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Abstract

Eventual consistency aims to ensure that replicas of some mutable shared
object converge without foreground synchronisation. Previous approaches
to eventual consistency are ad-hoc and error-prone. We study a principled
approach: to base the design of shared data types on some simple formal
conditions that are sufficient to guarantee eventual consistency. We call these
types Convergent or Commutative Replicated Data Types (CRDTs). This
paper formalises asynchronous object replication, either state based or oper-
ation based, and provides a sufficient condition appropriate for each case. It
describes several useful CRDTs, including container data types supporting
both add and remove operations with clean semantics, and more complex
types such as graphs and monotonic DAGs. It discusses some properties
needed to implement non-trivial CRDTs.

1 Introduction

Strong consistency protocols serialise updates in a global total order [5, 15]. This
constitutes a performance and scalability bottleneck. Furthermore, strong consis-
tency conflicts with availability and partition-tolerance [9].

When network delays are large or partitioning is an issue, as in delay-tolerant
networks, disconnected operation, cloud computing, or P2P systems, eventual
consistency has better availability and performance [23, 29]. An update happens
at a replica, without synchronisation; then, it is sent to the other replicas. All
updates eventually take effect at all replicas, asynchronously and possibly in dif-
ferent orders. Conflicts are resolved by a background consensus algorithm [3, 28].
This weaker consistency is considered acceptable for some classes of applications.
However, conflict resolution is hard; there is little guidance on designing a correct
optimistic system, and ad-hoc approaches are brittle and error-prone.1

We propose a simple, theoretically-sound approach to eventual consistency:
to leverage simple mathematical properties that ensure absence of conflict: the
values of state-based objects are monotonic in a semilattice, and the concurrent
updates of operation-based objects commute. A trivial example is a replicated
counter, which converges because its increment and decrement operations com-
mute (assuming no overflow). Data types designed this way are called conver-
gent or commutative replicated data types (CRDTs). CRDT updates do not re-
quire synchronisation, and its replicas provably converge to a common state that

1 Consider for example the anomalies of the Amazon Shopping Cart [7].
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Figure 1: State-based replication

is equivalent to some sequential execution. CRDTs remain responsive, available
and scalable despite high network latency, faults, or disconnection.

Non-trivial CRDTs are known to exist: for instance, we previously published
Treedoc, a sequence CRDT for co-operative text editing [19]. Our aim here is to
expand our knowledge of the principles and practice of CRDTs.

The contributions of this paper include the following: a specification language
suited to asynchronous replication, a formalisation of state-based and operation-
based replication, and two sufficient conditions for eventual consistency; example
CRDTs, focusing on containers supporting both add and remove operations with
clean semantics, and more complex types, such as graphs; a brief overview of
the problem of garbage-collecting CRDTs; an exercise in applying CRDTs to a
practical example, the bookstore shopping cart.

2 Background and system model

We consider a system of processes interconnected by an asynchronous network.
The network can partition and recover, and nodes can operate in disconnected
mode for some time. We assume non-byzantine processes that may crash and
recover with their memory intact.

A process may store atoms and objects. An atom is an immutable datum
identified by its literal content. Atoms can be copied between processes; atoms are
equal if they have the same content. Atom types considered in this paper include
integers, strings, sets, tuples, etc., with their usual non-mutating operations. Atom
types are written in lower case, e.g., “set.”

An object is a mutable, replicated datum. Object types are capitalised, e.g.,
“Set.” An object has an identity, a content (its payload), which may be any number
of atoms or objects, an initial state, and an interface consisting of operations. The
replica of object x at process i is noted xi. We assume that objects are independent
and do not consider transactions; without loss of generality, we focus on a single
object at a time, and use the words process and replica interchangeably.
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Figure 2: Operation-based replication

2.1 Asynchronous object replication

Unspecified clients access object state by calling operations against a replica of
their choice, called the source replica. A query executes at a single replica. An
update has two phases: in the at-source phase, the call executes at the source, as-
suming a source precondition is satisfied. We assume a communication subsystem
that transmits updates from the source to all replicas; this enables the downstream
phase.

