Fault-Tolerant Partial Replication in Large-Scale
Database Systems

Pierre Sutra, Marc Shapiro

Université Paris VI and INRIA Rocquencourt, France

Abstract. We investigate a decentralised approach to committingé&etions in
a replicated database, under partial replication. Previmatocols either reexe-
cute transactions entirely and/or compute a total ordemofactions. In contrast,
ours applies update values, and generate a partial ordeedetmutually con-
flicting transactions only. Transactions execute fasted, distributed databases
commit in small committees. Both effects contribute to pres scalability as the
number of databases and transactions increase. Our hlgoeitsures serializ-
ability, and is live and safe in spite of faults.

1 Introduction

Non-trivial consistency problems e.g. file systems, calakive environments, and
databases. are the major challenge of large-scale sysRamuoently some architectures
have emerged to scale file systems up to thousands of rlod@&[[A]R but no practical
solution exists for database systems. At the cluster lewtbpols based on group com-
munication primitives[|4,1L,16] are the most promisinguioins to replicate database
systems[[23] . In this article we extend the group commuitoaapproach to large-
scale systems.

Highlights of our protocol:
. Replicas do not reexecute transactions, but apply updaiesranly.

. We do not compute a total order over of operations. Instemuséctions are par-
tially ordered. Two transactions are ordered only over #ita gvhere they conflict.

. For every transactiom we maintain the graph of’s dependenciesI commits
locally whenT is transitively closed in this graph.

The outline of the paper is the following. Sectldn 2 introesiour model and assump-
tions. SectiorfI3 presents our algorithm. We conclude ini@eB after a survey of
related work.

2 System model and assumptions

We consider a finite set of asynchronous processestes1, forming a distributed
system. Sites may fail by crashing, and links between siessynchronous but reli-
able. Each site holds a database that we model as some finitedsda itemsWe left
unspecified the granularity of a data item. In the relationatlel, it can be a column,
a table, or even a whole relational database. Given a datuhe replicas ok, noted
replicagx), are the subset d1 whose databases contain
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We base our algorithm on the three following primities:

. Uniform Reliable Multicastakes as input a unique messagand asinglegroup of

sitesg C M . Uniform reliable multicast consists of the two primitiv@amulticastm)
and R-delivefm). With Uniform Reliable Multicast, all sites ig have the follow-
ing guarantees:
o Uniform Integrity: For every message every site irg performs R-delivgim)
at most once, and only if some site performed R-multizaspreviously.
o Validity: if a correct site ing performs R-multicagm) then it eventually per-
forms R-delivefm).
e Uniform Agreement: if a site iy performs R-deliveim), then every correct
sites ing eventually performs R-delivém).
Uniform Reliable Multicast is solvable in an asynchronoystems with reliable
links and crash-prone sites.

. Uniform Total Order Multicasttakes as input a unique messageand a single

group of sitesg. Uniform Total Order Multicast consists of the two primis
TO-multicastm) and TO-delivefm). This communication primitive ensures Uni-
form Integrity, Validity, Uniform Agreement and Uniform Tal Order ing:

e Uniform Total Order: if a site iy performs TO-deliveim) and TO-delivefm)
in this order, then every site ipthat performs TO-delivén') has performed
previously TO-delivefm).

. Eventual Weak Leader ServiGaven a group of siteg, a sitel € g may call function

WLeade(g). WLeade(g) returns aveak leadeof g :
e Wleadefg) € g.

e Letr be arun off1 such that a non-empty subgetf g is correct inr. It exists
a sitei € c and a timet such that for any calls oVLeade(g) oni aftert,
WLeade(qg) returnsi.

This service is strictly weaker than the classical evenliedler service [18],
since we do not require that every correct site eventualtputs the same leader.
An algorithm that returns to every process itself, triidthplements the Eventual
Weak Leader Service.

In the following we make two assumptions: during any rad, for any datumx, at
least one replica of is correct, andA2 Uniform Total Order Multicast is solvable in
replicagx).

2.1 Operations and locks

Clients of the system (not modeled), access data items loyaed write operations.
Each operation is uniquely identified, and accesses a dilaggeitem. A read operation
is a singleton: the data item read, a write operation is aleotipe data item written,
and the update value.

When an operation accesses a data item on a site, it takek. &\feconsider the three
following types of locks: read lock (R), write lock (W), andténtion to write lock

1 Our taxonomy comes frorii][5].
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lock held

RW{IW

lock R({1/0| 0
requested W [0[ 0| O
IW|0[0]| 1

Table 1. Lock conflict table

(IW).Tabled illustrates how locks conflict with each othehen an operation requests
alock to access a data item, if the lock is already taken amadatdoe shared, the request
is enqueued in a FIFO queue. In Table 1, 0 means that the tequexueued, and 1
that the lock is granted.

