property.

4.4.2 Common Monotonic Strong Prefix (CMSP)

We propose a different formulation of consistency, seeking to avoid the draw-
backs just noted.

Property 5 A replicated system M;(t) (i varying over sites, t over time) sat-
isfies the CMSP Property if there exists a function 7(i,t) such that:
1. 7 is a strong prefix: w(i,t)<K<X(M;(t))
2. The CMSP is equivalent at all sites: Vi, j,t : w(i,t) = w(j,t)
3. The CMSP is monotonically non-shrinking over time: Vi, t,t' :t <t' —
(i, t) < (i, t)
4. Every known action eventually reaches the prefix: Ya € A,t,i : a €
K;(t) = 3t': sched(a, w(i,t"))
w(i,t) is called Common Monotonic Strong Prefic (CMSP) at site i and time t.

The CMSP property implies Eventual Action Propagation. We now prove
that the CMSP Property is equivalent to the conjunction of the Eventual Con-
sistency and Eventual Decision properties.

Theorem 8 If every client stops submitting, then a replicated system that sat-
isfies the Eventual Consistency property if and only if it satisfies the CMSP

property.

EC = CMSP: Assume Eventual Consistency (EC); if clients stop submit-
ting, by some time T, the final state at site i is S;(T) € X(M;(t)). By EC,
for all i, j, ¢',t" > T, S;(t') = S;(¢""). The following function satisfies CMSP:
.y J N fort < T
(i, 1) = { Si(T)fort > T
CMSP = EC: Assume the CMSP Property. Every action is eventually sta-
ble, hence Eventual Decision is ensured. Suppose that the client at site ¢ stops
submitting at time ¢;. By time Tp = max;(t;) all clients have stopped sub-
mitting. Let A" = {J; K;(To). According to the CMSP Property, there is a
time where every action in A’ is in the prefix: Yo € A', 3t} : sched(a, 7(i,t})).
Assume sound site-multilogs; there exists sound site-schedules. Since no new
actions are submitted, A’ does not change, and the prefix covers the whole
site-schedule: S;(t;) = 7 (i,t;). According CMSP, all prefixes are equivalent; by
time 7" = maxy, t}, the prefix covers the whole site-schedule at every site; hence
the site-schedules are mutually equivalent: Vi,j : ¢ > T',¢" > T' = S;(t') =
(i, t') = w(j,t") = S;(t"). QED.

17

4.4.3 Mergeability

It is heartening that the two properties above are equivalent, but implementors
would still like something more operational. Hence the mergeability property,
which states that all combinations of site-multilogs remain sound.

Definition 13 (Mergeability) A system has the Mergeability property if, given
any arbitrary collection of sites i,i',i" ... and any arbitrary collection of times
tt " Mi(t) U My (8) U My (") ... is sound.

Mergeability means that sites may not (even at different times) take mutu-
ally unsound decisions. This is easy to ensure in a centralised system, but
not in a distributed one. For instance, consider at time ¢, Site 1 has multilog
({a}, 9, {INIT > a}) and Site 2 has multilog ({a}, {a = a}, D). They are both
sound but not mergeable, as their union ({a}, {a = a}, {INIT>a}) is not sound.

More generally, if o € Guar(M;(t)) for some i and ¢, then it cannot be
the case without violating mergeability that a € Dead(M; (t')) for any 4 and
t'. Similarly, if it is the case that both a —; (#)8 and 8 — (t')a, then it
cannot also be the case that both a € Guar(M;(t)) and 8 € Guar(M;y(t")).
Thus, the decision to make an action guaranteed or dead, or what order to
serialise two guaranteed actions, or to guarantee a serialised action, entails a
global agreement.

Assuming liveness properties Eventual Decision and Eventual Action Prop-
agation, then Mergeability (a safety property) us equivalent to the Eventual
Consistency property:

Theorem 9 If every client stops submitting, then a replicated system satisfies
Eventual Consistency if and only if it satisfies the Mergeability, Eventual Deci-
sion and Eventual Propagation properties.

Proof: Consider a system that has the Mergeability property. Assume clients
stop submitting actions at time ¢; at this time, the multilogs have contents
M;(t) = (K;,—,1>;)(t) for i varying over the set of sites. By Eventual Decision
and Theorem 7, there exists a time t¢; where all actions are stable at i. By
Eventual Action Propagation, there exists a time T where, for all j in the
set of sites, M;(T) = |J,; M;(t;). By mergeability, this union is sound. Since
the actions are stable, the final state is uniquely defined. Conversely, assume
Eventual Consistency. Make clients stop submitting at some arbitrary set of
times t;. There is a time T where all sites have converged to a uniquely defined
common state, i.e., site schedules S;(T") are stable and mutually equivalent.
Then every action is decided and the M;(T') are sound and mutually equivalent,
which implies Eventual Action Propagation. QED.
Theorem 12 shows that mergeability is a generalisation of serialisability.

