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1 INTRODUCTION 11 IntroductionObject-oriented programming methodology is becoming increasingly popularfor all sorts of applications. Many object-oriented programming languages ex-ist, such as Smalltalk [Goldberg and Robson 1983], Ei�el [Meyer 1987], C++[Stroustrup 1985], CLOS [Gabriel 1989], etc. Each compiler enforces its ownobject model, and deals with the inadequacies of existing operating systems inits own way.The main goal of the SOR (French acronym for Distributed Object-OrientedSystems) group of INRIA is to implement an object-oriented distributed systemwhich o�ers an object management support layer common to all applicationsand languages. This should:� o�er a more simple universe for the development of applications;� facilitate the implementation of object-oriented language compilers;� make applications more e�cient;� allow independent applications to communicate and share objects, withoutprior arrangement.The services of the common object management support layer include sup-port for creating, deleting, migrating, storing, localizing, and invoking ob-jects. If these services are su�ciently complete, low-level, generic, language-independent, application-independent, and e�cient, then they can legitimatelybe called an object-oriented operating system.Within the o�ce-workstation Esprit project SOMIW (Secure Open Multi-media Integrated Workstation), from 1985 to 1988, we have built a prototypecalled SOS. It has been used for the SOMIW applications, such as BFIR2, a mul-timedia document toolbox, and Images, an user-interface management system.SOS is written in C++ and prototyped on top of UNIX.SOS supports an elementary object model which is both simple and powerful.A reasonable granularity is of the order of a hundred bytes and up per object.Composite objects are built on top of elementary object mechanisms.SOS is designed to encourage the use of the proxy principle [Shapiro 1986]for structuring distributed applications. It extends the object concept to dis-tributed, or \fragmented" objects. Externally, a fragmented object appears tobe a single object. Its interface is provided by its local fragments or proxies,which are elementary objects. Internally, the many fragments are distributed.SOS is built using its own mechanisms: all the SOS system services areimplemented as fragmented objects with local proxy interfaces.



2 OVERVIEW OF SOS 2This paper present SOS, the decisions we made in designing it, and an as-sessment of the prototype.The next section provides an overview of the main concepts of SOS. Section3 is about elementary objects. It is followed by section 4, an explanation of frag-mented objects. Follows section 5, which discusses object migration. Sections6, 7, 8, 9, describe the main services of SOS: communication, dependencies,persistence and naming. Finally, in section 10, we give an assessment of thedesign and implementation of the prototype.2 Overview of SOSSOS is an object-oriented operating system. It provides support for arbitraryuser-de�ned objects, including object creation, destruction, migration, storage,localization, communication, naming, support for Fragmented Objects, etc.2.1 SOS conceptsAn Elementary Object is some user-de�ned set of data and code. ElementaryObjects don't need to be known by the system, if they are not intended to bemigrated, stored or remotely accessed. For such objects, which we call plainobjects, the system doesn't keep any information. In this paper we are onlyinterested in the objects managed by SOS which we call SOS objects; we willconsider that all Elementary objects are SOS objects.Elementary Objects have a system descriptor1. Considering the overheaddue to the descriptor existence and its management, a reasonable granularityfor the object data part is a size of 50 or 100 bytes and up.We assume that the data part is accessed only via its type-checked proce-dural interface. An object accesses system services by calling the appropriateprimitives; we call this a downcall. Conversely, the system can invoke, with anupcall, a few well-known procedures of an object.An object is mapped into a context. A context is an address space. It maycontain any number of Elementary Objects. Elementary Objects may migratebetween contexts; at any point in time, an Elementary Object is active withina single context, or stored on disk.Each object has an unique identi�er called its concrete OID. An object isdesignated by its address (within the context), or globally by a reference con-taining an OID and a location hint.1Composite objects, with multiple data segments connected by pointers, are built on topof Elementary Objects, but they will not be considered here.



2 OVERVIEW OF SOS 3SOS extends the object concept to distributed or Fragmented Objects. AFragmented Object is implemented as a group of Elementary Objects whichcan be located in several contexts, on di�erent sites; its representation is thereunion of the local \fragments". Just as an Elementary Object can access itsown representation, bypassing the procedural interface, similarly the individualfragments of a Fragmented Object are allowed to use untyped communicationto each other: invocation of fragments belonging to di�erent contexts, calledcross-context invocation, shared memory, etc. Objects which are not fragmentsof a same Fragmented Object are not permitted to communicate in this manner.A fragment may create and add a new fragment to the group, and export itto another context. Group membership is preserved across migration; thus theFragmented Object grows by spreading.Applications on SOS are designed according to the \proxy principle" [Shapiro 1986]:services are composed of three kinds of Elementary Objects: servers, proxies andproviders. The server is an object which is able to serve requests. The proxy is alocal Elementary Object, which represents the service. Each client which wantsto access a service, must have a proxy of this service in its context. The provideris in charge of providing proxies on client request. For clients, the proxy is theonly interface to the service. A proxy can process requests locally, or forwardthem to the remote server (see �gure 1).The proxy principle is a powerful and exible tool to structure distributedapplications. The use of proxies allows to enforce security in the system andensure a large location transparency.2.2 The SOS prototypeOur prototype is implemented in C++ on top of UNIX (SunOS). This articledescribes SOS Prototype Version 5.SOS comprises a kernel and system services running on top of it. The kernelprovides separate address spaces (contexts), light-weight threads in a context(tasks), and inter-context communication. Programming for SOS requires theuse of prede�ned libraries and a modi�ed C++ compiler.SOS objects are instances of the prede�ned class sosObject (or of a compat-ible class). C++ has so-called virtual procedures [Gautron and Shapiro 1987].A class may override the pre-de�ned actions of these procedures. Upcalls areperformed by calling sosObject's virtual procedures. Unfortunately, this is notlanguage-independent.Separate address spaces are provided by UNIX. Tasks are implemented asa library (the task library of C++ [Stroustrup and Shopiro 1987] with someadditions). Context management is performed by a UNIX process called sos.



2 OVERVIEW OF SOS 4
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2 OVERVIEW OF SOS 5Inter-context communication uses UNIX-domain stream sockets. Remote com-munication uses the SOS protocol toolbox [Makpangou 1989].On each machine and for each system service, the program sos automaticallystarts system-service contexts set. Applications are run from the UNIX shell orthe debugger.The system services are structured as Fragmented Objects. Four basic sys-tem services are available:� The Acquaintance Service. This is the distributed object manager.It deals with localization, migration of objects, in cooperation with thecommunication and storage services. Each context has an AcquaintanceService proxy at instantiation which yields to the context the basic oper-ations on Elementary Objects (see section 3).� The Communication Service. The Communication Service providescommunication between sites, and a set of invocation protocols allowingremote procedure calls and multicast (see section 6).� The Storage Service. The Storage Service handles the generic aspectsof object persistence. It de�nes a minimal set of simple and generic toolsto make storage of typed composite objects handled quasi-automaticallyby the system (see section 8).� The Name Service. The name service manages the binding of internalnames to symbolic names. Any object can be named in the same manner.The name service allows clients to build their own view of the name space(see section 9).After a comparison with similar work, we will take a deeper look at thedesign and implementation of the SOS prototype, and evaluate it in the lightof our experience. For more detailed information about SOS, see [SOR 1989,SOR 1988].2.3 Comparison with similar workEmerald is an object-oriented language for distributed programming, featuring�ne-grained mobility [Jul et al. 1988]. The compiler transforms the user-de�nedobject representation in order to facilitate migration: its �rst few bytes area standard descriptor, and all �elds of a similar type are grouped together.Conceptually, all objects live in a single, network-wide address space. An objectreference is global, but a local reference is optimized into a pointer.In contrast, the SOS approach is operating-system based. We do not assumeany standard representation. Instead, system information is well separated from



