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Abstract. We investigate a decentralised approach to committing transactions in
a replicated database, under partial replication. Previous protocols either reexe-
cute transactions entirely and/or compute a total order of transactions. In contrast,
ours applies update values, and generate a partial order between mutually con-
flicting transactions only. Transactions execute faster, and distributed databases
commit in small committees. Both effects contribute to preserve scalability as the
number of databases and transactions increase. Our algorithm ensures serializ-
ability, and is live and safe in spite of faults.

1 Introduction

Non-trivial consistency problems e.g. file systems, collaborative environments, and
databases. are the major challenge of large-scale systems.Recently some architectures
have emerged to scale file systems up to thousands of nodes [12,15,3], but no practical
solution exists for database systems. At the cluster level protocols based on group com-
munication primitives [4,11,16] are the most promising solutions to replicate database
systems [23] . In this article we extend the group communication approach to large-
scale systems.

Highlights of our protocol:

� Replicas do not reexecute transactions, but apply update values only.

� We do not compute a total order over of operations. Instead transactions are par-
tially ordered. Two transactions are ordered only over the data where they conflict.

� For every transactionT we maintain the graph ofT ’s dependencies.T commits
locally whenT is transitively closed in this graph.

The outline of the paper is the following. Section 2 introduces our model and assump-
tions. Section 3 presents our algorithm. We conclude in Section 4 after a survey of
related work.

2 System model and assumptions

We consider a finite set of asynchronous processes orsitesΠ, forming a distributed
system. Sites may fail by crashing, and links between sites are asynchronous but reli-
able. Each site holds a database that we model as some finite set of data items. We left
unspecified the granularity of a data item. In the relationalmodel, it can be a column,
a table, or even a whole relational database. Given a datumx, the replicas ofx, noted
replicas(x), are the subset ofΠ whose databases containx.
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We base our algorithm on the three following primitives:1

� Uniform Reliable Multicasttakes as input a unique messagemand asinglegroup of
sitesg⊆Π . Uniform reliable multicast consists of the two primitivesR-multicast(m)
and R-deliver(m). With Uniform Reliable Multicast, all sites ing have the follow-
ing guarantees:

• Uniform Integrity: For every messagem, every site ing performs R-deliver(m)
at most once, and only if some site performed R-multicast(m) previously.

• Validity: if a correct site ing performs R-multicast(m) then it eventually per-
forms R-deliver(m).

• Uniform Agreement: if a site ing performs R-deliver(m), then every correct
sites ing eventually performs R-deliver(m).

Uniform Reliable Multicast is solvable in an asynchronous systems with reliable
links and crash-prone sites.

� Uniform Total Order Multicasttakes as input a unique messagem and a single
group of sitesg. Uniform Total Order Multicast consists of the two primitives
TO-multicast(m) and TO-deliver(m). This communication primitive ensures Uni-
form Integrity, Validity, Uniform Agreement and Uniform Total Order ing:

• Uniform Total Order: if a site ing performs TO-deliver(m) and TO-deliver(m′)
in this order, then every site ing that performs TO-deliver(m′) has performed
previously TO-deliver(m).

� Eventual Weak Leader ServiceGiven a group of sitesg, a sitei ∈ gmay call function
WLeader(g). WLeader(g) returns aweak leaderof g :

• WLeader(g) ∈ g.

• Let r be a run ofΠ such that a non-empty subsetc of g is correct inr. It exists
a site i ∈ c and a timet such that for any calls ofWLeader(g) on i after t,
WLeader(g) returnsi.

This service is strictly weaker than the classical eventualleader serviceΩ [18],
since we do not require that every correct site eventually outputs the same leader.
An algorithm that returns to every process itself, trivially implements the Eventual
Weak Leader Service.

In the following we make two assumptions: during any run,A1 for any datumx, at
least one replica ofx is correct, andA2 Uniform Total Order Multicast is solvable in
replicas(x).