4.4.4 TUniform Local Soundness

With a slightly stronger liveness condition, Mergeability reduces to the Uniform
Local Soundness property, i.e., that site-multilogs are sound at all times.

18

Property 6 A replicated system has the Uniform Local Soundness property iff
multilogs are sound at all times: Vi, t : L(M;(t)) # O.

Theorem 10 Assuming the FEventual Decision and Eventual Action Propaga-
tion properties, a system satisfies Uniform Local Soundness and Eventual Con-
straint Propagation if and only if it satisfies Mergeability.

Proof: (ULS+ECP = Mergeability) Assume Eventual Action and Constraint
Propagation, and Eventual Decision. Assume the system satisfies ULA but not
Mergeability. Then there exists ¢,4',4",... and ¢,t',t",... such that M;(t) U
My (') U M (") ... is unsound. By Eventual Action Propagation and Even-
tual Constraint Propagation, there exists a time T where (say) M;(T) C M;(t)U
My (£ UM (") By Theorem 2, M;(T) is unsound, a contradiction. (Merge-
ability = ULS+ECP) Assume Eventual Action Propagation and Eventual De-
cision. We already know that Mergeability implies eventual consistency, which
itself implies ULS. Since the local schedules are equivalent, this means the mul-
tilogs are equivalent. By the definition of multilog equivalence, ECP is implied.
QED.

4.5 Deciding

The intuitive meaning of Mergeability is that the system must decide for each
action, without sites making conflicting decisions. In the general case then,
decisions to make dead, guarantee or serialise entails a distributed consensus, a
known difficult problem [8]. In practice the most straightforward way to avoid
conflicts is to centralise all decisions at a single primary site [22, 18] (the primary
may change over time).

However, an important design goal for a distributed system is autonomy of
sites. There are well-known protocols that manage to make progress without an
online consensus algorithm. For instance the Timestamp Ordering protocol of
Section 6.1 uses commutativity, and the ESDS protocol (Section 6.4) assumes
that — is acyclic, which ensures soundness by construction (by Lemma 6); again,
no online consensus is needed.

In this section we examine the design space in order to understand the trade-
offs and possibilities in the spectrum.

4.5.1 TUnsound combinations

One conflicting decision to avoid is creating a — cycle between guaranteed
actions. For instance, consider a system consisting of four sites, with two non-
commuting actions a and B. Suppose the four sites independently make the
following decisions: Site 1 decides to guarantee a (by setting INIT > «), Site 2
to guarantee 3, Site 3 sets @« — [and Site 4 f — a . Any three of those four
decisions are safe, but the four together violate mergeability. (The example also
works with two or three sites.)

The second kind of conflict is to violate >-soundness. Consider actions y
and §. If Site 1 makes v guaranteed (e.g., INIT [>), Site 2 makes § dead (e.g.,

19

% Before
—:— > (intra-island) MustHave
————— > (inter-island) Split MustHave

Figure 2: The system of Figure 1 partitioned into three islands.

0 — §), and Site 3 sets the dependency v1>4. Again, any two out of those three
decisions remains sound, but not all three together.

If any of these unsound combinations can appear, then decision entails a
consensus between all the concerned sites.

4.5.2 Safe decisions

Some decisions can be made unilaterally (locally) safely; these represent suffi-
cient conditions for deciding safely. Assume for instance the only constraint on
action a is a > 8. It is always safe to guarantee «, regardless of 5. Conversely,
if the only constraint on § is a > 3, then it is always safe to make g dead.
Consider now a Before relation v — §. If (say) « is not the target of another
—, then there is no cycle, and «y can be either guaranteed or made dead uni-
laterally; otherwise, the only safe unilateral decision is dead. Similarly for §. If
there is a — cycle (or, conservtively, if a cycle is suspected) then it is safe to
make either action dead, or both. An ordering is sufficient to avoid unecessary
aborts. When an action is involved in several constraints, a unilateral decision
is safe only if safe with respect to all the constraints.

5 Partial replication

Shared data is often partitioned into separate databases. For instance, differ-
ent subtrees of a shared file system [12]; or federated Web services each is a
separate database. Databases are not necessarily independent; for instance, the
root of a file-system subtree depends on its parent in a different database. A
given site might replicate an arbitrary subset of the databases, and receive only
the corresponding actions and constraints. Thus partial replication violates the
eventual propagation properties. However, if Mergeability and Eventual Deci-
sion are both satisfied, the system retains important consistency properties in
that schedules are sound, sites that do communicate may not make conflicting
decisions, and sites can’t “cheat” by leaving schedules under-determined.