3 ELEMENTARY OBJECTS 6programmer-de�ned data, and the system performs upcalls on objects. Insteadof a single address space, we stress structuring the universe.Choices [Campbell et al. 1989] is a family of operating systems built usingobject-oriented design. The services it exports to applications are fairly con-ventional. The emphasis in SOS was not its internal design, but providing newservices to facilitate the implementation of distributed object-based applica-tions.Clouds [McKendry 1985] is another object-oriented OS. Its emphasis is onintegrating support for reliable objects in the low level of the system (Ourcurrent design has no particular provisions for reliability.). Their objects arepresumably much larger-grained than ours, since a Clouds object executes in itsown address space.Guide/Comandos [Decouchant et al. 1989] is a language-driven distributedprogramming environment. The universe is structured in separate, multi-machineaddress spaces called domains. When a domain needs access to an object locatedon a remote machine, it extends itself to that machine, and maps the objectin. This structure is easier to use than SOS's Fragmented Objects; however thelatter scales better, and deals better with replication.Gothic [Banâtre et al. 1986], a language and system for reliable distributedprograms, is based on a theory of Fragmented Objects invoked via \multi-functions" (side-e�ect-free invocations, with co-ordinated distributed threads),supported by the language. Our Fragmented Objects are ad-hoc but more ex-ible.3 Elementary ObjectsThe basic entity managed by the SOS Acquaintance Service (AS) (i.e. the objectmanager) is the Elementary Object. We have made the Elementary Object assimple as possible, a \least common denominator" for all uses.An Elementary Object is a single user-de�ned data segment, with a systemdescriptor. (Composite objects, with multiple, arbitrary data segments con-nected by \permanent pointers" are built on top of Elementary Objects; wedeal with them in section 8.)At any point in time, an Elementary Object exists in a single context on asingle machine. Each Elementary Object is di�erent from all others; it is char-acterized by its own unique identi�er called its concrete OID. An ElementaryObject is known to SOS by its descriptor, called Acquaintance Descriptor (AD).There is a table of ADs per context, managed by the context's AS proxy.An AD for some object contains the following information (the items initalics have to do with migration and groups, and will be de�ned later):



3 ELEMENTARY OBJECTS 7� Its concrete OID and (possibly) a list of group OID's,� The reference of its code object and (possibly) a list of prerequisites,� The address and size of its direct segment,� (Possibly) Its list of channels.The class code is a prede�ned class of Elementary Objects. A code instanceholds the compiled code for some class. For instance the code for some user-de�ned class X is managed by the code instance code for X. The reference fromthe AD to the object's code is necessary for migration. Modeling the code as aseparate object is an example of uniformity and reuse: the system treats a codeinstance just like any other object.The following table gives the downcall interface for elementary-object man-agement. There are no upcalls.In this and the following tables, we use a pseudocode notation for simplicity.The clause \a.b(c)!d" means: invoke procedure b of object a, with in argumentc, and returning value d. Object AS is the proxy of the Acquaintance Service.Downcalls for elementary-object managementnew sosObject () ! obj Object creationobj . delete () Object destructionobj . setCodeRef (ref) Set code reference of objectAS . �nd (ref1, radius) ! ref2 Search for object locationAS . getAddress (ref) ! obj Translate global reference to localaddressAS . getReference (obj, OID) ! ref Translate address to globalreference3.1 Creation and destruction of Elementary ObjectsIn C++, creating an object triggers a chain of calls to constructor procedures,starting from the actual implementation class, up to the root of the inheritencetree (in this case, sosObject), and back down to the implementation class. Aconstructor is a mix of compiler-generated and user-de�ned code. Memoryfor the object is allocated (by malloc) in the compiler-generated part of theimplementation class constructor; its address passed up, as the object's address,to the sosObject constructor.Thus, there is no explicit primitive for object creation: it is implicit in thesosObject constructor, which allocates an unused AD, and �lls it with a newly-allocated OID, and with the address and size of the data.The size of the data is not explicitly available to the sosObject constructor:it is taken from the malloc header. The reference to the code object is not



3 ELEMENTARY OBJECTS 8available either; the constructor sets it to nil. The other parts of the AD arealso initialized to nil.The implicit AS interface for object deletion is the destructor procedure ofsosObject, called automatically when an instance is deleted, similarly to theconstructor. The destruction of a context or a processor crash deletes all thecontained instances, but the destructor may not be called. We have designed anew mechanism to reliably propagate object-destruction events to dependentsof an object (see section 7).3.2 Miscellaneous Elementary Object management proce-duresThe �nd procedure of the AS, given a reference to an object, �nds the actuallocation of the object (possibly by asking all the AS proxies within the speci�edradius), and returns a reference containing that exact location. If the argumentis a reference to a group (see section 4), the returned value is the reference ofits closest fragment.AS.getReference and AS.getAddress translate between local object addressesand global references. If getAddress is passed a reference of a group (see section4), it returns the address of its local proxy, if any. The OID argument of getRe-ference allows to pick between a reference to the Elementary Object itself, or toits group.3.3 Elementary Objects: assessment3.3.1 Code objectsThe code of an object is modeled as a separate object, an instance of classcode, attached to its Elementary Object by a call to setCodeRef. The systemtreats it just like any other object. This is an example of the power of ourelementary-object model. As we will see (in section 5.3), dynamic type-checkingand linking is performed automatically. They are not wired into the system, butare performed by the class code reinitializer. This is an example of uniformityof treatment and reuse of generic functionality at the service of specializedsemantics.3.3.2 Creation and destructionAn object is created either as a plain object or an SOS object, and remains suchfor all its existence. A useful degree of exibility would be to allow an existingobject to become known to the system dynamically.



4 FRAGMENTED OBJECTS, OR GROUPS 9The object-creation scheme outlined in section 3.1 is convenient for the C++application programmer, because the compiler automatically takes care of call-ing the object creation and destruction primitives.One drawback is that the system interface is not clearly identi�ed and notlanguage-independent. Another problem is that the sosObject constructor doesnot have all the necessary information; for instance the size of the data is ob-tained by the malloc-header hack. Similarly, the code reference can not be setby the constructor; a separate call to setCodeRef is necessary prior to migration.The convenience of automatic creation should be kept, but more informationis needed from the compiler to make it e�ective. Furthermore, conveniencefor C++ programmers is no excuse for not de�ning a language-independentinterface.4 Fragmented Objects, or groupsA Fragmented Object is the structure for a distributed application. The purposeof a Fragmented Object is distributed communication and cooperation, withoutinterference from other objects.It is implemented as a group of Elementary Objects, called its fragments.Alternatively, a group can be viewed as is a single object with a fragmentedrepresentation. Clients of the group may access it locally by its strongly-typedprocedural interface, provided by the proxy fragments. The group's public in-terface is a sort of a union of its fragments' interfaces.Just as an Elementary Object may access its own representation directly,bypassing its public interface, similary a fragment may access the group's inter-nal representation. Therefore fragments may communicate, via untyped sharedmemory or by messages for instance.A group is conceptually a protection domain, entered by invoking one of itslocal proxies.The following table shows the interfaces for group management.