2.1 Operations and locks

Clients of the system (not modeled), access data items by read and write operations.
Each operation is uniquely identified, and accesses a singledata item. A read operation
is a singleton: the data item read, a write operation is a couple: the data item written,
and the update value.

When an operation accesses a data item on a site, it takes a lock. We consider the three
following types of locks: read lock (R), write lock (W), and intention to write lock

1 Our taxonomy comes from [5].
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lock held

lock
requested

R W IW
R 1 0 0
W 0 0 0
IW 0 0 1

Table 1. Lock conflict table

(IW).Table 1 illustrates how locks conflict with each other;when an operation requests
a lock to access a data item, if the lock is already taken and cannot be shared, the request
is enqueued in a FIFO queue. In Table 1, 0 means that the request is enqueued, and 1
that the lock is granted.

Given an operationo, we note:

� item(o), the data item operationo accesses,

� isRead(o) (resp.isWrite(o)) a boolean indicating whethero is a read (resp. a write),

� andreplicas(o)
△
= replicas(item(o));

We say that two operationso ando′ conflict if they access the same data item and one
of them is a write:

conflict(o,o′)
△
=

{

item(o) = item(o′)
isWrite(o)∨ isWrite(o′)

2.2 Transactions

Clients group their operations intotransactions. A transaction is a uniquely identified
set of read and write operations. Given a transactionT,

� for any operationo∈ T, functiontrans(o) returnsT,

� ro(T) (respectivelywo(T)) is the subset of read (resp. write) operations,

� item(T) is the set of data items transactionT accesses:item(T)
△
=

S

o∈T item(o).

� andreplicas(T)
△
= replicas(item(T)).

Once a sitei grants a lock to a transactionT, T holds it untili commitsT, i abortsT, or
we explicitly say that this lock is released.

3 The algorithm

As replicas execute transactions, it creates precedence constraints between conflicting
transactions. Serializability theory tell us that this relation must be acyclic [2].

One solution to this problem is given a transactionT, (i) to executeT on every replicas
of T, (ii) to compute the transitive closure of the precedence constraints linkingT to
concurrent conflicting transactions, and (iii) if a cycle appears, to abort at least one the
transactions involved in this cycle.
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Unfortunately as the number of replicas grows, sites may crash, and the network may
experience congestion. Consequently to compute (ii) the replicas ofT need to agree
upon the set of concurrent transactions accessingitem(T).

Our solution is to use a TO-multicast protocol per data item.

3.1 Overview

To ease our presentation we consider in the following that a transaction executes ini-
tially on a single site. Section 3.9 generalizes our approach to the case where a transac-
tion initially executes on more than one site. We structure our algorithm in five phases:

� In the initial execution phase, a transactionT executes at some sitei.

� In thesubmission phase, i transmitsT to replicas(T).

� In the certification phase, a site j abortsT if T has read an outdated value. IfT
is not aborted,j computes all the precedence constraints linkingT to transactions
previously received at sitej.

� In theclosure phase, j completes its knowledge about precedence constraints link-
ing T to others transactions.

� OnceT is closed at sitej, the commitment phasetakes place.j decides locally
whether to commit or abortT. This decision is deterministic, and identical on every
site replicating a data item written byT.

3.2 Initial execution phase

A site i executes a transactionT coming from a client according to the two-phases
locking rule [2],but without applying write operations2. When siteT reaches a commit
statement, it is not committed, insteadi releasesT ’s read locks, convertsT ’s write
locks into intention to write locks, computesT ’s update values, and then proceeds to
the submission phase.

3.3 Submission phase

In this phasei R-multicastsT to replicas(T). When a sitej receivesT, j marks allT ’s
operations as pending using variablepending. Then if it exists an operationo∈ pending,
such thatj = WLeader(replicas(o)), j TO-multicastso to replicas(o).3

3.4 Certification phase

When a sitei TO-delivers an operationo for the first time4,i removeso from pending,
and if o is a read,i certifieso. To certify o, i considers any preceding write operations

2 If T writes a datumx then reads it, we suppose some internals to ensure thatT sees a consistent
value.

3 If instead of this procedure,i TO-multicasts all the operations, then the system blocks ifi
crashes. We use a weak leader and a reliable multicast to preserve liveness.

