
A Modular Design for Geo-DistributedQuerying
Work in Progress Report

Dimitrios Vasilas
Scality

Sorbonne Université - LIP6 & Inria
Paris, France

Marc Shapiro
Sorbonne Université - LIP6 & Inria

Paris, France

Bradley King
Scality

Paris, France

ABSTRACT
Most distributed storage systems provide limited abilities for query-
ing data by attributes other than their primary keys. Supporting
efficient search on secondary attributes is challenging as applica-
tions pose varying requirements to query processing systems, and
no single system design can be suitable for all needs. In this paper,
we show how to overcome these challenges in order to extend dis-
tributed data stores to support queries on secondary attributes. We
propose a modular architecture that is flexible and allows query
processing systems to make trade-offs according to different use
case requirements. We describe adaptive mechanisms that make use
of this flexibility to enable query processing systems to dynamically
adjust to query and write operation workloads.

KEYWORDS
Distributed Storage Systems, Query Processing, Secondary Indexing
ACM Reference Format:
Dimitrios Vasilas, Marc Shapiro, and Bradley King. 2018. A Modular Design
for Geo-Distributed Querying: Work in Progress Report. In PaPoC’18: 5th
Workshop on Principles and Practice of Consistency for Distributed Data
, April 23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3194261.3194265

1 INTRODUCTION
Large-scale distributed storage systems, such as BigTable, Dynamo,
Cassandra and HBase among others, are an essential component of
cloud computing applications. While these storage systems offer
significant performance and scalability advantages to applications,
they achieve these properties by exposing a simple API that al-
lows objects to be retrieved only by using the key under which
they were inserted. However, applications often require the abil-
ity to access data by performing queries on secondary attributes.
For example, a media application that manages video and image
files, can benefit from the ability to tag and retrieve objects using
attributes describing the content type, resolution format, author,
copyright information, and other descriptive attributes. The restric-
tive key-based API makes it difficult and inefficient to implement
applications that require this functionality.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’18, April 23–26, 2018, Porto, Portugal
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5655-8/18/04. . . $15.00
https://doi.org/10.1145/3194261.3194265

A common approach to address this problem is to maintain in-
dexes in order to achieve high-performance queries on secondary
attributes. Indexing has been studied extensively in systems of-
fering strong consistency guarantees, especially in the context of
traditional database systems. However, modern NoSQL-style data
stores use geo-replication across several data centres (DCs) and
implement weak consistency models in which client operations are
served by accessing the local replica without synchronising with
other DCs, in order to avoid wide-area network latency and remain
available under partition.

Indexing in this context poses several unique challenges. Guided
by the storage systems’ decision to favour availability and low la-
tency over consistency, secondary indexes also need to use replica-
tion and be able to ingest updates and process queries concurrently
in different replicas without requiring synchronisation. Weakly
consistent indexes must ensure that index replicas converge to
the same state under concurrent conflicting updates, and that the
converged state is consistent with the base data. Moreover, since
these storage systems are designed to achieve low-latency, index
maintenance should not penalise write latency.

Secondary indexing is not suitable for all cases, since maintain-
ing indexes incurs significant storage and maintenance costs. In
cases where queries on secondary attributes are not frequent and
search latency in not critical, other approaches such as scanning
the underlying data store can be acceptable.

No single query processing system design can be appropriate
for all uses. Design decisions cannot be made in isolation from data
distribution and replication schemes [1]. At the same time, querying
systems need to optimise different metrics, such as query response
latency or freshness, or provide specific types of queries depending
on the needs of each application. Existing approaches [2, 3, 6] are
implemented by making design decisions targeting specific use case
requirements and system characteristics. A promising direction can
be a flexible approach that enables query processing systems to
make different trade-offs and adjust to the needs of each use case.