4 FRAGMENTED OBJECTS, OR GROUPS 10Group downcall interfaceAS . addGroupOID (obj, OID) ! index Create a new groupobj1 . giveMyOID (obj2, index1) Put obj2 in same group as obj1new channel (obj1, obj0, opaque)! ch1 Establish channel from obj1 to obj0new channel (obj2, ch1, opaque) ! ch2 Duplicate channelch . invoke (callMsg)! replyMsg Remote invocationch . send (callMsg)! inv Asynchronous remote invocationGroup upcall interfaceobj . stub (callMsg)! replyMsg Invoke object, return replych . receiveInvoke (callMsg)! replyMsg Channel receives invocationA group is characterized by the fact that each fragment carries the OID ofthe group, in addition to its concrete OID. An Elementary Object can be afragment of zero, one, or more groups.Members of a group enjoy mutual communication privileges, which are de-nied to non-fragments. An invocation channel is a unidirectional RPC connec-tion between two Elementary Objects on the same machine, materialized bya �eld in the source object's AD pointing to the target. (Channels to remotemachines, and channels implementing other protocols, are explained in section6.) Other types of communication within the group, such as shared �les, arealso available, but will not be detailed here. Shared memory should be possible,but we never implemented the appropriate interfaces.4.1 Group managementThe primitive addGroupOID assigns a fresh group OID to an object, in order tostart a new group. It returns the index of the new OID in the object's AD'sidenti�er list.A group is created implicitly by giveMyOID, which gives away an existingconcrete or group OID (designated by its index in the list of OID's of obj1), tosome object.A group disappears when its last fragment goes away.4.2 ChannelsA channel may be created only between fragments of a same group. The �rstchannel creation procedure creates a channel between its argument objects,which must be located in the same context. Objects connected by a channelcan be migrated. The second channel creation procedure duplicates an existing



4 FRAGMENTED OBJECTS, OR GROUPS 11channel: before the call, obj1 has a channel ch1 to some fragment, say obj0;after the call, obj2 also has a channel ch2 to the same receiver. This is the onlyway to create a channel to an object in another context.As its name implies, the opaque argument is not interpreted by the system.It is simply stored at the sender end of the channel, and will be automaticallyprepended to every invocation sent on it. The receiver may test the opaque �eldof remote invocations to distinguish between its callers, for instance to establishtheir access rights.24.3 Using channels for cross-context invocationThe channel operation invoke sends an invocation on a fragment's channel tosome other fragment, possibly located in some other context, and returns areply. The send operation is similar, but executes asynchronously; it returnsan invocation object which can be queried for results. Discussion of invocationobjects is deferred to section 6.1.2.Remote invocation arguments must be \marshalled" [Birrell and Nelson 1984]by the calling proxy, and passed to invoke or send as a message. A message iscomposed of a header and of a list of segment access rights. The message headeris of limited size (1024 bytes); any larger data is to be stored in a segment andpassed as a segment right.3 Available rights are read, write, and create. A replyis also made of a limited-size message and, possibly, segment rights.A cross-invocation causes an upcall to the stub procedure of the receiverwithin a fresh task. The receiver gets a copy of the invocation message, andmay access the segments according to the rights passed. Stub returns a returnmessage which is copied back to the caller.It is up to stub to unmarshall the call message and segments, call the appro-priate procedure, and marshal its results into the reply message and segments.It plays the rôle of Nelson's \server stub" [Birrell and Nelson 1984].A channels' receiveInvoke procedure may perform some local processing of themessage at reception. It is the counterpart of invoke, for end-to-end protocols.The receiveInvoke of a receiving channel is called before the stub of the receiverobject.2The opaque attribute of a channel is similar to the rights �eld of a capability inAmoeba [Mullender and Tanenbaum 1986].3This is modeled after the V-System RPC [Cheriton 1984].



4 FRAGMENTED OBJECTS, OR GROUPS 124.4 Fragmented Objects: assessment4.4.1 Cross-context communicationThis is our second design for the cross-context communication interface. Ourprevious one (see for instance [Shapiro 1989]) was much more primitive andexposed the kernel data structures. The new design uses channel and invocationobjects to smooth the kernel interfaces. The use of objects allows us to overloadthe basic invoke and send, for instance for multicast protocols (see section 6).4.4.2 Constructing a groupCurrently each fragment type is programmed \by hand", and there is no guar-antee of consistency even within a particular type of group. We are workingon a new tool, a \fragment generator" (similar to an RPC stub generator). Itwill take care of the common aspects of programming fragments and providers(viz. allocating group OID's, setting up channels, and message marshalling/unmarshalling). It will also allow to de�ne group types with a well-de�nedstructure, and enforce their internal consistency at compile time. Finally, it willprovide help in coordinating state changes between fragments.4.4.3 ProtectionOnly the currently-executing Elementary Object should have access to its ownchannels; similarly for other primitive operations. The kernel attempts to en-force this, taking advantage of the fact that the C++ compiler adds the addressof the invoked object as a hidden �rst argument to all invocations. When in-voke or send is executed, the kernel checks that the sender identi�cation, in thechannel data, is equal to the current object argument of the penultimate stackframe.The situation is similar with many system primitives.Getting the current Elementary Object from the stack is a weak way ofenforcing the group protection domain at run-time. Given our environment(vanilla UNIX and standard hardware), and the granularity of objects, it wasunfeasible to implement a stronger form of run-time protection at a reasonablecost. A stronger enforcement would be desirable, but weak enforcement is ac-ceptable, because groups are intended as a program structuring concept, not acon�dentiality mechanism.To provide some protection of the group against spurious membership, give-MyOID and channel creation can only connect objects within the same context.The normal way of creating a group is to create proxies locally and migrate them(see below) to another context; group membership and channels are preservedacross migration.



4 FRAGMENTED OBJECTS, OR GROUPS 134.4.4 Non-uniform object identityAn Elementary Object has two di�erent identities: its address; and a location-independent reference (containing its OID). An address is not meaningful out-side of its instantiation context. It needs to be explicitly translated into areference (by getReference) in order (for instance) to be embedded in a message.A client of some service need not be aware of these distinct identities, as theservice is accessed using the address of the local proxy.In contrast, the programmer of a Fragmented Object must cope with them.Within the Fragmented Object, some Elementary Objects are local to eachother, and others are in remote contexts. Communication between the formeruse addresses and local invocation; between the latter, references and cross-context invocation.SOS o�ers tools to bridge this gap. Permanent pointers (section 8) automat-ically convert between references and addresses. Channel objects help hide thedistinction between di�erent modes of invocation. Finally, dependencies (section7) replace explicit invocation by a more uniform mechanism for broadcastingstate changes.Some other systems, such as Emerald [Jul et al. 1988] and Amber [Chase et al. 1989]provide a more uniformview. In these systems, the local-address/global-referencedistinction exists but it is hidden to programs, by providing a single, network-wide address space, and compiler support for trapping remote access. Similarly,Guide [Balter et al. 1987] supports multiple network-wide address spaces. Anobject is identi�ed only by its global reference. An object used by many appli-cations is simultaneously mapped into each corresponding address space.These systems are more tightly integrated than SOS, but require a closecoupling between compilers and the run-time system. They are often restrictedto a single, specially-designed language.4.4.5 Future workThe problems of run-time object protection and non-uniform object identity aretwo symptoms of inadequate memory organization.Proposals for the evolution of SOS include merging references and permanentpointers.A structured memory organization, like that o�ered by capability machines,might improve run-time protection. A more attractive idea is to enforce theintegrity of the group at compile time. Our proposed \fragment generator"(section 4.4.2) is a step in this direction.An intriguing alternative would be to implement a Fragmented Object as anetwork-wide virtual address space. This should simplify the programming of