20

Figure 3: A possible execution of the algorithm of Section 5.2, proceeding from
n upwards: greyed actions are dead, the others guaranteed. (a deleted from
Figure 1 and layout rearranged.)

5.1 Islands, Split MustHave

Assuming that an action affects a single database, we partition actions into
islands, as in Figure 2: A = Alw A2 ... W A". Replicas(d) denotes the set of
sites replicating island d (Vd : |Replicas(d)| > 0) and Islands; the set of islands
replicated at site i. Figure 4 shows an example with three sites and their local
multilogs.

We might define a new Eventual Partial Action Propagation property as
follows: For any pair of such sites i,j € Replicas(d) and for any time ¢, there
exists a time #' when (K;(t) N A?) C (K;(t') N A%). Eventual Partial Constraint
Propagation is similar.

Unfortunately > is not adequate for partial replication, because if a > 3,
then a site that executes a must also know 3. Therefore we define a version
that is “remotable” across islands, Split MustHave, noted tb>. It behaves like
> when islands are replicated on the same site but remains meaningful when
they are not. The results of the previous sections remain true when replacing
> with o.

Definition 14 The relation t&> C (A U {INIT}) x (A U {INIT}) is defined as
follows. For any two actions o € A% and B € AT, and for any site i and time
t:
v def [If{d,d'} C Islands; : VS € X(M;(t)),a € S= €S
| Otherwise: ' : a € Guar(M;(t)) = B € Guar(M;y(t))
Practically, site ¢ may guarantee « after it receives a message from i’ that 3 is
guaranteed.

21

site 1: M, site 3: M,

Figure 4: Partial replication of the system of Figure 2. Site 1 replicates islands A' and A2.
Site 2 replicates islands A2 and A2 but has not yet received action . Site 3 only replicates A2.
None of the sites has yet received constraint v — 6.

5.2 A decentralised decision algorithm

It would be nice to decide for each database separately (for instance, at a per-
database primary), rather than via a system-wide consensus. We sketch a prac-
tical algorithm for this, due to Chong and Hamadi [3]. It can be implemented
efficiently, assuming constraints are mainly due to the standard relations shown
in Figure 1: parcel, causal dependence or mutual exclusion. Causal dependence
is acyclic. Parcels are small, with occasional causality links between them that
do not (in the expected case) create larger MustHave cycles. Because an island
maps to a database, a <> 8 pairs are always within an island. Most — cycles
are normally intra-island.

We present a simplified version of the algorithm that assumes the Dt graph
is acyclic and makes unilateral safe decisions. The full version (to be published
separately) tolerates occasional cycles of bt>, which require a localised consensus.

Initially, assume there is a single primary site that replicates all the is-
lands (we will relax this assumption shortly). This site runs the following cen-
tralised algorithm. All actions are initially undecided. The primary performs
the following sequential algorithm, as illustrated in Figure 3. Given any chain
an D> ... D>aj D>ag, the algorithm starts from the maximal element g and
works back to the minimal element.® Given some arbitrary pair a3 where
both a and 3 are undecided: if 3 is part of a cycle of — and all other actions in
the cycle are guaranteed, then make both a and 8 dead (in order to maintain
—-soundness); otherwise guarantee 8 and leave a undecided. If 8 is now dead
and there exists also y>p> 3, then make v dead (to maintain >-soundness). The
algorithm continues as long as there remains an undecided target of a MustHave.
If an action MustHave two others (apt>(and abt>y for instance) it is dead if
either one is dead, and guaranteed if they are both guaranteed. Guaranteed
actions related by — execute in that order, otherwise order is arbitrary. The al-
gorithm terminates and maintains soundness, since it makes only safe unilateral
decisions.

We now generalise to the case where different islands may have different

8 An action unrelated to any other by > is considered a chain of length 0.

22

primaries. We run the following slightly modified algorithm at each primary. If
— cycles are always intra-island, the algorithm does not change, and primaries
may execute in parallel. For any relation apt>f, before deciding on «, the
primary of a waits to receive the decision from the primary of 8. Since no a «<
pair spans islands, primaries never need to agree on an ordering. Information
flows in the opposite direction of the D> graph, and no consensus is needed to
decide.

In some applications, a — cycle may occasionally span islands. Then, the
implementation must be careful to avoid concurrently guaranteeing the two last
actions in a cycle, by ordering primaries (e.g., by IP address); when in doubt,
the lowest-ordered primary in a cycle of — makes its action dead.

Our description assumed that the set of actions and constraints is fixed. The
algorithm can be executed incrementally if actions and constraints are added
according to causal order. Otherwise, a global algorithm will be needed to detect
termination.