4 Recall that the leader is eventual, consequentlyi may receiveo more than one time.
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that conflicts witho. We say that a conflicting operationo′ precedes o at site i, o′→io,
if i TO-deliverso′ theni TO-deliverso:

o′→io
△
=

{

TO-deliveri(o′) ≺ TO-deliveri(o)
conflict(o′,o)

Where given two eventse ande′, we notee≺ e′ the relatione happens-before e′, and
TO-deliveri(o′) the event: “sitei TO-delivers operationo′”. If such a conflicting opera-
tion o′ exists,i setsT’s abort flag to 1 (see hereafter).

If now o is a write,i gives an IW lock too: functionforceWriteLock(o). If an operation
o′ holds a conflicting IW lock,o ando′ share the lock (see Table 1); otherwise it means
thattrans(o′) is still executing at sitei, and functionforceWriteLock(o) aborts it.5

3.5 Precedence graph

Our algorithm decides to commit or abort transactions, according to aprecedence graph.
A precedence graphG is a directed graph where each node is a transactionT, and each
directed edgeT→T ′, models a precedence constraint between an operation ofT, and a
write operation ofT ′:

T→T ′ △= ∃(o,o′) ∈ T ×T ′,∃i ∈ Π,o′→io

A precedence graph contains also for each vertexT a abort flag indicating whetherT
is aborted or not:isAborted(T,G), and the subset ofT’s operations:op(T,G), which
contribute to the relations linkingT to others transactions inG.

Given a precedence graphG, we noteG.V its vertices set, andG.E its edges set. LetG
andG′ be two precedence graphs, the union betweenG andG′, G∪G′, is such that:

� (G∪G′).V = G.V ∪G′.V ,

� (G∪G′).E = G.E ∪G′.E ,

� ∀T ∈ (G∪G′).V , isAborted(T,(G∪G′)) = isAborted(T,G)∨ isAborted(T,G′).

� ∀T ∈ (G∪G′).V , op(T,(G∪G′)) = op(T,G)∪op(T,G′).

We say thatG is a subset ofG′, notedG⊆ G′, if:

� G.V ⊆ G′.V ∧G.E ⊆ G′.E ,

� ∀T ∈ G.V , isAborted(T,G) ⇒ isAborted(T,G′),

� ∀T ∈ G.V , op(T,G) ⊆ op(T,G′).

Let G be a precedence graph,in(T,G) (respectivelyout(T,G)) is the restriction ofG.V
to the subset of vertices formed byT and its incoming (resp. outgoing) neighbors. The
predecessorsof T in G: pred(T,G), is the precedence graph representing the transitive
closure of the dual of the relationG.E on{T}.
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Algorithm 1 decide(T,G), code for sitei

1: variable G′ :=(Ø,Ø) ⊲ a directed graph
2:
3: for all C⊆ cycles(G) do
4: if ∀T ∈C,¬isAborted(T,G) then
5: G′ :=G′∪C
6: if T ∈ breakCycles(G′) then
7: return false
8: else
9: return true

3.6 Deciding

Each sitei stores its own precedence graphGi , and decides locally to commit or abort a
transaction according to it. More preciselyi decides according to the graphpred(T,Gi).
For any cycleC in the set of cycles inpred(T,Gi): cycles(pred(T,Gi)), i must abort
at least one transaction inC. This decision is deterministic, andi tries to minimize the
number of transactions aborted.

Formally speakingi solves the minimum feedback vertex set problem over the union
of all cycles inpred(T,Gi) containing only non-aborted transactions The minimum
feedback vertex set problem is an NP-complete optimizationproblem, and the literature
about this problem is vast [6]. We consequently postulate the existence of an heuristic:
breakCycles(). breakCycles() takes as input a directed graphG, and returns a vertex set
Ssuch thatG\S is acyclic.