5 MIGRATION OF ELEMENTARY OBJECTS 14Fragmented Objects considerably.5 Migration of Elementary ObjectsA Fragmented Object implements some distributed service. Its public interfaceis provided locally by its fragments, which act as proxies for the service. In orderto get access to a service, a client must acquire an appropriate proxy. This isdone dynamically by migrating a fragment into the client's context.Migration is completely generic, thanks to appropriate upcalls (an upcall togiveProxy initializes an importation; an upcall to a reinitializer �nalizes migra-tion), and to the code and prerequisite objects.5.1 Migration interfaceThe migration interface is given in the following table.Migration downcall interfaceAS . import (key, importReq, "class", Request import of obj of type classservice)! objobj2 . ch . export (desc1) Export object 1 along channel ofobj2obj . giveSelf () ! desc Use \move" semantics for migrationof objobj . giveCopy () ! desc Use \copy" semantics for migrationof objMigration upcall interfaceobj . giveProxy (importReq) ! desc Import requestobj . re-init (: : : ) Finalize migrationThere are two possibilities for migration: import and export. Both use thealgorithmexposed below, in section 5.2: migrate descriptor and data, recursivelyimport code and prerequisites, call reinitializer.We will �rst detail export, the simpler of the two. In section 5.1.2 we detailimport. Finally in section 5.1.3 we give a typical SOS example: importing aproxy for a screen window.5.1.1 ExportingThe call ch2.export (desc1) migrates an object obj1, described by desc1, alongthe channel of obj2 indicated by ch2. Either obj1.giveSelf () or obj1.giveCopy () is



5 MIGRATION OF ELEMENTARY OBJECTS 15used to prepare desc1. Export uses the migration algorithm of section 5.2; usinggiveSelf implies \move" semantics whereas giveCopy implies \copy" semantics.The object on the other end of the channel will receive a special invocationmessage, signalling the arrival of an exported object.5.1.2 ImportingTo acquire a proxy for a new service, a client will request an import from aproxy provider for that service, via the Acquaintance Service call import, whichupcalls the provider's giveProxy. This procedure prepares a local object, whichis then migrated back to the caller.An easy-to-use import interface is implemented by a C++ compiler exten-sion. The following extended C++ construct:new dynamic (service) class (importReq, : : : ) ! objgenerates a call to AS.import followed by a call to the proxy's re-initializer.Its arguments are: service, the reference of an object which will be requestedto provide a proxy for the service, and importReq, an import request messagecarrying untyped request parameters. The AS automatically adds to the importrequest the reference of the requestor. Possible extra arguments (indicated bythe ellipsis) will be passed to the re-initializer.The other arguments to AS.import are automatically generated by the com-piler: key describes the expected type of the imported object; and "class" isthe name of the class in the new dynamic declaration, which is used to select adefault provider, but is not otherwise used.The mechanics of importation are the following. The AS proxy of the re-questor performs a �nd based on the service reference. This yields the locationof the provider object (or of one of its fragments if the provider is a FragmentedObject). The AS proxy at that location then performs the giveProxy upcall onthe provider, with a copy of the import request, carrying su�cient informationto identify the requestor.After verifying the request and the requestor's credentials in some service-speci�c way, the provider's giveProxy selects some object M to be migrated,and calls either giveSelf or giveCopy, as above, to prepare a description whichit returns; alternatively, it may return an error indication. The object M couldbe the provider itself, or some other object of its context, or a stored object.In the latter case it must be of the same group. When giveProxy returns, M ismigrated to the requestor, according to the algorithm of section 5.2.



5 MIGRATION OF ELEMENTARY OBJECTS 16At the end of a migration (step 5) a re-initialization procedure is up-called,to allow �nalization. A typical use of the re-initializer is to set pointers tomeaningful values, or to request more importations.5.1.3 Importation exampleConsider the example of a request to open a window on the screen. In SOSthis will be an import request for a window proxy, addressed to the windowmanager. The window manager is the proxy provider. It will create a windowproxy P, which will be exported to the requestor as its window interface, anda window server S, which will do the graphics. This example is illustrated by�gures 2 and 3.The giveProxy code of the window manager will: put P and S into a newly-created group; connect them with a channel; and return P as a result.The provider code will look some thing like the following.4windowMgr :: giveProxy (importRequest)! desc f-- check requestor's rights and argumentsif (notOK (importRequest))then raise (refused)�-- create proxy and server, put them in a groupP: windowProxy := new windowProxy (importRequest.args)S: windowServer := new windowServer (importRequest.args)i: integer := addGroupOID (P, new OID)P . giveMyOID (S, i)-- prepare P for migration: set code, create channelP . setCodeRef ( NS . lookUp ("/export/windowProxy.code") )-- suppose P has a �eld chan of type channelP . chan := new channel (P, S, "my proxy")-- migrate Preturn (P . giveSelf())g5.2 Migration algorithmSuppose Elementary Object X is to be migrated from source context S to des-tination context D. The algorithm starts when the decision to migrate X has4The lookUp operation of the Name Service (see section 9) maps a symbolic name to areference.
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6Fragmented Window ObjectchannelWindow ProxyWindow ServerWindow ManagerGraphics Program giveProxy
Figure 2: Before migration: the Window Manager has created a Window Proxyand a Window Server and has connected them.
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Figure 3: After migration: the Window Proxy is in the client's context andremains connected to the Window Server.



5 MIGRATION OF ELEMENTARY OBJECTS 19been noti�ed, and all access rights have been checked; we will ignore error cases.The algorithm is the following.1. Make X unavailable to users in S.2. Copy the AD of X from source to destination context. All the contentsof the AD are preserved: its concrete OID, group OID's, channels, codereference, prerequisite references, and size of data segment. However theaddress-of-data-segment �eld is invalid.3. Using information in the AD, copy X's data from S to some arbitrary freelocation in D. Update the data address �eld in the destination AD.4. If (a proxy of) X's code object is not yet present in D, import one. Ifpresent, skip this step. Similarly, import all prerequisites of X, if notalready present.5. Upcall the re-initialization procedure of X in D.6. Make X available to users in D. The data and AD of X are destroyed in S.The above describes the \move" variant of migration. The \copy" variantdi�ers only slightly: a new concrete OID is allocated in D (step 2), and thesource copy is not destroyed, but instead is made available again (step 6).Group information and channels are preserved across migration. Howeverthe kernel only implements channels within the same machine. When an invo-cation is sent on a channel, if the kernel detects that the destination is remote,it cooperates with the Communication Service to recreate an appropriate indi-rection via a local protocol object. This is described in section 6.2.3.5.3 Migration of code and prerequisitesWe mentioned (step 4 of the migration algorithm of section 5.2) that the codeand prerequisites are recursively imported, if not already present, before callingthe re-initializer. The prerequisites are the environment the migrated objectneeds in order to function; the object's code is just one kind of prerequisite.These are imported if not already present, in order to avoid waste: this allowstwo imported objects to share code if they are implemented similarly. The samemechanism supports static linking of the code for proxies, without any loss offunctionality.The giveProxy procedure for class code migrates a copy of the code.Since a prerequisite is imported according to the same algorithm as otherobjects, its re-initialization procedure is called in step 5. The re-initializer for acode object is a dynamic linker and type-checker. The type is checked against



5 MIGRATION OF ELEMENTARY OBJECTS 20the key argument to sosImport. The linking and type-checking algorithm arelanguage-speci�c; other languages could be supported simply by implementinga new code class.5.4 AssessmentWe stress that the upcalls to giveProxy and to the initializer, together with pre-requisistes, implement a very important concept: extending a system-de�nedmechanism with programmer-de�ned semantics. Arbitrary objects can be mi-grated, and the semantics of their migration is type-speci�c, above a single,generic, system-implemented mechanism.The strength of this design is that prerequisites are Elementary Objects likeany other. Dynamic linking and type-checking are automatic, without beingwired in. The drawback is that type-checking is automatic only for the �rstimport of an object of a certain class; type-checking for subsequent importsmust be special-cased.\Vertical" migration of data (from disk to memory) is essentially the same\horizontal" migration (between memory contexts). However vertical migrationhas the capability of dealing with composite objects (see section 8), which hasnot yet been integrated with the horizontal migration.5.4.1 Calling the re-initializerThe C++ syntax for importation is an extension of the instantiation syntax,and in C++ the re-initializer is in fact a \virtual constructor".5This raises the issue of whether the reinitializer call should be generated bythe compiler, or performed by the system. The former solution permits extraarguments (in addition to the import request); the latter allows the system toknow that re-initialization has succeeded. We opted for the compiler solutionwhenever possible, favoring the confort of C++ programmers. However forexports and for prerequisite imports, the reinitializer can only be called by thesystem, hence the double interface.The compiler decision was bad for three reasons. First, it imposes to treatexports and prerequisites di�erently from imports, which is confusing for theusers. Second, the provider does not know if the import actually succeeded.Finally, and most importantly, an operating system should be independent of aparticular language implementation; the system solution should be preferred.5We will not discuss this point in any detail since the language interface is out of the scopeof this paper; see [Shapiro et al. 1989] for details.