In this paper, we propose a modular architecture for extending
geo-distributed data stores with the functionality to query data us-
ing secondary attributes. Instead of making design decisions based
on a specific system model or application use case, here we propose
a flexible architecture where querying systems are built by inter-
connecting fine-grained software components. Different querying
system configurations can be built using the same building blocks,
eachmaking different trade-offs and targeting specific requirements.
We present ongoing work on a set of adaptive mechanisms that
benefit from the flexibility of our design to enable querying systems
to dynamically adapt to query and write operation workloads by
adjusting the configuration.

https://doi.org/10.1145/3194261.3194265
https://doi.org/10.1145/3194261.3194265

PaPoC’18, April 23–26, 2018, Porto, Portugal Dimitrios Vasilas, Marc Shapiro, and Bradley King

2 DISTRIBUTED QUERYING
Distributed data stores achieve scalability by sorting and partition-
ing data entries using their primary keys. In such systems, queries
that retrieve objects based on their secondary attributes can be
performed by executing a scan of the entire dataset, where each
object is inspected and matching objects are added to the query
response. Moreover, all data store partitions need to be scanned
for matching objects, as objects are partitioned using their primary
keys, which limits the scalability of these queries.

Instead of performing a scan, index structures can be constructed
over secondary attributes in order to efficiently identify objects that
match a given query. Typically, a secondary index contains a set of
entries, one for each existing value of the indexed attribute. Each
entry can be seen as a key-value pair, where the key is an attribute
value and the value is a list of pointers to all objects that have this
value. The primary keys of objects are usually used as pointers.

While indexing is an efficient approach for supporting queries
on secondary attributes, maintaining indexes in distributed stor-
age systems that store large volumes of data incurs high storage
and maintenance overheads. In cases where queries on secondary
attributes are not frequent and query latency is not a critical re-
quirement, the benefits of indexing may not outweigh these costs.
In more complex scenarios, only certain attributes might be queried
regularly and require minimal query latency while others need to
be searchable with fewer requirements. A promising approach can
be a querying system that efficiently combines secondary indexing
and data store scans and performs optimisations such as caching
of search results.

3 MODULAR QUERYING SYSTEMS
In this section we present our main contribution, a modular de-
sign for building geo-distributed querying systems. We start by
presenting our design and discussing how it can be used to build
distributed querying systems. We then demonstrate the usability
of our approach by applying it to two use cases with different re-
quirements, and finally describe a set of adaptive mechanisms that
enable querying systems to optimise their configuration.

3.1 System Design
A modular querying system is assembled from indexing and query
processing modules called Query Processing Units (QPUs). QPUs
operate as services that receive and process queries. Individual
QPUs perform basic indexing and query processing tasks such as
maintaining indexes, caching search results, and federating query
processing over geo-distributed datasets. All QPUs expose a com-
mon interface that can be used to connect them to different con-
figurations. Querying systems are built by interconnecting QPUs
in a network. Queries on secondary attributes are processed by
being routed through the QPU network; individual QPUs partially
process a given query, forward it through the QPU network, and
combine the retrieved results.

QPUs are categorised to different classes based on their func-
tionality:

Data Store QPU: Data store QPUs (dsQPUs) are connected to
the underlying data store and process queries by scanning the

R0

R2

AttrA

AttrB

iQPU0

iQPU2

iQPU1

iQPU3

iQPU4

R3

R4

R1

Figure 1: An example of hyperspace partitioning using an
index QPU hierarchy.

dataset. Each dsQPU can be connected to a single data centre of a
geo-distributed data store.

Index QPU: Index QPUs (iQPUs) maintain indexes and use
them to efficiently process queries on secondary attributes. They
construct their index structures by receiving write operations from
the underlying data store. Same as dsQPUs, each iQPU can be
connected and maintain an index for a single data centre.

Index Merge QPU: Index Merge QPUs (mQPUs) maintain sec-
ondary indexes by merging updates from multiple ingest points to
a global index. They can be connected to other mQPUs, iQPUs or
the underlying data store. They can be used in use cases with dis-
joint datasets, such as systems that use partial replication, in order
maintain a global index for all objects in the system. mQPUs are
responsible for resolving conflicts in index entries when merging
secondary indexes.