Here, the literature [23] distinguishes two approaches, illustrated in Figures 1
and 2 respectively.2 In the state-based approach, the first phase updates the source
replica; the subsystem transmits state; the update takes effect at downstream repli-
cas by merging the delivered state into the local state. In the operation-based
approach (op-based for short), the at-source phase has no side-effects; when it
terminates, the subsystem sends the update operation and its parameters to all
replicas (including the source). When the downstream precondition is satisfied at
a replica, the update takes effect by executing at that replica.
Definition 2.1 (Correctness). A replicated object must satisfy the following con-
ditions:

Termination: For any call whose source precondition is satisfied, its at-source
phase terminates. At any replica where an operation takes effect, the down-
stream phase terminates.

Eventual effect: An update that takes effect at some replica eventually takes
effect at all replicas. Referring to the causal history C defined later:
∀i, j : f ∈ C(xi)⇒ � f ∈ C(x j).

Convergence: Replicas where the same updates took effect have equivalent state.
Formally: ∀i, j : C(xi) = C(x j)⇒ xi ≡ x j, where xi ≡ x j if all queries return
the same values for xi and x j.

Proof obligations are as follows. Assuming the preconditions are true, termi-
nation should be apparent from the object’s specification. We assume the com-
munication system sends and delivers updates. In state-based objects, as merge

2 The two approaches are equivalent, in the sense that one can emulate the other [27, Section
2.4].
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is always enabled, this implies eventual effect. For op-based objects, we must
prove that the downstream precondition is eventually enabled at every replica. We
give hereafter sufficient conditions for convergence, and must prove that the object
satisfies such conditions.

2.2 State-based CRDT: Convergent Replicated Data Type

(CvRDT)

We use a specification language adapted to asynchronous replication. In state-
based specifications (e.g., Figure 5), keyword payload indicates the payload type;
initial specifies its initial value at every replica. Operations are indicated by key-
word query or update. Non-mutating statements are marked let, and payload
is mutated by assignment :=. An operation executes atomically; pre indicates a
source pre-condition that must hold in the source’s current state.

The communication subsystem transmits state between arbitrary replicas at
arbitrary times. This updates the payload with merge (local-state, delivered-
state); thus delivered updates take effect. Operation compare compares replica
states, as will be explained shortly.
Definition 2.2 (Causal History (state-based)). The causal history C of replica xi of
state-based object x is defined as follows [24]: (a) Initially, C(xi) = ∅. (b) Atomi-
cally with executing update operation f , C(xi) := C(xi) ∪ { f }. (c) Atomically with
merging against x j, C(xi) := C(xi) ∪ C(x j).

An update is said to take effect at some replica when it is in the causal history.
The classical happened-before [15] relation can be defined as f → g ⇔ (∀i : g ∈
C(xi)⇒ f ∈ C(xi)).

We now propose a sufficient condition for convergence in state-based objects.
A join semilattice [6] (or just semilattice hereafter) is a partial order ≤v equipped
with a least upper bound (LUB) �v for all pairs.
Definition 2.3 (Least Upper Bound (LUB)). m = x �v y is a Least Upper Bound
of {x, y} under ≤v iff x ≤v m and y ≤v m and there is no m� ≤v m such that x ≤v m�
and y ≤v m�.

It follows that �v is: commutative: x �v y =v y �v x; idempotent: x �v x =v x;
and associative: (x �v y) �v z =v x �v (y �v z).

Consider a state-based object whose payload takes its values in a semilattice,
where merge(x, y) returns x�v y, and where state is monotonically non-decreasing
according to ≤v (i.e., after an update, the payload is greater or equal to the value
before). Let us call this combination “monotonic semilattice.” This is a sufficient
condition for the object to converge towards the LUB of the most recent updates.
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A type with these properties will be called a Convergent Replicated Data Type
or CvRDT. In a CvRDT, we require that compare(x, y) return x ≤v y, that x ≤v

y ∧ y ≤v x⇒ x ≡ y, and that merge be always enabled.
Proposition 2.1. Two CvRDT replicas eventually converge, assuming the commu-
nication subsystem delivers payload infinitely often between them.

We refer to a companion technical report for the proof, which basically for-
malises the above discussion [27].

The communication subsystem of CvRDTs may have very weak properties.
Since merge is idempotent and commutative, messages may be lost, received out
of order, or multiple times, as long as new state eventually reaches all replicas,
either directly or indirectly.