Given an operation, we note:
. item(0), the data item operatiomaccesses,

. isReado) (resp.isWrite(0)) a boolean indicating whetheiis a read (resp. a write),

. andreplicag0) 2 replicagitem(0));

We say that two operatiorsando’ conflictif they access the same data item and one
of them is a write:

; / it =it /
conflic(o, o) - { :s?/r\/nr(i(tje))(o) I\/eirsn(V\(;ri)te(o’)

2.2 Transactions
Clients group their operations intcansactions A transaction is a uniquely identified
set of read and write operations. Given a transactipn

. for any operatiom € T, functiontrans(o) returnsT,

. 1o(T) (respectivelywo(T)) is the subset of read (resp. write) operations,
. item(T) is the set of data items transactibraccessestem(T) 2 UoeT item(0).

. andreplicaqT) 2 replicagitem(T)).

Once a sité grants a lock to a transactidn T holds it untili commitsT, i abortsT, or
we explicitly say that this lock is released.

3 The algorithm

As replicas execute transactions, it creates precedemsgramts between conflicting
transactions. Serializability theory tell us that thisatedn must be acycli¢]2].

One solution to this problem is given a transacfigr(i) to executel on every replicas
of T, (ii) to compute the transitive closure of the precedenaestraints linkingT to
concurrent conflicting transactions, and (iii) if a cyclgaprs, to abort at least one the
transactions involved in this cycle.
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Unfortunately as the number of replicas grows, sites magtgrand the network may
experience congestion. Consequently to compute (ii) thécees of T need to agree
upon the set of concurrent transactions accessngT ).

Our solution is to use a TO-multicast protocol per data item.

3.1 Overview

To ease our presentation we consider in the following thaamasaction executes ini-
tially on a single site. Sectidn 3.9 generalizes our apgroache case where a transac-
tion initially executes on more than one site. We structuneadgorithm in five phases:

. In theinitial execution phasea transactiol executes at some site
. In thesubmission phasetransmitsT to replicagT).

. In the certification phasea sitej abortsT if T has read an outdated value Tf
is not abortedj computes all the precedence constraints linKinigp transactions
previously received at sitp

. Intheclosure phasgj completes its knowledge about precedence constraints link
ing T to others transactions.

. OnceT is closed at sitg, the commitment phastkes placej decides locally
whether to commit or abofft. This decision is deterministic, and identical on every
site replicating a data item written By

3.2 Initial execution phase

A site i executes a transactioh coming from a client according to the two-phases
locking rule [2],butwithout applying write operatioBsWhen siteT reaches a commit
statement, it is not committed, insteadeleasesT’s read locks, convert$'’s write
locks into intention to write locks, computd@ss update values, and then proceeds to
the submission phase.

3.3 Submission phase

In this phaseé R-multicastsT to replicagT). When a sitg receivesT, j marks allT’s
operations as pending using variapending Then if it exists an operatiome pending
such thatj = WLeadefreplicag0)), j TO-multicasts to replicago) 8

3.4 Certification phase

When a sitd TO-delivers an operatioa for the first timB,i removes from pending
and ifo is a readj certifieso. To certify 0, i considers any preceding write operations

2 If T writes a datunx then reads it, we suppose some internals to ensurd thes a consistent
value.

3 If instead of this procedurd, TO-multicasts all the operations, then the system blocks if
crashes. We use a weak leader and a reliable multicast terpedé/eness.

4 Recall that the leader is eventual, consequeinifiay receiveo more than one time.
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that conflicts witho. We say that a conflicting operati@hprecedes o at site ' —;o0,
if i TO-deliverso’ theni TO-deliverso:

om0l TO-deliver(o’) < TO-deliver(o)
'™ ] conflicto’,0)

Where given two eventsand€/, we notee < € the relatione happens-beforée,eand
TO-deliver(0') the event: “sité TO-delivers operation’. If such a conflicting opera-
tion o’ exists,i setsT'’s abort flag to 1 (see hereafter).

If now o is a write,i gives an IW lock tao: functionforceWriteLocko). If an operation
o holds a conflicting IW lockp ando’ share the lock (see Talflk 1); otherwise it means
thattrans(0) is still executing at sité, and functiorforceWriteLocko) aborts if]

3.5 Precedence graph

Our algorithm decides to commit or abort transactions, ating to aprecedence graph
A precedence grapB is a directed graph where each node is a transag@tj@md each
directed edgd —T’, models a precedence constraint between an operatibnasfd a
write operation ofT’:

T-T'23(0,0)eTxT,JieN,d—0

A precedence graph contains also for each veftexabort flag indicating whethér
is aborted or notisAbortedT,G), and the subset dF's operationspp(T,G), which
contribute to the relations linking to others transactions @.