Federation QPU: Federation QPUs (fQPUs) provide the ability
to query disjoint datasets without maintaining global indexes. A
fQPU can be connected to a set of QPUs of any type; when receiv-
ing a query, the fQPU forwards it to the QPUs it is connected to,
retrieves the corresponding responses, and combines them to a
final response. fQPUs can have more advanced functionality; for
example a fQPU can forward queries to a subset of the QPUs it is
connected to based on the data placement scheme.

Cache QPU: Cache QPUs (cQPUs) are used to achieve efficient
query processing by caching search results and replicating indexes
to multiple geographic locations. A cQPU can maintain a cache
storing recent query responses of any QPU, and use it to efficiently
respond to queries. Alternatively, a cQPU can be connected to an
iQPU or mQPU and act as a passive replica by replicating index
entries through a push or pull mechanism.

3.2 Secondary Index Design
Indexing QPUs (iQPUs and mQPUs) maintain secondary indexes
for a set of secondary attributes, specified by the system configu-
ration. They organise their secondary indexes using hyperspace
partitioning [2]. Secondary attribute values are organised in a multi-
dimensional space, in which the dimensional axes correspond to
secondary attributes. Objects are mapped to coordinates on the
hyperspace based on the values of their secondary attributes. Each
QPU is responsible for responding to queries for a region of the
hyperspace, defined by value ranges [Li, Ui] for a set of secondary
attributes Attr1, Attr2, ..., AttrN, and maintains an index for that
region.

A Modular Design for Geo-DistributedQuerying PaPoC’18, April 23–26, 2018, Porto, Portugal

Query operations have the same form; a query specifies a set
of attributes and the values that they must match, which can be
ranges or specific values. Based on the specified attribute values
each query uniquely maps to a region of the hyperspace. Indexing
QPUs use their indexes to respond to the query by retrieving all
objects that fall within this region.

This index design naturally supports multi-attribute and range
queries and is flexible as it allows QPUs to assign parts of their
hyperspace regions to other QPUs, and forward queries that corre-
spond to these regions to them. Using this mechanism, the hyper-
space can be partitioned among multiple indexing QPUs, organised
in hierarchy, as shown in Figure 1. The hierarchical structure of
iQPUs forms a distributed index organised as an R-tree [5].

3.3 Index Maintenance
When a write operation occurs, secondary indexes need to be up-
dated by creating index entries corresponding to the object’s sec-
ondary attributes, and removing old ones in case of an update to
an existing object. This may require distributed operations because
objects and index structures may be stored on different servers.
Moreover, creating new index entries and deleting old ones may
require contacting multiple QPUs. Performing index maintenance
operations in the critical path of updates can therefore significantly
increase write latency.

Our approach performs index maintenance in the background, in
order to avoid incurring overhead to write operations. Special pro-
cessing modules (Filter QPUs) are responsible for asynchronously
propagating client updates from the storage system to indexing
QPUs in a streaming fashion. If two QPUs are responsible for in-
dexing a distinct part of the attribute value space, updates can be
propagated in parallel to them.

Propagating client updates asynchronously entails that secondary
indexes are eventually consistent with the base data; index entries
may temporarily be stale, not containing the effects of recent write
operations. This can lead to two types of inconsistencies. First, there
can be cases in which objects are not retrieved despite matching a
query, because the corresponding index entries have not yet been
created. Second, it may be possible for a query to find entries that
refer to objects that no longer exist or have been updated with
different attribute values. Our approach permits the first type of
inconsistencies, and we present mechanisms for reducing the in-
consistency window, including adjusting the amount of resources
available for index maintenance. We avoid the second type of incon-
sistencies by using a mechanism that rechecks the actual secondary
attributes of each object contained in a query response and only
returns objects that match the query predicate.