2.3 Op-based CRDT: Commutative Replicated Data Type

(CmRDT)

In op-based specifications (e.g., Figure 12), the payload, initial and query clauses
have the same meaning as in the state-based case. The at-source phase is marked
atSource. Its (optional) source pre-condition, marked pre, must be true in the
source state. It executes atomically. It is not allowed to make side effects, but it
may send additional arguments downstream. The downstream phase executes at
some replica only if and when its downstream precondition is true: immediately
at the source, and after the update is delivered, at all other replicas. It updates the
downstream state atomically; thus the update takes effect.
Definition 2.4 (Causal History (op-based)). The causal history of replica xi is
defined as follows: (a) Initially, C(xi) = ∅. (b) Atomically with executing the
downstream phase of f at xi, C(xi) := C(xi) ∪ { f }.

Again, happened-before is defined by f → g⇔ (∀i : g ∈ C(xi)⇒ f ∈ C(xi)).
Operations are concurrent if not ordered by happened-before; formally: f � g ⇔
f �→ g ∧ g �→ f .
Definition 2.5 (Commutativity). Updates f and g commute, iff for any reachable
replica state S where their downstream pre-condition is enabled, the downstream
precondition of f (resp. g) remains enabled in state S ·g (resp. S · f ), and S · f ·g ≡
S · g · f .

Causal delivery (defined as follows: at any replica, if f → g then f is deliv-
ered at any replica before g is delivered) is sufficient to ensure that the downstream
precondition is true, for all objects in this paper, and operations take effect in that
order. Thus, two operations that are causally related execute their downstream
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phase in the same order at all replicas, and the final state is the same. Operations
that are not related are concurrent; if they commute, the final states are equivalent.

Thus, a sufficient condition for convergence of an op-based object is that all
its concurrent operations commute. An object satisfying this condition is called a
Commutative Replicated Data Type (CmRDT).
Proposition 2.2. Assuming a communication subsystem that reliably delivers up-
dates in causal order, replicas of a CmRDT converge.

Recall that reliable causal delivery does not require agreement. It is immune
to partitioning, in the sense that replicas in a connected subset can deliver each
other’s updates, and that updates are eventually delivered to all replicas.

3 Example CRDTs

We now present a number of example CRDT designs: Registers, Sets, and Graphs.
We refer the reader to a technical report for further examples, e.g., Counters,
Maps, Monotonic DAGs, and Sequences [27].

Our specifications are written with clarity in mind, not efficiency. In many
cases, there are clearly more efficient ways, but we preferred the more easily-
understood version.

We write either state- or op-based specifications, as convenient. Proofs that
objects fulfill the convergence conditions is generally trivial for the types here-
after.

3.1 Registers

A register is a memory cell storing an opaque atom or object (noted type X here-
after). It supports assign to update its value, and value to query it. Non-concurrent
assigns preserve sequential semantics: the later one overwrites the earlier one. To
make concurrent updates commute, two approaches are possible: either one takes
precedence over the other (LWW-Register), or both are retained (MV-Register).

3.1.1 Last-Writer-Wins Register (LWW-Register)

A Last-Writer-Wins Register (LWW-Register) creates a total order of assignments
by associating a timestamp with each update. Timestamps are assumed unique,
totally ordered, and consistent with causality; i.e., if two assignments occur in
happened-before order, the first one’s timestamp is less than the second’s [15].
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Figure 3: Integer LWW Register (state-
based). Payload is a pair (value, timestamp)

{1[1,0]}

{1[1,0]} {3[1,1]}

{2[2,0]}

{2[2,0], 3[1,1] }

{2[2,0], 3[1,1]}
{0[0,0]}

{0[0,0]}
x2≔{3}

x1≔{1} x1≔{2}

M M

M

Figure 4: MV-Register (state-based). Notation
“1[1,0]” associates value 1 with version vector [1, 0]

This may be implemented as a per-replica counter concatenated with a unique
replica identifier, such as its MAC address.

The state-based LWW-Register is presented in Figure 5, and the op-based
specification in Figure 6. The value can be any data type X. Operation value
returns the current value. Operation assign updates the payload with the new
value, and generates a new timestamp. Values are ordered in the semilattice by
their associated timestamp; merge selects the value with the highest timestamp.
Figure 3 illustrates an integer LWW-Register.