Given a precedence grafh) we noteG. 7 its vertices set, an@.E its edges set. Ldb
andG’ be two precedence graphs, the union betw@amdG', GUG/, is such that:

. (GUG).Y=G.YUG.V,
. (GUG).E=G.EUG.Z,
. VT € (GUG).V, isAbortedT, (GUG')) = isAborted T, G) VisAbortedT,G).
. VT € (GUG). Y, op(T,(GUG)) = op(T,G) Uop(T,G').
We say thaG is a subset o', notedG C G/, if:
.GVCGE.VYANGECG.E,
. VT € G.7, isAbortedT,G) = isAbortedT,G'),
. VT € G.7,0p(T,G) Cop(T,G).

Let G be a precedence graph(T,G) (respectivelyout(T,G)) is the restriction of5. 7’

to the subset of vertices formed Byand its incoming (resp. outgoing) neighbors. The
predecessorsf T in G: pred(T,G), is the precedence graph representing the transitive
closure of the dual of the relatid®.Z on {T}.
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Algorithm 1 decid€T,G), code for sitd
1: variable G':=(d,9) > adirected graph

N

: forall CCcyclegG) do
if VT € C,—isAbortedT,G) then
G:=G'uC
if T € breakCycle&G') then
return false
else
return true

©oNTA®

3.6 Deciding

Each sitd stores its own precedence graph and decides locally to commit or abort a
transaction according to it. More precisélgecides according to the grapred(T,G;).
For any cycleC in the set of cycles ipred(T,G;): cyclegpredT,G;i)), i must abort
at least one transaction @ This decision is deterministic, andries to minimize the
number of transactions aborted.

Formally speaking solves the minimum feedback vertex set problem over thernunio
of all cycles inpred(T,G;) containing only non-aborted transactions The minimum
feedback vertex set problem is an NP-complete optimizatioblem, and the literature
about this problem is vastl[6]. We consequently postulageettistence of an heuristic:
breakCycle§). breakCycle§) takes as input a directed gra@hand returns a vertex set
Ssuch thatG\ Sis acyclic.

Now considering a transactioh € G; such thaiG = pred(T, G;), Algorithm[ returns
falseif i abortsT, ortrue otherwise.

3.7 Closure phase

In our model sites replicate data partially, and consedyenaintain an incomplete

view of the precedence constraints linking transactionthésystem. Consequently
they need to complete their view by exchanging parts of tir@iphs. This is our closure
phase:

. Wheni TO-delivers an operatiome T, i addsT to its precedence graph, and adds
otoop(T,G;). Theni sendpred(T,G;) to replicagout(T,G;)) (line[29).

. Wheni receives a precedence gra@hif G Z G;, for every transactiof in Gj,
such thapred(T,G) Z pred(T,G;i), i sendgpred(T,GUG;) toreplicagout(T,G;)).
Theni mergesG to G (lines[31 td3b).

Oncei knows all the precedence constraints linkingo others transactions, we say
thatT is closedat sitei. Formally T is closed at sité when the following fixed-point
equation is true at site

N Jop(T.G) =T
closedT,Gj) = {VT/ €in(T,Gj).vV,closedT’,Gj)

5 This operation prevents local deadlocks.



Fault-Tolerant Partial Replication in Large-Scale Dasgb8ystems 7

Our closure phase ensures that during everyriuior every correct sité, and every
transactionT which is eventually ir5;, T is eventually closed at siie

3.8 Commitment phase

If T is aread-only transactiomo(T) = @, i commitsT as soon a3 is executed (line

Q).

If T is an updatd,waits thafT is closed and holds all its IW locks: functiboldIWLocks)
(line[33). Once these two conditions holdpmputesiecidéT, pred(T, G;)). If this call
returnstrue, i commitsT: for each write operation € wo(T), with i € replicago), i
considers any write operati@such thafr —trang0’) € G Aconflict(o,0’). If trang0')
is already committed at siigi does nothing; otherwiseapplieso to its database.

Algorithm[2 describes our algorithm. This protocol prodderializability for partially
replicated database systems: any run of this protocol isvaigat to a run on a single
site [2]. The proof of correctness appears in our technagabrt [22].

3.9 Initial execution on more than one site

When initial execution phase does not take place on a siitgleve compute the read-
from dependencies. More precisely when a siteceives a read operatioraccessing
a datum it does not replicatesendso to some sitgj € replicago). Upon receptiorj
execute®. At the end of execution, sends back tothe transitive closure starting from
o's read-from dependency.

Oncei has executed locally or remotely all the read operatibdisecks if the resulting
read-from dependancies graph contains a cycle in wiiéh involved. If this is the
case,T will be aborted, and instead of submittingiitte-executes at least one ofs

read operations Otherwiseomputes the write set, the update values, and R-multicasts
it with the read-from dependancies grapheplicagT). The dependencies are merged
to precedence graphs when sites TO-deliveroperations. The rest of the algorithm
remains the same.