3.4 Query Processing
Modular querying systems process queries by routing them through
their QPU networks. As all QPUs expose a common interface, they
can receive queries from users as well as perform queries to each
other through their connections. Depending on its functionality,
a QPU can respond to a given query using its index structures,
cache or by scanning the data store. In the case of a fQPU, or if a
full response cannot be obtained, the query is decomposed to a set

dsQPU

DC2

DC1

DC3

Cache

Cache

Cache

Cache

dsQPU

dsQPU

iQPU

iQPU

iQPU

iQPU

fQPU

cQPU cQPU

cQPU

cQPU

cQPU

cQPU

query()

write()

Figure 2: A QPU network configuration for querying in a
content delivery network.

of sub-queries based on the characteristics of the QPU’s connec-
tions, which are then forwarded through the network. The QPU
then retrieves and combines the corresponding partial responses
to calculate the final response.

This process is performed recursively at each query processing
unit. A given query is thus incrementally decomposed to more
fine-grained sub-queries as it is routed through the QPU network.
Each sub-query is processed by a separate QPU, and partial results
are then combined to the final response. This process requires that
each QPU has local information about its neighbours only, and not
about the entire QPU network structure.

4 EXAMPLE USE CASES
In this section we demonstrate how the proposed modular design
can be used to enable querying in two different use cases of geo-
distributed systems.

4.1 Content Delivery Network
Consider the example of a content delivery network (CDN) in which
media files are streamed to users distributed in multiple geographic
locations. Media files can be tagged with secondary attributes and
users retrieve data by performing queries using these attributes.
Moreover, system administrators perform queries related to data
lifecycle management operations. The core of the system consists
of a set of data centres (DCs) that replicate every object while, at
the edge of the system, cache servers store a subset of the objects.
In this scenario, objects are inserted at the core of the system, and
queries are performed mostly from users at the edge.

A QPU network configuration for this use case is shown in
Figure 2. A dsQPU is connected to each DC and can respond to
queries by scanning the dataset, as query latency is not critical for
lifecycle queries. A cQPU is connected to each dsQPU andmaintains
a cache of recent query responses. At the edge of the system, where
applications require minimal query latency, an iQPU is connected
to each cache server to maintain a secondary index for the objects
stored there. A fQPU is used to enable search over the entire system
by forwarding queries either to the corresponding iQPU or the core
of the system, depending on the data distribution. Finally, cQPUs
distribute recent query responses closer to the cache servers.

PaPoC’18, April 23–26, 2018, Porto, Portugal Dimitrios Vasilas, Marc Shapiro, and Bradley King

DC2

DC1

DC3
Client

Client

Client

iQPU

iQPU

iQPU

mQPU

cQPU cQPU
query()

Figure 3: A QPU network configuration for querying in a
data store that supports caching at client machines.

4.2 Caching at client machines
As a different use case we can consider a system that enables data
caching at client machines [4] in order to allow disconnected op-
erations. The system model is similar to the CDN use case; at the
core of the system a set of data centres replicate every object, while
at the edge each client maintains a cache storing a subset of the ob-
jects, on which operations are performed. Here, objects are inserted
at client nodes and then propagated to the core of the system, while
queries are performed mostly at the core of the system

A QPU network that is suitable for this use case is shown in
Figure 3. An iQPU is connected to each client node and maintains
a local index for the objects cached by that client. When objects are
stored, they are indexed locally at the client iQPU. Then, a merge
QPU constructs a global secondary index, and cache QPUs replicate
the global index at each DC. In that way, the system maintains a
global index, while clients store and update local copies of parts
of the global index. Modifications to client indexes are propagated
and merged to the global index. Performing index maintenance in
client machines at the edge can reduce the computational load at
the core of the system, and improve the availability of the global
index under network partition.

4.3 Adaptive Mechanisms
So far we have described modular querying systems as static QPU
networks. However, the flexibility of the modular design enables
the implementation of mechanisms that allow querying systems to
dynamically adjust the QPU network structure in order to adapt to
query and write operation workloads.