6 Modeling protocols in the action-constraint
framework

In this section we study a number of published replication systems.
Many systems restrict actions to only reads and writes. Hereafter r(x) de-
notes a read of object z; a write is noted w(z).

6.1 Timestamp ordering (Last Writer Wins)

The Timestamp Ordering approach, also called the Last Writer Wins (LWW)
algorithm or the Thomas Write Rule [18], is used in many practical systems, for
instance distributed file systems [12, 21] or distributed directory systems [13].
Each site is free to read and write shared objects locally with no synchronisa-
tion. Objects and writes are timestamped, and a write only takes effect if its
timestamp is greater than the object’s. Writes propagate in arbitrary order but
the system converges of timestamps. (Such systems don’t propagate reads.)
Let us formalise LWW. Action a writes value a.value to the contents

x.contents of some object x, but only if the timestamp relation a.ts > x.ts;

otherwise it has no effect. Formally: « ©f if a.ts > z.ts then z.contents :=

a.value else skip. Somewhat surprisingly, under this definition, two writes to
the same object commute.

Every action is guaranteed immediately when submitted. Since actions com-
mute and are guaranteed, they are immediately decided and stable. There are
no further constraints between actions. — is empty (hence trivially acyclic),
and LWW satisfies Mergeability.

LWW is completely decentralised; there are no online decisions and no need
to run a consensus algorithm. The drawback is that LWW loses information,

23

since when two writes occur concurrently the one with the lowest timestamp
has no effect.

6.2 Causal Consistency

Up to now we have considered actions as opaque objects, submitted by a client
external to the system. In practice the user cares about the context; for instance
he might write out a check based on the knowledge that his account has sufficient
balance.

More generally an action might depend on all previous history. Such application-
specific dependencies are often unknown, and in any case are difficult to express.
Therefore causal consistency conservatively assumes that an action depends on
the current state. If actions are restricted to reads (r;(x) reads object z and is
submitted at site ¢) and writes (w;(x)), writes that might be causally related
must execute at all processes in the same order; the order of concurrent writes
is not determined. Then (1) 7;(x) depends on the last w;(x) executed at i; (2)
any action submitted at site ¢ depends on all actions previously submitted at
i; and (3) wg(x) submitted at k # i cannot execute before r;(z) concurrently
executed at ¢. Concurrently-submitted writes remain unordered.

Recall that a causal dependence a ~» (3 is encoded as a = BA B > a. If
neither a ~» § nor § ~» «a then a and § are said concurrent.

A causally-consistent system is characterised by the following rule. We will
subscript actions with their submission site and time.

Transition Rule 2 (Causal Consistency) Consider some actions o, f3,. ..,
classified as reads noted r(x) and writes noted w(y). Note the site where «
is submitted ss(a) and the time at which it is submitted st(a). Note S;(t) the
schedule at site i at time t.

1. An action depends causally on all actions previously submitted at the same
site: Yo, 8 : st(a) < st(f) = a ~ 8.

2. A read action o = r(x) depends causally on the last write to = executed at
the same site: 3 € Sgya)(st(a)) A (v € Si(t) = v <,y BVB =7) =
w(z) ~ r(x), where B and v are both writes to x.

Note that it probably doesn’t make much sense to submit an action until
the ones it depends upon are stable.

Causal consistency is a decentralised decision algorithm that does not lose
information. However, despite its name, it is not a consistent according to our
definitions, because concurrent writes to the same object remain unordered [17],
despite not commuting. Thus, causal consistency does not satisfy the Eventual
Decision property.

6.3 Commutative ESDS

This section describes the commutative version of the Eventually Serialisable
Data Service protocol [7, Section 4.3]. In this protocol, which we call C-ESDS,

24

operations are assumed to commute, except when an operation a explicitly
indicates causal dependencies on a set of operations a.prev. C-ESDS ensures
that the schedules executed at each replica obey these dependencies, and replicas
eventually converge. The order in which actions are scheduled is determined by
labels that are assigned, in causal order, to guaranteed actions. There are no
conflicts, and every submitted action is guaranteed.

The causal dependencies between operations can be translated into our no-
tation: for all B € a.prev : B - a Aa > . They are assumed acyclic by
construction.

The transition rules for C-ESDS are the following (to simplify notation we
omit the site and time parameters, i.e., K stands for K;(t), and similarly for —
and >):

Transition Rule 3 (Commutative ESDS)

1. Every action is guaranteed: Yo € A : a € K = INIT > a.

2. Causality constraints: Yo, € A : a € K = (8 € a.prev = (f —
aAarf)).

3. Causality is acyclic: Aoy, ...,0, € Ko = ... = a, = ay.

4. Non-commuting actions are serialised by the client: Yo, 8 € A,a <> BAa €
KABeK=(a—8VE—a).

5. Causal dependence is eventually satisfied: Yo, € A : a € K;(t) AN €
a.prev = ' : f € Ki(t').

The only constraints are those allowed by items 1 and 2; in particular item 4
does not introduce new constraints. The above is in addition to the Universal
Rule 1.