LWW-Registers, first described by Thomas [13], are ubiquitous in distributed
systems. For instance, in a replicated file system such as NFS, type X is a file (or
even a block in a file).

payload X x, timestamp t -- X: some type

initial ⊥, 0
update assign (X y)

x, t := y, now() -- Timestamp, consistent with causality

query value () : X y
let y = x

compare (R, S ) : boolean b
let b = (R.t ≤ S .t)

merge (R, S ) : payload T
if R.t ≤ S .t then T.x,T.t = S .x, S .t
else T.x,T.t = R.x,R.t

Figure 5: State-based LWW-Register
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payload X x, timestamp t -- X: some type

initial ⊥, 0
query value () : X w

let w = x
update assign (X x�)

atSource () : t�
let t� = now() -- Timestamp

downstream (x�, t�)
-- No downstream precondition: effect order is empty

if t < t� then x, t := x�, t�

Figure 6: Op-based LWW-Register

payload set S -- (x,V) pairs; x ∈ X; V its version vector

initial {(⊥, [0, . . . , 0])}
query incVV () : integer[n] V �

-- Compute dominating version vector

let g = myID() -- Index of source replica

letV = {V |∃x : (x,V) ∈ S }
let V � =

�
maxV∈V(V[ j])

�
j�g

let V �[g] = maxV∈V(V[g]) + 1
update assign (set R) -- set of elements of type X

let V = incVV()
S := R × {V} -- Assign S with (x,vv) pairs

query value () : set S �
let S � = {x|∃V : (x,V) ∈ S }

compare (A, B) : boolean b
let b = (∀(x,V) ∈ A, (x�,V �) ∈ B : V ≤ V �)

merge (A, B) : payload C
-- Union of values not dominated by other replica

let A� = {(x,V) ∈ A|∀(y,W) ∈ B : V � W ∨ V ≥ W}
let B� = {(y,W) ∈ B|∀(x,V) ∈ A : W � V ∨W ≥ V}
let C = A� ∪ B�

Figure 7: State-based Multi-Value Register (MV-Register)

payload set A, set R -- A: added; R: removed

initial ∅,∅
query lookup (element e) : boolean b

let b = (e ∈ A ∧ e � R)
update add (element e)

A := A ∪ {e}
update remove (element e)

pre lookup(e)
R := R ∪ {e}

compare (S , T ) : boolean b
let b = (S .A ⊆ T.A ∧ S .R ⊆ T.R)

merge (S , T ) : payload U
let U.A = S .A ∪ T.A
let U.R = S .R ∪ T.R

Figure 8: State-based 2P-Set
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3.1.2 Multi-Value Register (MV-Register)

An alternative kind of register takes the union of concurrent assignments, as in file
systems such as Coda [12] or in Amazon’s shopping cart (clients can later reduce
multiple values to a single one with a new assignment) [7], or more generally
merges them, as in Ficus [20].

This Multi-Value Register (MV-Register) is specified in Figure 7, and illus-
trated in Figure 4. In order to detect concurrency, the payload is a set of (X,
versionVector) pairs. A value operation returns a copy of the payload. To over-
write, assign stores a version vector that dominates all previous ones.3 Operation
merge takes the union elements not dominated by another one.

As noted in the Dynamo article [7], in Amazon’s shopping cart, a removed
book may re-appear. This is illustrated in the example of Figure 9. The problem
is that the MV-Register does not behave like a set.

{1[2,0], 2[2,0]}

{1[1,0]
 }

M M

{1[1,0]}
{0[0,0]}

{0 [0,0]}

x1≔{1} x1≔{1,2}

{3[1,1]}x2≔{3} {1[2,0], 2[2,0], 3[1,1] }

Figure 9: MV-Register counter-example

add(a)

add(a)

rmv (a)
{} {a}

{}

{}

add(a) add(a) rmv (a)

add(a)
{a}

{a} {a} {}{}

S

S

S D

DDD

Figure 10: Counter-example: Set with con-
current add and remove (op-based)

3.2 Sets

We now present clean specifications of Sets. Sets constitute one of the most basic
data structures. Containers, Maps, Graphs and Sequences are all based on Sets.