6 COMMUNICATION 215.4.2 Export vs. importExporting is a more primitive operation than importing. In fact, an importcould be modeled as an import request, followed by an export from the providerto the requestor. Initially we refused to have an export primitive, because wewere concerned with the protection issues involved, and we didn't know howlet the target context make use of the newly-available object. Recently werealized that, for some applications, export is the only natural mechanism: forinstance, the Images UIMS is modeled more naturally as a window managerexporting event objects to applications, rather than applications polling thewindow manager for events.The export mechanism has been implemented, but the proposed interface isnot yet available.5.4.3 Static groupsA group is created when a proxy provider migrates a proxy to another context.But there is also a need for static groups. For instance, a system service such asthe AS, the Name Service, the Storage Service, or the Communication Service,is implemented by one server on each machine, which comes up at boot time.In order to communicate with its remote peers, it must already be a fragmentof their group as soon it starts up. Currently, a protection loophole is neededto circumvent this problem: when the server comes up, it forges an OID with agiven value (taken from a con�guration �le) and inserts itself in the group usingaddGroupOID.This loophole should be protected by some privilege but in fact it is not.Better still, the Fragmented Object should be persistent. SOS supports persis-tent objects, as a service above the basic mechanisms described here (see section8); a much tighter integration is needed to support persistent groups.6 CommunicationThe Communication Service [Makpangou 1988, Makpangou 1989] consists of atoolbox of protocols. Its encapsulation by channel objects (see section 4) shouldfacilitate the work to add new protocols and to interface them with applicationprograms. For example, the Acquaintance Service and the Name Service usemulticast communications for distributed updates.At present, this toolbox implements unicast and multicast, synchronous andasynchronous communication. The results of asynchronous and multicast com-munication are managed by an invocation object.



6 COMMUNICATION 22Multicast communication is based on the family concept. A family is asubset of a Fragmented Object. Its members communicate by multicast. Afamily comprises a set of members, operations to add and remove members,and multicast invocation interface to its members.The Communication Service interface consists of two main layers:� The invocation protocols.For every invocation protocol type (such as RPC, multicast, synchronousor asynchronous), there is a corresponding class, which can be instantiatedin the Communication Service context. The Communication Service is atoolbox of such classes. These base classes can be extended (by inheritenceor rede�nition), or mixed, to build new protocol types.� The application interface.The application interface consists of channels, for communicating betweenfragments. A channel encapsulates the access to protocol objects.Two channel types are currently de�ned: channel for unicast communica-tion, and multiChannel for multicast protocols. The second type is com-patible with the �rst one.6.1 Application interfaceTo use a protocol, an application instantiates a channel, which is a proxy of theneeded protocol object. The protocol object is instantiated in the Communica-tion Service context; The channel is connected to it by a channel.The channel interface was given in the section 4.6.1.1 Multicast communication interfaceThe multiChannel interface inherits from the channel interface. In addition, ito�ers the following procedures.multiChannel downcall interfaceIn addition to channel interface (see section 4):new multiChannel (obj1, familyRef, Create a channel from obj1opaque) ! mch to a multicast familynewmultiChannel (obj2, mch1, opaque) Duplicate multicast channel! mch2mch . multiInvoke (callMsg, replyDesc) Synchronous multicast invocation! invmch . multiSend (callMsg)! inv Asynchronous multicast invocation



6 COMMUNICATION 23A multiChannel implements multicast communication. The reference of fam-ily (familyRef) must be provided at creation.Invocations on multiChannels can be either unicast or multicast, and eithersynchronous or asynchronous. Callees see no di�erence between a unicast and amulticast invocation. With unicast invocation on a multiChannel, the protocolpicks some arbitrary member of the family to be the callee; we call this functionaladdressing. A particular callee can be designated, by specifying its concrete OIDin the invocation message; this is selective addressing.With multi-invocation, all members of the family are invoked; this is broad-cast addressing. Alternately, all the members on the site of a particular membercan be invoked. This particular member is named by its concrete OID in theinvocation message.With synchronous multicast invocation, the caller waits until the number ofreplies received is equal to the number expected, as described by the descriptorreplyDesc.A multi-invocation creates an invocation object, which can be queried forincremental results.6.1.2 Invocation objectsThe following table shows the interface of an invocation object.Invocation object downcall interfaceinv . isReplyReady () ! boolean Ask for possible replyinv . getNextReply () ! replyMsg Wait for the next available replyinv . delete () Terminate the current invocation,discarding any further resultsThe isReplyReady method queries the invocation object for reply availability.The getNextReply method waits until the next reply is available and returns it.This allows several behaviours. For example, an application can decide to keeponly certain replies, or only the �rst one.An invocation object o�ers also the delete method to terminate the currentcall.6.2 Internal structureThe only communication protocol implemented by the kernel is a cross-contextinvocation along a channel, within the same machine. Remote (across machines)access and other protocols (such as streams or multicast) are performed byprotocol objects, implemented by the Communication Service.
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Site 2ObjectCommunication Service context Communication Service contextFigure 4: Distributed protocol object, layered underneath the fragmented ap-plication objects it servesA protocol object is layered underneath the application group that it serves;this is illustrated by �gure 4. A protocol object is itself a group of cooperatingelementary protocol objects, instantiated in the Communication Service contextof the individual machines.A protocol object has the privilege that it can be the source or the target ofa channel, even though it is not a member of the application group. In all otherrespects, a protocol object is a standard Fragmented Object.6.2.1 FamiliesA family is a subset of a Fragmented Object, o�ering multicast communications.The following table shows the interface of families:



6 COMMUNICATION 25Family interfaceobj . createFamily (groupOID) Create a new family within a group! familyRefobj . joinFamily (familyRef) The object obj joins the familyobj . leaveFamily (familyRef) The object obj leaves the familyEvery family is identi�ed by a reference (familyRef). A family manager is aFragmented Object whithin the Communication Service context, that managesoperations to add and retrieve members in a family.An application fragment can join a family (by joinFamily) to receive invoca-tions within a family. Then a family object is instantiated in the CommunicationService context. At �rst invocation by a client on a multiChannel connected tothis family, toward this fragment, a protocol object is bound to the family ob-ject.6.2.2 Communication Service structureThe Communication Service is composed of three layers (see �gure 5): thenetwork interface, the transport protocols and the invocation protocols.A network interface object encapsulates access procedures to a speci�c net-work. We currently implement two types of network objects, for raw and UDPUNIX sockets.The transport protocol layer is composed of a single communicator object,which implements reliable and unreliable, and point-to-point and multicast mes-sage transport. Unreliable communication doesn't pay the cost of the existenceof reliability. (For more details, see [Makpangou and Shapiro 1988]).Two invocation protocol types are currently de�ned: RPC and MRPC. RPCis an extension of the crossInvoke primitive. MRPC is a multicast RPC from afragment to the whole family.The semantics are Only-Once-Type-1 in Spector's classi�cation [Spector 1982]:in the absence of communication or processor failures, the callee is invoked onlyonce per call.6.2.3 Establishing connection at �rst communicationBy default, a connection is set up between fragments at the �rst invocation.As discussed in the section about the migration algorithm (see section 5.2),channels are preserved across migration.Before the �rst invocation, a channel is a virtual unidirectional connectionbetween fragments. An implicit binding is permitted by putting the referenceof the callee object into the caller object's acquaintance descriptor.
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6 COMMUNICATION 27The kernel detects remote invocations, and requests the proxy of the Com-munication Service to establish the connection: First, it allocates a protocolobject for this connection, using the protocol chosen by the channel object.Then it registers the reference of this protocol object in the acquaintance de-scriptor of the caller for optimizing future invocations. At this point, the kernelretries the call and the protocol object invoked relays the call to its counterpartwithin the callee site. The two ends of the connection are installed and releasedseparately.Later, a connection might be reinstalled transparently, if one of the endobjects decides to migrate.6.3 Assessment6.3.1 Protocol toolboxThere are not yet enough protocols in the present toolbox. However, our designis extensible, because communications are structured in several levels: Frag-mented Objects manage protection domains; channels perform communicationand protocol invocations; invocation objects are used to get multiple replies andmanage asynchronous invocations. Above these levels, our proposed \fragmentgenerator" (see section 4.4.2) shall manage the method level, by automaticallygenerating the stub procedures of a Fragmented Object.Finally, the hierarchical design of the Communication Service facilitatesreuse. Multicast invocations reuse code for simple invocations and are dis-tinct from the family concept. We hope to reuse them in turn in the future toimplement new protocols, such as ISIS multicast [Joseph and Birman 1988].6.3.2 Asynchronous invocationsIn the prototype, asynchronous invocations are simulated upon synchronous,by creating a dedicated task to send the invocation. Both invocation typesare necessary. Synchronous is more frequently used and more simple, so itwas implemented �rst. Our implementation of asynchronous communication islimited by the task system limits and its performances.6.3.3 FamiliesInvocations within a family are ordered. However, our implementation doesn'tguarantee the order of delivery of requests to members belonging to several fam-ilies. For instance, two multicast invocations towards two non-disjoint familiesare not ordered for objects which are members of both families.



7 DEPENDENCIES 28We need a light-weight primitive to give the members list by protocol ob-ject. But it is not yet implemented. A broadcast to the family allows to knowmembers that are alive at the instant of the invocation.7 DependenciesSo far, the mechanisms for structuring and handling communication between re-lated objects have been described. From the system point of view, no semanticsneeds to be associated with inter-object invocations; it is part of the fragmentedobject internal protocol. This is a simple and exible mechanism upon which awide set of applications can be built. However, there are abnormal situations(or events) which, since they can imperil consistency within a group of objects,just can't be handled this way.For instance, suppose we have a �le server that controls sharing, using locks.Upon request to read or write a �le, a proxy is exported in the client context,holding an appropriate lock. If a crash occurs on the client's side, the �le servermust be informed in order to remove residual dependencies and make the �leavailable again for subsequent requests.For this purpose, we de�ne the dependency mechanism. It provides simplesupport for:1. declaring objects as being part of a common dependency family,2. detecting/taking into account situations which are relevant to a givendependency family, and3. propagating the corresponding events within a dependency family.7.1 EventsTwo kinds of events are supported :� system detectable events corresponding to abnormal and normal termina-tion, and� user-de�ned events.Although both events types are uniformly treated, there are di�erent moti-vation for supporting each kind. The abnormal termination event is generatedwhenever a site/context crashes; it is at the basis of the mechanism. Althoughnormal termination could be handled directly by programmers, we support it forconvenience. Finally, user-de�ned events provides support for a simple software



7 DEPENDENCIES 29signal facility. These events can correspond to any change in an object's state,not detectable by the system; a special call is used to inform the system thatsuch an event has occurred.7.2 Dependency familyA dependency family consists of a set of objects which agree to a commonsignalling protocol. We have identi�ed two useful dependency family structures:Master-slaves: this is the most suitable structure to use when one speci�cobject is the propagation source to many other objects. For example,suppose we are dealing with replicated �les: upon update, the masterobject can propagate the events to all its replica in order to invalidatethem.Flat: in this structure all objects are at the same level. An event, generated byany object in the dependency family, is propagated to all the others. Thiscan be used to de�ne dependencies between various co-operating servers.Broadcast is the only possible communication mode within a dependencyfamily.The following table gives the interface for dealing with dependencies.Dependency family downcall interfacenew dependencyFamily () ! dep Create a dependency familydep . addDependent (dependent, Add dependent to dependencydependsOn) familydep . addOwner(owner) De�ne owner as an eventpropagation sourcedep . removeDependent (dependent) Remove dependent fromdependency familydep . release (dependsOn) Remove all dependentsdep . giveDependents(dependsOn) Find all dependents of dependsOn! dependentListdep . isDependent(dependent, Check if dependent dependsdependsOn) ! yes or no on dependsOndep . hasDependents(dependsOn) Check if dependsOn has any! yes or no dependentsdep . changed (dependsOn, event) A user-de�ned eventDependency family upcall interfaceobj . stub(event) Notify event to dependent object



8 PERSISTENCE 30After a dependency family has been created, calling the procedure addDe-pendent has the following e�ects:1. The arguments dependent and dependsOn are added in the dependencyfamily, if not already present.2. Any change on dependsOn will be propagated to dependent.A master-slave dependency family is obtained by calling addDependent for eachslave.The addOwner procedure permits to specify that an already dependent ob-ject becomes an event propagation source. This means that all objects in thedependency family will be signalled if a change occurs on object owner. This isused to create a dependency family with a at structure.It should be noted that each dependent object is in charge of decoding eventsupon noti�cation. System events have prede�ned values whereas user-de�nedevent values are part of the protocol of each dependency family.The dependency manager is built as an extension of the basic object managerdescribed in section 3. Its implementation is mainly based on the use of multi-channels and family objects (see sections 6.1.1 and 6.2.1).We believe that it should be very useful, especially for applications whichare sensitive to failures. However, it is still in way of implementation, so wecan't yet, give a real evaluation of the mechanism.8 PersistenceThe Storage Service manages the physical storage of typed and composite objectson disks in a generic way. Once stored, objects become permanent ; their storedrepresentation can never be deleted. To be permanent, an object must be oftype permObject, from which can be derived user-de�ned types. The state of apermanent object must be explicitly saved on storage. The permanent state ofa permObject is never lost.Our �rst goal was to implement a one-level storage, transparently integratingthe so-called \vertical migration" (to and from disk) with \horizontal migration"(from context to context).Indeed, vertical importation from storage into a context is identical to hori-zontal importation. Unfortunately, at the time the implementation of the Stor-age Service was started, horizontal migration included only object importation,not export. Therefore, a special checkpoint primitive is used to explicitly storean object, from memory to disk. Checkpoint is optimized to store only themodi�ed portions of the object.



8 PERSISTENCE 31A permanent object can be composed of several segments. In order to betaken in account by the Storage Service, those segments must be referenced byspecial permanent pointers.Permanent pointers allow to use indirect segments transparently. When �rstaccessed by the object, the referenced segment is automatically retrieved fromstorage.Conversely, modi�ed segments are saved on storage at checkpoint time.Changes in the data of a segment cannot be detected automatically, becausewe have no control of UNIX virtual memory management. Therefore, it is upto the programmer to tell the system that a segment has been modi�ed, bymarking the permanent pointer which references it.A permanent object has a storage object associated with it, which is a proxyof the Storage service. The permObject methods have a privileged access tothe storage object, in order to communicate with the Storage Service. ThepermObject encapsulates the communication with the Storage Service, hidingthe storage proxy to the application. It transparently imports that proxy atcreation or retrieval time.The following table gives the interface for permanent object management.Permanent object down-call interfacenew permObject () ! obj Create a permanent object in memoryobj . delete () Destroy memory image of permanent objectobj . checkpoint () Save current state on permanent storage8.1 Direct and indirect segmentsThe user data part of the object is composed of at least one segment, thedirect segment, such named because it is directly referenced by the object'sdescriptor, the AD. The direct segment is the main body of the object allocatedat instantiation time. The object can also allocate some more data, in whatare called indirect segments. Both direct and indirect segments are allocatedfrom the heap. In order to migrate together, segments reference each otherby special, permanent and relocatable pointers, called permPtr. A permanentpointer keeps context-independant identi�cation, along with the real pointer inthe current context. Links between all permPtrs of a segment are maintained inorder to preserve the overall structure of the object segments at migration time.In order to make its indirect segments relocatable, an object must derivefrom a special class permObject. Mapping of indirect segments is managed bythe Storage Service. The permObject class ensures the mapping of indirectsegments of the instance, by communicating with the Storage Service (in atransparent way).