An adaptive mechanism can be used in order to dynamically
construct the indexing QPU hierarchy described in Section 3.2. In an
initial configuration, a single QPU is responsible for maintaining an
index for the entire hyperspace for the indexed secondary attributes.
However, some regions of the hyperspace may be queried more
heavily than others. Using this mechanism, when the query load in a
region of the hyperspace reaches a threshold, a new indexing QPU is
spawned and assigned with indexing and responding to queries for
that region. Alternatively, when the query load of hyperspace region
drops below a threshold, the corresponding QPU is merged with
QPUs of neighbouring regions to prevent over-segmentation of the

hyperspace. Using this mechanism, QPU networks can dynamically
adjust their structure to balance query load among QPUs.

QPUs operate as services and are not bound to specific physical
machines. This enables the implementation of another mechanism
that can dynamically adjust the amount of computation resources
available for indexing and query processing. Heavily loaded QPUs
can migrate to new physical machines in order to have more com-
putation resources available, while under-utilised QPUs can be
collocated on the same physical machine.

5 FINAL REMARKS
Designing a geo-distributed querying system that is efficient for all
use cases is not feasible. In this paper, we have proposed a modu-
lar architecture for building multiple querying systems from the
same building blocks, each targeting different use case needs. We
demonstrated the usability of our approach by showing how it can
be applied to different geo-distributed system scenarios. The design
presented in this paper allows querying systems to dynamically
adjust their configuration. This ability can be used by various mech-
anisms to enable querying systems to dynamically adapt to write
and query workloads. We are currently implementing the proposed
system in order to apply it to various geo-distributed system use
cases and evaluate its behaviour and performance.

REFERENCES
[1] Joseph Vinish D’silva, Roger Ruiz-Carrillo, Cong Yu, Muhammad Yousuf Ahmad,

and Bettina Kemme. 2017. Secondary Indexing Techniques for Key-Value Stores:
Two Rings To Rule Them All. In EDBT/ICDT Workshops.

[2] Robert Escriva, Bernard Wong, and Emin Gün Sirer. 2012. HyperDex: A Dis-
tributed, Searchable Key-value Store. In Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’12). ACM, New York, NY, USA, 25–36.
https://doi.org/10.1145/2342356.2342360

[3] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen Yang, and
John Ousterhout. 2016. SLIK: Scalable Low-Latency Indexes for a Key-Value
Store. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX
Association, Denver, CO, 57–70. https://www.usenix.org/conference/atc16/
technical-sessions/presentation/kejriwal

[4] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte, Valter Bale-
gas, Carlos Baquero, and Marc Shapiro. 2014. SwiftCloud: Fault-Tolerant Geo-
Replication Integrated All the Way to the Client Machine. In Proceedings of
the 2014 IEEE 33rd International Symposium on Reliable Distributed Systems
Workshops (SRDSW ’14). IEEE Computer Society, Washington, DC, USA, 30–
33. https://doi.org/10.1109/SRDSW.2014.33

[5] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects. In Proceedings of the 13th
International Conference on Very Large Data Bases (VLDB ’87). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 507–518. http://dl.acm.org/citation.cfm?
id=645914.671636

[6] Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham, and Dahlia Malkhi.
2016. Replex: A Scalable, Highly Available Multi-index Data Store. In Proceedings
of the 2016 USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC ’16). USENIX Association, Berkeley, CA, USA, 337–350. http://dl.acm.org/
citation.cfm?id=3026959.3026991

https://doi.org/10.1145/2342356.2342360
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kejriwal
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kejriwal
https://doi.org/10.1109/SRDSW.2014.33
http://dl.acm.org/citation.cfm?id=645914.671636
http://dl.acm.org/citation.cfm?id=645914.671636
http://dl.acm.org/citation.cfm?id=3026959.3026991
http://dl.acm.org/citation.cfm?id=3026959.3026991

	Abstract
	1 Introduction
	2 Distributed Querying
	3 Modular Querying Systems
	3.1 System Design
	3.2 Secondary Index Design
	3.3 Index Maintenance
	3.4 Query Processing

	4 Example use cases
	4.1 Content Delivery Network
	4.2 Caching at client machines
	4.3 Adaptive Mechanisms

	5 Final Remarks
	References