We consider mutating operations to add or remove an element. Unfortunately,
the underlying union and set-minus do not commute with each other. Therefore,

3 By symmetry with value, assign takes a set of values.
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Figure 11: Observed-Remove Set (op-based)

a Set-like CRDT can only approximate the intuitive sequential specification. Fig-
ure 10 illustrates the issue with a naïve set implementation. Two replicas concur-
rently add and remove the same element, but the result depends on the order of
delivery.

We now examine a few Set variants, which differ mainly in the result of con-
current add(e) with remove(e). The 2P-Set gives precedence to remove, OR-Set
to add.

3.2.1 2P-Set

The simplest approach is the Add-Only-Set (G-Set), which avoids the problematic
remove altogether [27, Section 3.3.1]. G-Set is useful as a building block for more
complex constructions.

In a Two-Phase Set (2P-Set), an element may be added, then removed, but not
added again, as specified in Figure 8. It combines a G-Set for adding with another
for removing; the latter is colloquially known as the tombstone set.

payload set S -- Unique + causal delivery⇒ no tombstones

initial ∅
query lookup (element e) : boolean b

let b = (e ∈ S )
update add (element e)

atSource (e)
pre e is unique

downstream (e)
S := S ∪ {e}

update remove (element e)
atSource (e)

pre lookup(e) -- 2P-Set precondition

downstream (e)
pre add(e) has been delivered -- Causal order suffices

S := S \ {e}

Figure 12: U-Set: Op-based 2P-Set with unique elements



86 86

86 86

payload set S -- set of pairs { (element e, unique-tag u), . . . }
initial ∅

query lookup (element e) : boolean b
let b = (∃u : (e, u) ∈ S )

update add (element e)
atSource (e)

let u = unique() -- unique() returns a unique value

downstream (e, u)
S := S ∪ {(e, u)} -- e + unique tag

update remove (element e)
atSource (e)

pre lookup(e)
let R = {(e, u)|∃u : (e, u) ∈ S }

-- Collect all unique pairs containing e
downstream (R)

pre ∀(e, u) ∈ R : add(e, u) has been delivered
-- U-Set precondition; causal delivery suffices

S := S \ R
-- Downstream: remove pairs observed at source

Figure 13: Op-based Observed-Remove Set (OR-Set)

Figure 8 specifies a state-based 2P-Set. The payload is composed of sets A
for adding, and R for removing. Operation lookup(e) checks that e has been added
and not removed. Adding and removing a same element are idempotent; adding
a removed element has no effect. The tombstone ensures that remove(e) takes
precedence over a concurrent add(e). Procedure merge takes the union of the
individual added- and removed-sets, which is a LUB. Therefore, this is indeed a
CRDT.

Consider now an op-based 2P-Set, under two simplifying (but standard) as-
sumptions. If elements are unique, a removed element will never be added again.
If add(e) is always delivered before remove(e), there is no need to record removed
elements, and the remove-set is redundant. (Causal delivery is sufficient to ensure
this precondition.) The specification in Figure 12 captures this data type, which
we call U-Set.

3.2.2 Observed-Remove Set (OR-Set)

The preceding Set constructs are somewhat counter-intuitive. We present here
the Observed-Removed Set (OR-Set), which does not limit adds and removes,
and where the outcome depends only on its causal history and conforms to the
sequential specification of a set.

The strategy is to tag each added element uniquely, without exposing the
unique tags in the interface. When removing an element, the unique tags observed
at the source replica are removed.
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Figure 13 presents an op-based specification. The payload is a set of pairs
(element, unique-tag). Operation add(e) generates a unique identifier (unique is
assumed to return a unique value, e.g., a Lamport clock) in the source replica;
this is propagated to downstream replicas, which insert the pair into their payload.
Adding the same element e twice generates two unique pairs, but lookup(e) masks
the duplicates, extracting the element from the pairs.