8 PERSISTENCE 32Using permPtrs, the user can create objects of arbitrary structure and com-plexity. When the object is checkpointed (see section 8), all of its modi�edsegments are stored. The migration of a permanent object into a user con-text establishes the mapping of the direct segment only. Indirect segments aremapped when �rst accessed, by segment faulting.8.2 Permanent pointersThe following table gives the interface for permanent pointer management.Permanent pointers down-call interfacenew permPtr () ! permP Create a permanent pointerpermP . delete() Destroy a permanent pointerPermP . setPtr (prevPtr, addr, size, id) Set the permanent pointerwith addrPermP . cvt () ! addr Convert permanent pointer toe�ective pointer, and map segmentPermP . mark () Mark segment as modi�edA permPtr variable must be assigned an e�ective using the setPtr method.The �rst argument is a reference to the previous permPtr of the containingsegment. All permPtrs of a segment are chained in a linked list, in order toencode the segments hierarchy in the state of the object. Each permPtr ispotentially the head of the linked list for the segment it points to. The secondargument is the e�ective address of the segment to be referenced and the thirdis the size of that segment. The last argument is an OID for uniquely namingthat segment in a location-independent way. It is mainly used to control sharingof segments, since a segment may be referenced by several permPtrs inside theobject.As discussed in the previous section, it is up to the programmer to tell thesystem that a segment has been modi�ed by calling the mark method of thepermPtr which references it. It could have seemed more logical to couple themarkmethod to the segment. But in our implementation, memory segments arenot objects.A permPtr instance contains an e�ective pointer which is untyped. In orderto generate the correct cast operations where necessary, a generic permPtr isprovided as a macro. Users can de�ne their own permPtr types with the followingsequence of instructions:typedef myclass * myClassP;declare (gpermPtr, myClassP);typedef gpermPtr (myClassP) myClassPtr;



9 NAMING 33This will produce a type-safe permanent pointer type named myClassPtr toobjects of class myclass. We provide a conversion operator, which allows theuse of the e�ective pointer. However, this operator has to be called separatelybefore use of the e�ective pointer. If the dereferenced segment is not yet mappedin the object's context, it is then done transparently.Future versions of C++ will allow to rede�ne the -> dereferencing operator,which will render permPtr's easier to use.8.3 AssessmentThe permPtr classes allow to construct objects with arbitrarily complex graph ofsegments pointing to each other. During the vertical migration of a permanentobject, the structure of its graph is preserved.Unfortunately, this capability has not yet been integrated with horizontalmigration. A complex permanent object can be migrated horizontally as awhole by check-pointing it �rst. But in the general case, the AS is not aware ofthe existence of permPtrs and indirect segments, and managing them is up tothe programmer.We believe that this current design is not the best one, being excessivelymodular: the Storage Service has been implemented as an independent serviceon the top of basic object management.SOS services do not cooperate in a strong enough way. This is mainly dueto the fact there is no common concept of memory segments between the kernel,the AS and the SS. An e�cient and elegant solution would require control ofvirtual memory management.The knowledge of the object structure, necessary to several services, is inthe user part of the object, and is accessible to the Storage Service only by theexpedient of dedicated storage objects.In the future, horizontal and vertical migration of complex objects shall beuni�ed. The permObject data shall be moved into the system data of the object.In order to ensure a more uniform object model, we should unify the permObjectwith the sosObject class. Persistence is a mechanism which should be orthogonalto typing.9 NamingNaming in SOS is based on two levels: the lowest level is supported by references.However, this level isn't user-friendly enough.Therefore, there is a second level of symbolic names, managed by the NameService. The main task of the Name Service is to maintain the mappings between



9 NAMING 34symbolic names and internal references. It supports naming of objects of anytype. In designing the SOS Name Service, we wanted to provide much moreexibility than traditional systems. Clients have the ability to build their ownviews of the name space, which are the union of interesting name spaces.9.1 The design of the Name ServiceWe de�ne a name space as a general entity maintaining mappings between sym-bolic names and internal references.A client's proxy of the Name Service will encapsulate a description of thename space. This description is materialized by mount tables. A mount tablemaintains bindings between partial names and a name space. The mount tableencapsulation in the dedicated proxy's data allows the client to have its own viewof the name space, independently of its execution site/context on the system,and independently of other clients.On request from the client, name interpretation will be done by the proxyencapsulating the mount table. If a name can be partially matched, the requestwill be forwarded to the name space managing the name.An interesting feature of naming in SOS is the capability to perform aunion of name spaces under the same symbolic name. Union mounts areinspired by the similar mechanism of Plan 9 [Presotto 1988] and QuickSil-ver [Cabrera and Wyllie 1987]. Thus, objects from di�erent sources can bepresented and accessed under the same name. A possible conict or ambi-guity is solved by priorities. The main advantage of this mechanism is to allowlocation and administrative transparency.9.2 The Name Service interfaceThe initial NS proxy encapsulates a default mount table, which the client canextend. If a client is migrated, its NS proxy can be migrated too, to allow theclient to keep the same naming environment.The interface to the Name Service is implemented by a class hierarchy. Abase class baseNS de�nes the commonmethods to all classes implementing namespaces. They are listed in the following table:Name Service baseNS interfacenew dynamic () ! NS Initial NS proxy importationNS . lookup (name) ! ref Lookup a symbolic name; returnsassociated referenceNS . addName (name, ref) Associate name to objectNS . delName (name) Remove nameNS . list (name) ! refList List objects associated with name



9 NAMING 35From the base class baseNS, two classes are derived: class nodeNS and classmountNS. The class nodeNS represents a name space of type directory. It hastwo types of entries, leaf and directory.The class mountNS represents a mount table, which accepts to mount anytype of name space. Their interface is presented hereafter (in addition to themain interface above): nodeNS interfaceAll methods inherited from baseNS, plus:new dynamic () ! nodeNS nodeNS proxy importationnodeNS . addDir (name) create a directorymountNS interfacesAll methods inherited from baseNS, plus:new dynamic () ! mountNS mountNS proxy importationmountNS . mount (name, ref) mount name spacemountNS . umount (name) unmount name spacemountNS . mask (name) mask name spacemountNS . umask (name) unmask name spaceThe mount operation attaches a name space to a name pre�x. Successivemounts perform a union of the designated name space. For example, both\sun3:/usr/bin" and \sun3:/usr/local/bin" can be mounted on \/bin". Umountis the inverse operation.The mask and umask operations permit to temporarily hide, and later re-cover, the names managed by a name space.9.3 AssessmentThe Name Service allows users to name objects, independently of their types,and to tailor individual naming environments.We chose to build a dedicated Name Service rather than integrating nam-ing and �ling as done in the V-System [Cheriton and Mann 1989]. The NS isbuilt using an object-oriented methodology. The separation between implemen-tation and well de�ned interfaces is exible and extensible. We can implementintegrated servers as done in the V-System.Providing individual views of the distributed name space is justi�ed by not-ing that all kind of users don't need to have the same view. A union of namespace yields names uni�cation independently of administrative constraints. Sep-arate views are easy to implement, using proxies.Name space union can bring name conicts. We o�er simple solutions (likepriorities) to solve them.