3.10 Performance analysis

Precedence constraints in a cycle moécausally related. Moreover our algorithm han-
dles cycles of size 2 without executing lifed 3136 35. Consatly it is unlikely that
closing transactions in a cycle requires additional stepd,we do not suppose it here-
after.

We consider Paxo§[l4] as a solution to Uniform Total OrdettMast . Algorithm[2
achieves a latency degleef 4: 1 for Uniform Reliable Multicast, and 3 for Uniform
Total Order Multicast. Leb be the number of operations per transaction, drtte
replication degree, the message complexity of Algoriffira Zod -+ (od)?: od for Uni-
form Reliable Multicastp Uniform Total Order Multicasts, each costind fhessages,
andod replicas execute life P9, each site sendidgnessages.

6 Maximum length of the causal path to commit a transactiohénttest run.
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Algorithm 2 code for sitd

1: variables G; :=(4,9); pending= @

11

12:
13:

N ®N

loop
letT be a new transaction
initialExecution(T)
if wo(T)# @ then
R-multicas(T) toreplicaqT)
else
commitT)

: when R-deliver(T)
forall oeT:iereplicago) do
pending= pendingJ {o}

14:

15

16:

: when Jo € pending\i = WLeade(replicag0))
TO-multicasto) to replicag0)

17:

18

19:
20:
21:
22:
23:
24.
25:
26:
27:
28:

29:

: when TO-delivero) for the first time
pending= pending\ {o}
letT = trang(0)
G.vV:=G.YuU{T}
op(T,Gi):=0p(T,G;) U{o}
if isReado) A3J0’,0'—jothen
setAbortedT, G;)
else if isWrite(o) then
forceWriteLocko)
forall d:d—jo do
Gi.E:=Gj.EZU{(trans(0'),T)}
sendpred(T, Gj)) to replicagout(T,G;))

30:

31

32:
33:
34.

35:

: when receivéT,G)
forall TeG; do
if pred(T,G) < pred(T,G;j) then
sendpred(T,G; UG)) to replicagout(T, G;))
Gi:=G UG

36:

37

38:
39:
40:
41.

i € replicagwo(T))
: when 3T € Gj, ¢ closedT,Gj)
holdIWLocksT)
if —isAbortedT,G;j) AdecidéT,pred(T,G;)) then
commitT)
else
abort(T)

42:

> Initial execution

> Submission

> Certification

> Closure

> Commitment
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Algorithms totally ordering transactions JIL7I11,19] amtd at least a latency degree of
3, and a message complexity of. Jotally ordering transactions requires to contg(@
sites, whereas our approach needs only to cootasites; it reduces latency. Moreover
in large scale systems we expedt< < 1/3n, and consequently our algorithm achieves
better message complexity than total order based solutions

4  Concluding remarks
4.1 Related work

Gray et al. [7] prove that scale traditional eager and lapfications does not scale:
the deadlock rate increase as the cube of the number of aitdsthe reconciliation
rate increases as the square. Wiesmann and Schiper condicticphy this resulti[23].
Fritzke et al. [10] propose a replication scheme where Ji@snulticast each opera-
tions and execute them upon reception. However they do ewept global deadlocks
with a priority rule; it increases abort rate. PreventivgliGation [16] considers that a
bound on processor speed, and network delay is known. Ssamasions do not hold
in a large-scale system. The epidemic algorithm of Holidagl 9] aborts concurrent
conflicting transactions and their protocol is not live itef one fault. In all of these
replication schemes, each replica execute all the opesatiocessing the data items it
replicates. Alonso proves analytically that it reducessttede-up of the systerhl[1].

The DataBase State Machine approdch [17] applies updatesrahly but in a fully
replicated environment. Its extensiohsl[19,21] to pargalication require a total order
over transactions.

Committing transactions using a distributed serializatpaph is a well-known tech-
nique [20]. Recently Haller et al. have proposed to applg]it large-scale systems,
but their solution does not handle replication, nor faults.

4.2 Conclusion

We present an algorithm for replicating database systeradarge-scale system. Our
solution is live and safe in presence of non-bizantine satur key idea is to order
conflicting transaction per data item, then to break cyclts/ben transactions. Com-
pared to previous existing solutions, ours either achiéoesr latency and message
cost, or does not unnecessarily abort concurrent confii¢ctansactions.

The closure of constraints graphs is a classical idea inloliseéd systems. We may find
it in the very first algorithm about State Machine Replicatjiad], or in a well-known
algorithm to solve Total Order Multicastl[Blve believe that the closure generalizes
to a wider context, where a constraint is a temporal logionida over sequences of
concurrent operations.

7 In [I3] Lamport closes the relation for every request to the critical section. [Th [52 tiotal
order multicast protocol attributed to Skeen, closes thleopver natural numbers to TO-
multicast a message.
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