Thus formalised, it is clear that C-ESDS satisfies consistency, by Uniform
Local Soundness. Every action is guaranteed and — is acyclic, hence all multi-
logs are sound. By item 5, every action is eventually decided.

Reasoning within our model clarifies the specification of C-ESDS and sug-
gests two simplifications to the protocol specified by Fekete et al. First, an
action is stable as soon as its antecedents are guaranteed at the local site; it
is not necessary to wait, as they do, for the action to be stable at other sites.
Second, all local orders compatible with the prev constraints are equivalent, and
the global total order they compute is unnecessary.

6.4 Non-Commutative ESDS

In the full ESDS system of Fekete et al. [7], which we call NC-ESDS, actions
do not commute, but the prev lists submitted by clients provide only a partial
ordering. The protocol computes a total ordering, ensuring actions are executed
in the same order at every site.

25

The total order is computed as follows. Every site assigns every known
action « a label (a timestamp), as soon as all actions in a.prev have themselves
been labeled. The labelling algorithm ensures that, for all 8 that already has
a label (which includes every action in a.prev), the label of « is greater. The
location of « in the total order is given by the minimum label assigned to it
by any site; this is known at site ¢ once i has received notification of a’s label
assignment from every other site.

The multilogs of Fekete et al. are set up differently from ours. The multilog
at site ¢ contains: the actions known at i, the set of actions that ¢ knows are
“done” (i.e., they have received a label) at every site j, and the set of actions
that ¢ knows are “solid” (i.e., their minimum label is known) at every site j.

If we assume that communication is live, and for any known action « all
actions in a.prev are eventually known, then o will eventually become “done”
everywhere. Once site 7 observes that action « is “done” everywhere, it can set
B — a for any action S that is “done” everywhere and where the minimum label
of 3 is less than the minimum label of a. Every site will eventually make the
same computation, and the constraint 8 — a will be known at every site. Thus,
every action is eventually serialised, and the serialisation order is the same at
every site; mergeability is satisfied. Furthermore, every action is guaranteed
as soon as it is submitted. Eventual decision is satisfied, and every action is
eventually stable.

The “solid” set is not strictly necessary. Fekete et al. use it to be able to
observe when an action has become stable.

We plan to formalise the above analysis of NC-ESDS in future work.

6.5 Transactions

In this section we examine how to represent conventional serialisable transac-
tions.
A transaction is a group of actions with the ACID properties:
e Atomic or all-or-nothing: either all its actions commit or they all abort.
In our model, mutual > relations ensure atomicity. To abort is equivalent
to becoming dead. To commit is to become stable and guaranteed.
e Correct (executed alone, the transaction maintains the application invari-
ants). This is an assumption.
e Isolated (no committed transaction can observe intermediate effects of
another transaction).
e Durable (the effects of a committed transaction are persistent). Durability
is captured by our stability concept.

The classical correctness property is serialisability: committed schedules are all
equivalent to some sequential ordering of transactions.

In the literature, a transaction’s actions are bracketed by special begin/end
markers. A pessimitic transaction system decides the serialisation order trans-
action begin. Deferred-update systems [1] serialise when the current transaction
ends; but when a cycle of — is observed (or suspected) transactions abort (are

26

made dead). A system such as Bayou [22, 14] allows chains of outstanding
transactions (and support unlimited rollback). Related transactions are sent to
a “primary” site to be decided in bulk. In Bayou, the serialisation is known a
priori using timestamps, but transactions may abort because of hidden depen-
dencies.

In this section, we follow the classic usage whereby actions are restricted to
reads or writes to shared objects, e.g., r;(x) to read object x or w;(x) to write
it.

6.5.1 Action-Constraint representation of transactions

In our formalisation, we use a single transaction marker. We do not preclude
cascading aborts nor concurrency within transactions. Stronger assumptions
are easily represented by adding appropriate constraints.

In this section, indices denote transaction identity. A transaction T; is com-
posed of a single “transaction marker” action 7; and zero or more read and write
actions ;. To ensure atomicity, for all actions «; of transaction T; the following
are mandatory: «; > 7; and 7; > ;.

A 7; action does not change the state. Transaction markers are mutually
non-commuting if one transaction writes an object that the other one reads or
writes: 7; & T, f i ZJA(R;NW; ZOVW;NR; # OV W;NW; # O), where
R; is T;’s read set (the set of z such that r;(z)) and W; is T;’s write set (the set
of z such that w;(z)).