10 ASSESSMENT OF THE PROTOTYPE 36Another important problem lies in the fact that inconsistency between anobject named and its reference can arise in case of object's destruction or mi-gration, without the Name Service being informed. This is caused by the factthat object management and their name management aren't integrated, butsupported by two di�erent system services (the Acquaintance Service and theName Service). Also, this yields an unstable naming environment, caused byeach client having its own view.10 Assessment of the prototypeSOS is a positive experience. It is a useful environment for prototyping dis-tributed applications. Although we had implementation problems, it con�rmsthat operating system-level support for arbitrary, user-de�ned migratory objectscan be done and is useful. Some realistic applications have been built by ourEsprit partners. This has allowed us to exercise our mechanisms.All along this presentation, we already pointed out some positive and nega-tive aspects of SOS. Many features can, however, be considered as having bothpros and cons. For instance, UNIX provides a good development environment,but considerably limits control over fundamental system resources (processor,memory), compared to a bare-machine implementation.As a summary, we will now review the most important features of our design.For each we will mention the good and bad sides. Finally, we discuss languageinterfacing in the light of our experience using C++.10.1 Kernel supportOur system is based on a minimal kernel. Most of the system functionalitiesare provided by a collection of system services.However, our kernel is poorly designed. It lacks preemptive task scheduling,and concurrency control mechanisms. We use the C++ task library, a set ofC++ classes for co-routine style programming, which we extended to supportan exception mechanism [Stroustrup and Shopiro 1987].A large number of tasks are pre-allocated by the kernel, at context setuptime, for handling incoming invocations. Cross-context invocations are imple-mented using sockets in a non-optimized way. All this, together with the lackof shared librairies, contributes to large-sized, slow programs.Finally, the kernel cannot control virtual memory. This is a great handicap,especially for the implementation of composite persistent objects.



10 ASSESSMENT OF THE PROTOTYPE 3710.2 SOS object modelOur elementary object model is both simple and powerful. The Proxy Principle[Shapiro 1986], which leads to the Fragmented Object concept, has proved tobe a good structuring tool for building distributed applications. SOS is anextremely general system, that can support di�erent object semantics.However, our implementation is well suited only for medium and large ob-jects (> 100 bytes). The consequence is that the programmer must distinguishbetween system objects and plain objects. This is confusing, especially as faras object referencing is concerned.10.2.1 The giveProxy procedureProgrammers of a Fragmented Object are allowed to rede�ne their own wayof giving proxies. They can give di�erent interfaces, depending on the client'srights. More importantly, they can provide proxies with local power, accordingto the semantics of the resource they represent.The main problem exhibited by our implementation is that a proxy can onlybe acquired dynamically. The consequence is that it is ine�cient for simple,non-distributed applications.10.2.2 The re-initializerCalling a re-initialization procedure is a requirement for building high-levelfunctionalities on top of the basic migration mechanism. For example, there-initializer for a code object is a dynamic linker and type checker. This is alsouseful to re-validate context-dependent information. This is used, for instance,for permanent pointers management.The call should however be generated by the system instead of the compiler.10.2.3 PrerequisitesThe prerequisite mechanism permits to express the required execution environ-ment of an object. Indeed, a crucial issue when moving objects is to decide howmuch to move. This mechanism forms a good basis for code object management.It can be used for other purposes, for instance, for a better integration ofstorage mechanisms.10.3 Internal architectureThe modular structure of SOS allows extensions to be added easily. In this way,each application only pay the price for its speci�c requirements.



11 CONCLUSION 38The system has been built using its own mechanisms. This demonstratesthat these abstractions are adequate for building a distributed system.However, this approach has its problems, especially at system boot time. Itwas also hard to debug because of the dynamic importation of system serviceproxies6. This approach also has a bad performance impact.10.4 Interfacing with C++The underlying mechanisms were rendered transparent by the inheritence mech-anism of C++. Although object migration is implemented by the system, up-calls to the user-de�ned procedures giveProxy and the re-initializer permits toadapt various user-de�ned semantics.However, the way we interface our system with the C++ language has badimpacts. Deriving from the root class sosObject implies some language depen-dency. More importantly, exibility is lost, objects being managed according totheir statically-de�ned type.Another important aspect is the assumptions that such a language makesabout shared address spaces. For example, allowing objects to refer to eachother via pointers is a drawback for the support of mobility and persistency.C++ also has language features which violate encapsulation, such as public�elds or \friends". This is an obstacle for Fragmented Objects to behave as realprotection domains.Finally, C++ doesn't preserve information about the class structure or theinstance variables of an object at run-time. This could have avoid the need foruser intervention and hacks to get knowledge about the name of the class andthe size of an instance. Information about the class structure also could makethe permanent pointer mechanism more transparent.11 ConclusionWe have designed and implemented a full-sized prototype of a distributed object-oriented operating system, SOS. SOS is designed to encourage the structuring ofdistributed applications in Fragmented Objects (FOs), and is itself implementedas a set of pre-de�ned FOs. This article presented the design and interface ofthe system components, along with assessments of various design decisions. Inthis conclusion, we will briey recapitulate the important lessons learned.An object-oriented operating system is di�erent from a traditional one in itsobject-oriented internal design. For instance, SOS exempli�es a communication6We now have adapted the GNU debugger gdb to our dynamic link.



11 CONCLUSION 39system where protocols are objects, instantiated from a hierarchy of protocoltypes.More importantly, in an object-oriented operating system, users are able tosupplement system-de�ned mechanisms with object-speci�c semantics or pol-icy. In SOS, this is done by upcalls from the system upon application objects,requesting object-speci�c actions before and after migration, and when an in-vocation is received.OS support for arbitrary user-de�ned objects is viable and useful. SOS im-plements generic mechanisms for object management, such as identi�cation, lo-cation, invocation, migration, storage, naming, communication. OS-supportedobjects incur some overhead; in SOS, objects will not reasonably be smaller thana hundred bytes. An application or a language system will typically generateobjects which are much smaller, and will map several small objects into a singleOS object.Current hardware typically supports 32-bit address spaces. This is too smallto support a scheme in which objects would be uniquely identi�ed by their ad-dress, in a single system-wide address space. This, plus the existence of twolevels of object granularity (OS objects and language objects), leads to non-uniform identi�cation. Any object is locally identi�ed by its address; in addi-tion OS objects have a system-wide unique identi�cation. There is no obviousmapping between the two.In order to mask this non-uniformity, a common technique is to generatestubs, which make remote invocation appear local. In SOS, we have the moregeneral concept of a Fragmented Object, locally represented by a \proxy" frag-ment. Access to any service, be it local or distributed, always occurs by invokinga local object. Local cacheing, replication, or application-speci�c protocols, all�t in naturally in the proxy framework; network transparency is available butnot wired in.Fragmented Objects are important for structuring distributed applications.In SOS, unfortunately, a FO is more a concept than anything real, as there is nopalpable mechanism attached to a FO. In particular, access to the internals ofa FO is poorly protected. Furthermore, it is currently quite hard to program aFO. This was considered acceptable for a proof-of-concept prototype, but mustbe �xed for SOS to evolve into a real system. Directions for correction are:designing a specialized programming language (e.g. the \fragment generator" isa step in this direction); implementing a FO as a distributed protection domain;or using a capability-based hardware.In an object-oriented system, components communicate by sharing objects.In SOS, a shared distributed object is naturally implemented as a FO, usingthe available basic building blocks. We have found that one very useful buildingblock is atomic multicast, which guarantees that all fragments of an FO have aconsistent view of its state. Other useful tools are dependencies, and local and
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