payload set VA, VR, EA, ER
-- V: vertices; E: edges; A: added; R: removed

initial ∅,∅,∅,∅
query lookup (vertex v) : boolean b

let b = (v ∈ (VA \ VR))
query lookup (edge (u, v)) : boolean b

let b = (lookup(u) ∧ lookup(v) ∧ (u, v) ∈ (EA \ ER))
update addVertex (vertex w)

downstream (w)
VA := VA ∪ {w}

update addEdge (vertex u, vertex v)
atSource (u, v)

pre lookup(u) ∧ lookup(v)
-- Graph precondition: E ⊆ V × V

downstream (u, v)
EA := EA ∪ {(u, v)}

update removeVertex (vertex w)
atSource (w)

pre lookup(w) -- 2P-Set precondition

pre ∀(u, v) ∈ (EA \ ER) : u � w ∧ v � w
-- Graph precondition: E ⊆ V × V

downstream (w)
pre addVertex(w) delivered -- 2P-Set precondition

VR := VR ∪ {w}
update removeEdge (edge (u, v))

atSource ((u, v))
pre lookup((u, v)) -- 2P-Set precondition

downstream (u, v)
pre addEdge(u, v) delivered -- 2P-Set precondition

ER := ER ∪ {(u, v)}

Figure 14: 2P2P-Graph (op-based)

When a client calls remove(e), the set of unique tags associated with e at the
source is recorded. All such pairs are removed from the downstream payload.
Thus, when remove(e) happens-after any number of add(e), all the corresponding
pairs are removed, and the element is not in the set any more, as expected intu-
itively. When add(e) is concurrent with remove(e), the add takes precedence, as
the unique tag generated by add cannot be observed by remove.

This behaviour is illustrated in Figure 11, noting α, β, . . . the unique tags.
The remove(a) called at the top replica translates to removing (a,α) downstream.
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The add called at the second replica is concurrent to the remove of the first one,
therefore (a, β) remains in the final state.

3.3 Graphs

A graph is a pair of sets (V, E) (called vertices and edges respectively) such that
E ⊆ V × V . Any of the Set implementations described above can be used for V
and E.

Because of the invariant E ⊆ V × V , operations on vertices and edges are
not independent. At source, an edge may be added only if the corresponding
vertices exist; conversely, a vertex may be removed only if it supports no edge.
The specification in Figure 14 uses one 2P-Set for vertices and another for edges.
The dependencies between them are resolved by causal delivery. Even if ver-
tices are unique, we do not use U-Set because tombstones are needed to guard
addEdge against concurrent removeVertex. In case of a concurrent addEdge and
removeVertex, the effect of removeVertex takes precedence, as an edge only exists
if their vertices have not been removed (as defined in edge lookup).

payload set S -- triplets (isbn k, integer n, unique-tag u), . . .
initial ∅

query get (isbn k) : integer n
let N = {n�|(k�, n�, u�) ∈ S ∧ k� = k}
if N = ∅ then

let n = 0
else

let n = max(N)
update add (isbn k, integer n)

atSource (k, n)
pre n > 0
let u = unique()
let R = {(k�, n�, u�) ∈ S |k� = k}

downstream (R, k, n, u)
pre ∀(k�, n�, u�) ∈ R :

add(k�, n�, u) has been delivered
-- OR-Set remove precondition

S := (S \ R) ∪ {(k, n, u)}
-- Replace elements observed at source

update remove (isbn k)
atSource (k)

let R = {(k�, n�, u�) ∈ S |k� = k}
downstream (R)

pre ∀(k, n, u) ∈ R : add(k, n, u) has been delivered
-- OR-Set precondition

S := S \ R -- Remove elements observed at source

Figure 15: Op-based Observed-Remove Shopping Cart (OR-Cart)
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In general, a CRDT cannot maintain a particular graph shape such as DAG or
a tree, as this requires evaluating a precondition in a globally consistent state [4].
However, specific structures are possible, for instance a Monotonic DAG in which
adding vertices and edges can only strengthen the existing order.

An even more specialised graph structure is a Sequence, as used for instance
in collaborative text editing [19, 21, 31]. A text editing buffer is often viewed
as an array, but array operations do not commute; whereas, when viewed as a
specific Graph, commutativity is simple to achieve. In particular, the first two
authors previously designed the Treedoc Sequence CRDT, based on the idea of
approximating the continuum as a binary tree [19].

4 Garbage collection

Some CRDTs tend to become less efficient over time, as tombstones accumu-
late and internal data structures become unbalanced [16, 19]. Garbage collection
(GC) alleviates these problems; it may require synchronisation, but its liveness
is not essential. We investigate two classes of GC mechanisms, with different
synchronisation requirements.