Now considering a transactionT ∈ Gi such thatG = pred(T,Gi), Algorithm 1 returns
falseif i abortsT, or trueotherwise.

3.7 Closure phase

In our model sites replicate data partially, and consequently maintain an incomplete
view of the precedence constraints linking transactions inthe system. Consequently
they need to complete their view by exchanging parts of theirgraphs. This is our closure
phase:

� Wheni TO-delivers an operationo∈ T, i addsT to its precedence graph, and adds
o to op(T,Gi). Theni sendspred(T,Gi) to replicas(out(T,Gi)) (line 29).

� When i receives a precedence graphG, if G 6⊆ Gi , for every transactionT in Gi ,
such thatpred(T,G) 6⊆ pred(T,Gi), i sendspred(T,G∪Gi) to replicas(out(T,Gi)).
Theni mergesG to Gi (lines 31 to 35).

Oncei knows all the precedence constraints linkingT to others transactions, we say
thatT is closedat sitei. FormallyT is closed at sitei when the following fixed-point
equation is true at sitei:

closed(T,Gi) =

{

op(T,G) = T
∀T ′ ∈ in(T,Gi).V ,closed(T ′,Gi)

5 This operation prevents local deadlocks.
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Our closure phase ensures that during every runr, for every correct sitei, and every
transactionT which is eventually inGi , T is eventually closed at sitei.

3.8 Commitment phase

If T is a read-only transaction:wo(T) = Ø, i commitsT as soon asT is executed (line
9).

If T is an update,i waits thatT is closed and holds all its IW locks: functionholdIWLocks()
(line 35). Once these two conditions hold,i computesdecide(T,pred(T,Gi)). If this call
returnstrue, i commitsT: for each write operationo ∈ wo(T), with i ∈ replicas(o), i
considers any write operationo′ such thatT→trans(o′)∈Gi∧conflict(o,o′). If trans(o′)
is already committed at sitei, i does nothing; otherwisei applieso to its database.

Algorithm 2 describes our algorithm. This protocol provides serializability for partially
replicated database systems: any run of this protocol is equivalent to a run on a single
site [2]. The proof of correctness appears in our technical report [22].

3.9 Initial execution on more than one site

When initial execution phase does not take place on a single site we compute the read-
from dependencies. More precisely when a sitei receives a read operationo accessing
a datum it does not replicate,i sendso to some sitej ∈ replicas(o). Upon receptionj
executeso. At the end of execution,j sends back toi the transitive closure starting from
o’s read-from dependency.

Oncei has executed locally or remotely all the read operations,i checks if the resulting
read-from dependancies graph contains a cycle in whichT is involved. If this is the
case,T will be aborted, and instead of submitting it,i re-executes at least one ofT ’s
read operations Otherwisei computes the write set, the update values, and R-multicasts
it with the read-from dependancies graph toreplicas(T). The dependencies are merged
to precedence graphs when sites TO-deliverT’s operations. The rest of the algorithm
remains the same.

3.10 Performance analysis

Precedence constraints in a cycle arenotcausally related. Moreover our algorithm han-
dles cycles of size 2 without executing lines 31 to 35. Consequently it is unlikely that
closing transactions in a cycle requires additional steps,and we do not suppose it here-
after.

We consider Paxos [14] as a solution to Uniform Total Order Multicast . Algorithm 2
achieves a latency degree6 of 4: 1 for Uniform Reliable Multicast, and 3 for Uniform
Total Order Multicast. Leto be the number of operations per transaction, andd the
replication degree, the message complexity of Algorithm 2 is 4od+(od)2: od for Uni-
form Reliable Multicast,o Uniform Total Order Multicasts, each costing 3d messages,
andod replicas execute line 29, each site sendingod messages.