A write to some object is non-commuting with both reads and writes to
the same object. For all read and write actions in transactions T}, T} upon all
objects x, y:

o ri(z) o wi(y) iff x =y

o wi(z) & wy(y) i 2=y

The following rule ensures isolation.

Transition Rule 4 If T; is serialised before T} (i.e., 7; — 7;) then their non-
commuting actions must be serialised in the same order. 7; = 7; <= (a; ¢
B; = a; = B;), where a; and B; are arbitrary actions of T; and T; respectively.

A transaction system evolves over time according to the conjunction of the
general transition rules of Section 4.2 and the specific Transition Rule 4.

The rule ensures transaction isolation, because if 7; — 7;, every action of T}
executes before any action of T, unless they commute.

Theorem 11 (Rule 4 ensures isolation) Consider a transaction system where
T; and T; may read or write shared objects x, y, etc. Assume the system fol-
lows the Transaction Isolation Rule. Then, if 7; — 7;, all reads and writes of «
(resp. y, etc.) by T; follow any write of x (resp. y, etc.) by T;.

The proof is by inspection.
In this context, serialisability is obtained if the graph of — relations between
guaranteed 7; actions is acyclic. This is the same as saying that multilogs are

27

sound. Thus, our Mergeability property is equivalent to the classical Serialis-
ability.

Theorem 12 Consider a replicated transactional system that obeys Rule 4.
Transactions are serialisable if and only if the system satisfies Mergeability.

The proof derives from Lemma 6.

6.5.2 Causal dependence between transactions

In the above model, transactions are essentially independent. In practice this
might not be true: for instance, the user might submit a transaction to reserve
a hotel based on the knowledge that a previous transaction booked a flight.
Such application-specific dependencies are often unknown and in any case are
difficult to express. Therefore, many authors posit causal dependencies between
successive transactions [4]: e.g., if T; reads object x that was last written by
T;, there is a causal dependence w;(z) ~ r;j(z).” Furthermore, a read cannot
depend on a write that is not serialised before it. Hence the following transition
rule:

Transition Rule 5 (Causally dependent transactions) Consider transac-
tions T3, T}, ... composed of reads (r;(x)), writes (w;(x)) and transaction mark-
ers (1;). Note S;(t) the schedule at site i at time t.

1. A read action r;(z) submitted at time t depends causally on the last write
to x executed at Site i: wj(x) € Si(t) A (wi(z) € Si(t) = (wr(z) <s;1)
wi(x) Vk=73)) = wji(z) ~ ri(z)

2. A read action r;(x) submitted at time t must be serialised before any con-
current or later wj(x). wj(z) ¢ Si(t) = ri(z) = w;(x).

It makes sense to submit a new transaction only when the ones it causally
depends upon are stable. In the example above, this would avoid the user
booking the hotel only to later discover that the flight reservation has failed.

Transactions systems with causal dependence follow the Universal Transis-
tion Rule 1, the Transaction Isolation Rule (Rule 4) and a Causal Dependence
Rule [19] . Transactions are ordered according to the (acyclic) causal depen-
dency. Bullet 2 creates a — cycle between concurrent transactions updating
the same object, so at least one of them must be aborted in order to satisfy
Mergeability.

6.6 Holliday’s partial replication protocol

We now describe the partial replication protocol, for transactional systems, of
Holliday et al. [11]. We focus on its partial replication and consistency proper-
ties.

The authors assume FIFO communication with eventual action and con-
straint propagation. They implement a vector-clock mechanism that enables

"Recall that a ~» § is shorthand for o = 8 A B> a.

28

some site to know that another site has observed a given event. Abort/commit

decisions are taken by the pre-commit consensus algorithm among the sites that

replicate the databases accessed by the transaction.

We augment multilogs with a new set of actions, X, containing markers for
transactions that have been proposed for pre-commit. We assume that like K,
X grows monotonically and its contents are eventually propagated to all sites.
We posit a primitive obs;(7,7) that returns true when site j knows (thanks to
the vector clock) that site 4 has executed the Abort Decision step, relative to 7,
of Transition Rule 6.

Transition Rule 6 (Holliday’s pre-commit algorithm) 1. Transaction
termination: At site i where transaction T is submitted, when T termi-
nates, start the pre-commit protocol by inserting its marker T into the local
X set: X;:=X; U{r}.

2. Abort decision: At any site j, check transaction markers T in X whether

any marker 7 known locally is non-commuting with 7; if so, abort both
T and T'. Formally: V7 € X;V1' € Kj such thatt & 7' : M; :=
M; U{r = 7,7 = 7'}. Henceforth, other sites k will eventually observe
obsg (7,) = true.