An update f sometimes adds information r( f ) to the payload in order to deal
cleanly with concurrent operations, e.g. in Graph, remove leaves a tombstone to
handle concurrent addBetweens. Our first class of GC discards such r( f ) when it
does not serve any useful purpose any more:
Definition 4.1 (Stability). Update f is stable at replica xi (noted Φi( f )) if all
updates concurrent to f have taken effect at xi. Formally, Φi( f ) ⇔ ∀ j : f ∈
C(x j) ∧ (�g ∈ C(x j) \ C(xi) : f � g).

Liveness of Φ requires that the set of replicas be known and that they do
not crash permanently (undetectably). Under these assumptions, the algorithm of
Wuu and Bernstein [32] can be adapted to detect stability of f and thus discard
r( f ). We note that this information is generally available when using a reliable
broadcast channel.4 Importantly, GC based on Φ can be performed in the back-
ground, so its liveness is not critical for correctness.

A second class of GC problems resets the payload across all replicas. An
example is removing tombstones from a 2P-Set (thus allowing to re-add deleted
elements again), removing entries from a version vector, or rebalancing a repli-
cated tree [16]. This requires a commitment protocol. To alleviate the strong

4 Note furthermore that such a channel already does GC internally, often making a CmRDT
simpler than the corresponding CvRDT.
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requirements of commitment, and to collect asynchronously with updates, Leţia
et al. [16] propose to perform commitment within a small, stable subset of replicas
only, the core; the other replicas reconcile their state with core replicas. This ap-
proach works well for Treedoc; we are working on generalising it to other CRDTs.

5 Putting CRDTs to work

As a concrete example, consider shopping carts in an e-commerce bookstore. For
high throughput and availability, data is replicated at both data-centre and geo-
graphical scale [7]. Given these assumptions, strong consistency would be slow
and would not tolerate network partitions. CRDTs provide a good solution.

5.1 Observed-remove Shopping Cart

A shopping cart maps a book number (ISBN) to the quantity that the user wants.
Any of the Set CRDTs presented earlier extends readily to a Map; we choose to
extend OR-Set (Section 3.2.2). This design is simple, and does not have the cost
of the version vectors needed by Dynamo’s MV-Register.

Figure 15 presents an op-based OR-Cart. The payload is a set of triplets
(key, value, unique-identifier). Operation remove discards all existing mappings
for the given ISBN: the source records the triplets associated with that key, to
be removed, downstream, from the payload. Operation add overwrites by first
discarding existing mappings as above, then inserting a unique triplet. As in OR-
Set, causal delivery is sufficient to satisfy the downstream precondition.

We now show informally that concurrent updates commute. Two removes
commute, as the downstream set-minus operations are either independent or idem-
potent. The triplets created by concurrent adds cannot be in the removal set of the
other, and (similarly to remove), their downstream set-minuses commute. Oper-
ation add is independent from, or idempotent with, a concurrent remove, as the
triplet added by the former is disjoint from the triplets removed by the latter.

5.2 E-commerce bookstore

The bookstore maps user accounts to OR-Carts, using a U-Map (derived from
U-Set in the obvious way). A shopping cart is added when the account is first
created, and removed when it is deleted.
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When the user chooses book b, the user interface calls add(b, 1) against some
replica. To change the quantity to q > 0, it calls add(b, q). If the user cancels the
book, or brings the quantity to zero, the interface calls remove(b).

Non-concurrent updates have the expected semantics, i.e., later ones take
precedence. Even though the user interface may address updates to different repli-
cas (which may be out of sync with one another [7]), concurrent updates have
clear, understandable semantics, i.e., it is the largest value that is chosen.

6 Comparison with previous work

Eventual consistency has been an active topic of research in highly-available,
large-scale asynchronous systems [23]. Contrary to much previous work [7, for
instance], we take a formal approach grounded in the theory of commutativity and
semilattices. However, we are not the first to study commutativity in context of
concurrency and replication. Commutativity has been studied to improve concur-
rency control and disconnected operation in transactional systems [10, 14, 30].
Closer to our motivation, Helland and Campbell leverage commutativity to im-
prove availability [11].

6.1 Existing CRDTs

Although the concept itself was identified only recently, previous CRDT designs
have been published. Johnson and Thomas invented the LWW-Register [13].
They propose a database of registers that can be created, updated and deleted,
using the LWW rule to arbitrate between concurrent assignments and removes
(i.e., a removed element can be recreated). LWW ensures a total order of oper-
ations, but it is an arbitrary extension of happened-before, so, inherently, some
updates are lost.