6 Maximum length of the causal path to commit a transaction in the best run.
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Algorithm 2 code for sitei
1: variables Gi :=(Ø,Ø); pending:=Ø
2:
3: loop ⊲ Initial execution
4: let T be a new transaction
5: initialExecution(T)
6: if wo(T) 6= Ø then
7: R-multicast(T) to replicas(T)
8: else
9: commit(T)

10:
11: when R-deliver(T) ⊲ Submission
12: for all o∈ T : i ∈ replicas(o) do
13: pending:=pending∪{o}
14:
15: when ∃o∈ pending∧ i = WLeader(replicas(o))
16: TO-multicast(o) to replicas(o)
17:
18: when TO-deliver(o) for the first time ⊲ Certification
19: pending:=pending\{o}
20: letT = trans(o)
21: Gi .V :=Gi .V ∪{T}
22: op(T,Gi) :=op(T,Gi)∪{o}
23: if isRead(o)∧∃o′,o′→io then
24: setAborted(T,Gi)
25: else if isWrite(o) then
26: forceWriteLock(o)
27: for all o′ : o′→io do
28: Gi .E :=Gi .E ∪{(trans(o′),T)}
29: send(pred(T,Gi)) to replicas(out(T,Gi))
30:
31: when receive(T,G) ⊲ Closure
32: for all T ∈ Gi do
33: if pred(T,G) 6⊆ pred(T,Gi) then
34: send(pred(T,Gi ∪G)) to replicas(out(T,Gi))

35: Gi :=Gi ∪G
36:

37: when ∃T ∈ Gi ,







i ∈ replicas(wo(T))
closed(T,Gi)
holdIWLocks(T)

⊲ Commitment

38: if ¬ isAborted(T,Gi)∧decide(T,pred(T,Gi)) then
39: commit(T)
40: else
41: abort(T)

42:
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Algorithms totally ordering transactions [17,11,19] achieve at least a latency degree of
3, and a message complexity of 3n. Totally ordering transactions requires to contactn/2
sites, whereas our approach needs only to contactod sites; it reduces latency. Moreover
in large scale systems we expectod<<

√
3n, and consequently our algorithm achieves

better message complexity than total order based solutions.

4 Concluding remarks

4.1 Related work

Gray et al. [7] prove that scale traditional eager and lazy replications does not scale:
the deadlock rate increase as the cube of the number of sites,and the reconciliation
rate increases as the square. Wiesmann and Schiper confirm practically this result [23].
Fritzke et al. [10] propose a replication scheme where sitesTO-multicast each opera-
tions and execute them upon reception. However they do not prevent global deadlocks
with a priority rule; it increases abort rate. Preventive replication [16] considers that a
bound on processor speed, and network delay is known. Such assumptions do not hold
in a large-scale system. The epidemic algorithm of Holiday et al [9] aborts concurrent
conflicting transactions and their protocol is not live in spite of one fault. In all of these
replication schemes, each replica execute all the operations accessing the data items it
replicates. Alonso proves analytically that it reduces thescale-up of the system [1].

The DataBase State Machine approach [17] applies update values only but in a fully
replicated environment. Its extensions [19,21] to partialreplication require a total order
over transactions.

Committing transactions using a distributed serialization graph is a well-known tech-
nique [20]. Recently Haller et al. have proposed to apply it [8] to large-scale systems,
but their solution does not handle replication, nor faults.

4.2 Conclusion

We present an algorithm for replicating database systems ina large-scale system. Our
solution is live and safe in presence of non-bizantine faults. Our key idea is to order
conflicting transaction per data item, then to break cycles between transactions. Com-
pared to previous existing solutions, ours either achieveslower latency and message
cost, or does not unnecessarily abort concurrent conflicting transactions.

The closure of constraints graphs is a classical idea in distributed systems. We may find
it in the very first algorithm about State Machine Replication [13], or in a well-known
algorithm to solve Total Order Multicast [5].7We believe that the closure generalizes
to a wider context, where a constraint is a temporal logic formula over sequences of
concurrent operations.

7 In [13] Lamport closes the≪ relation for every request to the critical section. In [5] the total
order multicast protocol attributed to Skeen, closes the order over natural numbers to TO-
multicast a message.
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