3. Commit decision: When site i where T was submitted knows that every site

has executed the Abort Decision step for T, and none of them has aborted
T, then make T committed. Formally: Y7 € X; : if Vk obs;(1, k) A =(7 —
7) then M; := M; U{INITI>7}. (Holliday assumes FIFO communication.)

Transactions are ordered by the causality relation, which is assumed acyclic.
If two concurrent transactions are non-commuting, then both are made dead in
the Abort Decision step above. A transaction is allowed to become guaranteed
(in the Commit Decision step) only if it does not abort. No action is both dead
and guaranteed and — is acyclic. Since every action is eventually decided, and
we assumed eventual propagation of both actions and constraints, Holliday’s
protocol is consistent.

Our simplified specification makes it easier to understand the protocol than
the original informal description. It suggests a possible improvement in Abort
Decision step: to use a total order of transactions (e.g., by numerical transaction
identifier) and abort only the lowest-ordered one.

7 Related work

Our survey of optimistic replication [18] motivated us to understand the com-
monalities and differences between protocols. The relations between consis-
tency and ordering have been well studied in the context the causal dependence
relation [16, 17]. We believe our simpler and modular primitives clarify and
generalise the analysis. The primitives are common to all protocols, as are
the significant events of actions becoming guaranteed, dead, serialised, decided
and stable. We are able to specify formally a large spectrum of systems and
algorithms.

29

Much formal work on consistency focuses on serialisability [1, 5]. Mergeabil-
ity subsumes serialisability and applies to a larger spectrum of systems.

Our approach is not directly comparable to linearisability [10], as our sched-
ules execute actions in isolation and because we abstract away from objects and
from real time, which both are part of the definition of linearisability.

Constraints — and > were first proposed by Fages [6] for general reconcili-
ation problems in optimistic replication systems.

Our approach has many similarities with the Acta framework [5]. Acta has
been used to compare a number of database protocols [16]. Acta provides a
set of logical primitives over execution histories, including presence of an event,
implication, and causal dependence and ordering between events. Acta makes
assumptions specific to databases, such as the existence of transaction commit
and abort primitives. The Acta description language is more powerful and is
used to analyze protocols at a much finer granularity. On the other hand, the
action-constraint language is simpler; it is straightforward to translate most of
the Acta dependencies into our language.

8 Conclusions and future work

We have presented a novel approach to the description of replication protocols
and their consistency properties. Actions (operations accessing shared data,
submitted by clients of a replicated system) are connected by binary constraints,
which are invariants that must be maintained by the system, and which specify
legal schedules. Different entities such as users, application, shared objects, and
replication protocols, contribute their own constraints. The focus of this work
is to describe replication protocols, which propagate actions and constraints
between sites, and add sufficient constraints to ensure consistency.

We were able to describe very different replication protocols in the same
language and to bring to light their commonalities and differences. We identified
some primitive components common to all protocols (the significant sets). We
provide a generic formulation of the consistency-related properties of protocols.
Several definitions of consistency were shown to be equivalent, underscoring
that, although diverse, many protocols are in a deep sense equivalent. Protocols
differ from one another by the kinds of constraints that they support and by
the transition rules that govern evolution of the system over time.

We defined a new safety condition for consistency, called Mergeability, which
generalises serialisability. It makes it clear that in the general case, consistency
entails a global synchronisation, which is known to be difficult. However we have
shown sufficient conditions (acyclic Before graph, and safe unilateral decisions)
where it is possible to decide locally and incrementally. In contrast to the other
conditions, Mergeability is appropriate for partially replicated systems. We
described a new protocol based on this insight.

We are aware of a number of limitations of this work. The current version of
the theory totally ignores fault tolerance aspects. The split between constraints
and transition rules is somewhat unnatural. The algorithm leading up to a

30

decision is outside of the theory, which is somewhat unsatisfactory.

The biggest limitation is the weakness of the constraint language. There are
only two kinds of constraints, both binary. This has the advantages of simplicity
(it is easy to understand and to prove properties), and is sufficient to describe a
number of diverse systems. However practical systems need to enforce invariants
that cannot be described in the current language, for instance the invariant that
account balances must remain positive in a banking application. A possible
direction is go generalise our guaranteed and dead sets to guaranteed and dead
patterns. Currently, the crucial safety property is that the guaranteed and dead
sets are globally disjoint. This would generalise to the guaranteed and dead
sublanguages be disjoint globally.

References

[1] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley, 1987.
http://research.microsoft.com/pubs/ccontrol/.

[2] A. D. Birell, R. Levin, R. M. Needham, and M. D. Schroeder. Grapevine:
An exercise in distributed computing. Communications of the ACM,
25:260-274, April 1982.