Wuu and Bernstein [32] describe Dictionary and Log CRDTs. Their Dictio-
nary is a Map CmRDT, similar to our U-Set. Their Log serves as a reliable broad-
cast channel for Dictionary. They study how to propagate the log effectively; to
limit log growth, they propose the algorithm to detect when an entry is stable and
can be collected, used in Section 4.

Concurrent editing has been the focus of CRDT and related research. WOOT
is a Graph CRDT designed for collaborative editing [18]. The same authors de-
signed the Logoot Sequence CRDT that supports an undo mechanism based on a
CRDT Counter [31]. Preguiça and Shapiro propose Treedoc, a Sequence CRDT
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for concurrent editing [19]. They later identified the GC issue, and studied how to
move it into the background [16].

6.2 Related concepts

The CRDT concept was invented by Shapiro and Preguiça [26]. Other work has
used similar ideas.

Ellis and Gibbs’ [8] Operational Transformation (OT) studies op-based Se-
quences for shared editing. To ensure responsiveness, a local operation executes
immediately. Operations are not designed to commute; however, a replica re-
ceiving an update transforms it against previously-executed concurrent updates to
achieve a similar result. Many OT algorithms have been proposed; Oster et al.
show that most OT algorithms for a decentralised architecture are incorrect [17].
We believe that designing for commutativity from the start is both cleaner and
simpler.

The foundations of CvRDTs were introduced by Baquero and Moura [1, 2].
We extend their work with a specification language, by considering CmRDTs, by
studying more complex examples, and by considering GC.

Recently, Alvaro et al. proposed the Bloom programming language, which
ensures eventual consistency by enforcing logical monotonicity. This is akin to
the rule for CvRDTs, that every update or merge move forward in the monotonic
semilattice. However, Bloom does not support remove without synchronization.

Roh et al. [21, 22] independently developed the Replicated Abstract Data
Type concept, which is quite similar to CRDT. They generalise LWW to a partial
order of updates, which they leverage to build several LWW-style classes; we
allow any LUB merge function.

Serafini et al. suggest to leverage periods of good network conditions to
achieve the stronger and more desirable linearizability property [25]. They dis-
tinguish strong (i.e., linearisable) operations from weak ones that need to be lin-
earised eventually only. They show that, if all operations must terminate, the �S
failure detector is insufficient for solving this problem. Our future work includes
adding infrequent strong operations to CRDTs, e.g., to commit a result; we will
study the impact of Serafini’s results on such designs.
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7 Conclusion

We presented the concept of a CRDT, a replicated data type for which some simple
mathematical properties guarantee eventual consistency. In the state-based style,
the successive states of an object should form a monotonic semilattice, and merge
should compute a least upper bound. In the op-based style, concurrent operations
should commute. Assuming only that the communication subsystem eventually
delivers, both styles of CRDTs are guaranteed to converge towards a common,
correct state, without requiring any synchronisation.

We specified a number of interesting data types, in a high-level specification
language based on simple logic. In particular, we focused on Set types with clean
semantics for add and remove operations; Maps, Graphs, and Sequences can be
built above Sets. Our bookstore example shows how CRDTs might be used prac-
tically.

Eventual consistency is a critical technique in many large-scale distributed
systems, including delay-tolerant networks, sensor networks, peer-to-peer net-
works, collaborative computing, cloud computing, and so on. However, work
on eventual consistency was mostly ad-hoc so far. Although some of our CRDTs
were known before in the literature or in the folklore, this is the first work to en-
gage in a systematic study. We believe this is required if eventual consistency is
to gain a solid theoretical and practical foundation.

Future work is both theoretical and practical. On the theory side, this will
include understanding the class of computations that can be accomplished by
CRDTs, the complexity classes of CRDTs, the classes of invariants that can be
supported by a CRDT, the relations between CRDTs and concepts such as self-
stabilisation and aggregation, and so on. On the practical side, we plan to imple-
ment the data types specified herein as a library, to use them in practical applica-
tions, and to evaluate their performance analytically and experimentally. Another
direction is to support support infrequent, non-critical synchronous operations,
such as committing a state or performing a global reset. We will also look into
stronger global invariants, possibly using probabilistic or heuristic techniques.
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