[3] Yek Chong and Youssef Hamadi. Distributed IceCube. Private communi-
cation, January 2004.

[4] Panos K. Chrysanthis and Krithi Ramamritham. ACTA: The SAGA con-
tinues. In A. K. Elmagarmid, editor, Database Transaction Models for Ad-
vanced Applications, chapter 10, pages 349-397. Morgan Kaufmann, 1992.

[5] Panos K. Chrysanthis and Krithi Ramamritham. Correctness criteria and
concurrency control. In A. Sheth, A. K. Elmagarmid, and M. Rusinkiewicz,
editors, Management of Heterogeneous and Autonomous Database Systems,
chapter 10. Morgan-Kaufmann, 1998. http://www-ccs.cs.umass.edu/db/
publications/mdb.ps.

[6] Francois Fages. A constraint programming approach to log-based reconcil-
iation problems for nomadic applications. In 6th Annual W. of the ERCIM
Working Group on Constraints, Prague, Czech Republic, June 2001.

[7] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex
Shvartsman. Eventually-serializable data services. In Conf. on Principles
of Dist. Comp., Philadelphia PA, USA, May 1996. http://theory.lcs.mit.
edu/~alex/podc96esd.ps.

[8] M. Fisher, N. Lynch, and M. Patterson. Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM, 32(2):274-382, April
1985.

31

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Francisco CA, USA, 1993. ISBN 1-
55860-190-2.

Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condi-
tion for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463-492, 1990.

JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi. Partial database
replication using epidemic communication. In 22th Int. Conf. on Distr.
Comp. Sys. (ICDCS), pages 485-493, Vienna, Austria, July 2002. IEEE
Computer Society. http://computer.org/proceedings/icdcs/1585/1585toc.
htm.

James J. Kistler and M. Satyanarayanan. Disconnected operation in the
Coda file system. ACM Trans. on Comp. Sys. (TOCS), 10(5):3-25, Febru-
ary 1992. http://www.acm.org/pubs/contents/journals/tocs/1992-10.

Microsoft. Windows 2000 Server: Distributed Systems Guide, chapter 6,
pages 299-340. Microsoft Press, Redmond, WA, USA, 2000.

K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. De-
mers. Flexible update propagation for weakly consistent replication. In
Proc. Symp. on Operating Systems Principles (SOSP-16), pages 288-301,
Saint Malo, October 1997. ACM SIGOPS. http://www.parc.xerox.com/csl/
projects/bayou/.

Nuno Preguica, Marc Shapiro, and Caroline Matheson. Semantics-based
reconciliation for collaborative and mobile environments. In Proc. Tenth
Int. Conf. on Coop. Info. Sys. (CooplS), Catania, Sicily, Italy, November
2003.

Krithi Ramamritham and Panos K. Chrysanthis. A taxonomy of correct-
ness criteria in database applications. VLDB Journal, 5(1):85-97, 1996.

Michel Raynal and Masaaki Mizuno. How to find his way in the jungle of
consistency criteria for distributed shared memories (or how to escape from
Minos’ labyrinth). In Proc. of the IEEE Int. Conf. on Future Trends of Dis-
tributed Computing Systems, pages 340-346, Lisboa (Portugal), September
1993.

Yasushi Saito and Marc Shapiro. Optimistic replication. Technical Re-
port MSR-TR-2003-60, Microsoft Research, October 2003. http://research.
microsoft.com/research/pubs/view.aspx?tr_id=681.

Marc Shapiro and Karthik Bhargavan. The Actions-Constraints approach
to replication: Definitions and proofs. Technical Report MSR-TR-2004-14,
Microsoft Research, March 2004. Draft available from http://www-sor.inria.
fr/~shapiro/tmp/marc.ps.gz.

32

[20]

[21]

[22]

Marc Shapiro, Nuno Preguica, and James O’Brien. Rufis: mobile data
sharing using a generic constraint-oriented reconciler. In Conf. on Mobile
Data Management, Berkeley, CA, USA, January 2004. http://www-sor.
inria.fr/~shapiro/papers/mdm-2004-final.ps.gz.

Hal Stern, Mike Eisley, and Ricardo Labiaga. Managing NFS and NIS.
O’Reilly & Associates, 2nd edition, July 2001. ISBN 1-56592-510-6.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers,
Mike J. Spreitzer, and Carl H. Hauser. Managing update conflicts in
Bayou, a weakly connected replicated storage system. In Proc. 15th
ACM Symposium on Operating Systems Principles, Copper Mountain CO
(USA), December 1995. ACM SIGOPS. http://www.acm.org/pubs/articles/
proceedings/ops/224056/p172-terry/p172-terry.pdf.

33

