
Research statement and overview

Marc Shapiro
UPMC-LIP6 & INRIA

http://lip.fr/Marc.Shapiro/

6 February 2017

1 Research overview

Large-scale distributed computing systems are central to our modern economies,
witness the Internet, cloud computing, peer-to-peer computing, parallel comput-
ing, nomadic and pervasive computing, etc. Advances in this area impact the
economics and user experience of large segments of society.

My research focus is on sharing mutable information in large-scale distributed
systems, i.e., ones with high latency, subject to partial failures, and comprising
large amounts of data. This is relevant to, for instance, enterprise intranets, social
or co-operative networks, distributed databases, and mobile computing.

This includes an interest in concurrent algorithms (especially fine-grain algo-
rithms for multicore computing), and in memory management and garbage col-
lection algorithms (virtual memory, distributed GC, GC in the presence of weak
consistency, and multicore GC). This is relevant to modern operating systems and
Managed Runtime Environments (MREs, a.k.a. language virtual machines).

1.1 Approach and impact

My approach combines the practical and the theoretical.1 Result-oriented re-
search, typical of the systems community, was published in venues such as ASP-
LOS [23, 24], EuroSys [7], OSDI [17], SOSP [1], SRDS [8, 45, 50, 72], Middleware
[4, 82], ICDCS [3, 19, 43, 48, 49, 51], Systor [74], LADIS [5, 6, 34, 67], or Computing

1 Herein, “I”, “we,” “my” or “our” are to be read as short for “my co-authors and myself.”
Citation counts, marked GS, were compiled from Google Scholar on 20 December 2016. My
publications are accessible at http://lip6.fr/Marc.Shapiro/pubs.html.

1

http://lip.fr/Marc.Shapiro/
http://lip6.fr/Marc.Shapiro/pubs.html

Systems [57]. I take a principled approach, isolating and formalising the fundamen-
tal problems and formulating practically-relevant theory, also publishing in more
theoretical venues of our domain, such as POPL [25], PODC [30, 31, 58], DISC
[11, 54, 61], OPODIS [2, 62], or Euro-Par [46, 70]. My work impacts other research
communities, as evidenced by publications in the areas of: parallel computing and
concurrency [80: PPoPP]; collaborative work [14, 28: Group and CollaborateCom];
programming languages [25: POPL], [33: PLDI], [68: Concur], [20, 56: ECOOP];
artificial intelligence and machine learning [27: IJAIT]; and databases [9, 69: Data
Engineering Bulletin, BDA].

I gave invited presentations to venues such as: Concur 2016, U. Joseph Fourier
2016, Inria-EPFL Workship 2016, CodeMesh 2015, Royal Holloway London U.
2015, W. on Chemistry of Concurrent and Distributed Programming 2015 and
2011, CurryOn 2015, Technion Systems Day and Technion Colloquium, both in
June 2014 (via the ACM Distinguished Speakers Program), Darmstadt Technical
University, MAKI Distinguished Lecture Series, in June 2013; (EC)2, the Int. W.
on Exploiting Concurrency Efficiently and Correctly, co-located with CAV 2013;
the Verico 2011 workshop (Verification of Concurrent Data-Structures) co-located
with POPL 2011; WetICE 2011, the Int. Conf. on Collab. Tech. and Infrastruc-
tures; the Mysore 2011 workshop on The Chemistry of Concurrent and Distributed
Programming ; ICFP 2006, the major conference on functional programming [53].
Furthermore, I initiated the Dagstuhl Seminar on Consistency in Distributed Sys-
tems (Feb. 2013), in order to bring together the researchers from diverse commu-
nities, i.e., distributed systems, distributed algorithms, cloud computing, parallel
computing, distributed databases, and parallel architectures [29]; a new edition
has been accepted for Feb. 2018. I recently initiated the PaPEC/PaPoC series of
workshops (Principles and Practice of Data Consistency), to which I was a frequent
contributor [15, 40, 78, 79, 83].

The proxy concept that I invented [49: ICDCS 1986] is ubiquitous, e.g., all
over in the World-Wide Web.

The CRDT concept, a data model that I invented in order to simplify the
correct design and implementation of available applications [65, 66] is creating a
lot of excitement, including in industry; for instance, the Riak distributed datastore
has support for CRDTs.

My ten most-cited papers [1, 30, 41, 43, 47, 49, 57, 58, 64, 65] total 2644
Google Scholar (GS) citations. GS reports that my papers were cited a total of
4902 times, and gives an H-index of 29. The 38 papers available from the ACM
Digital Library were downloaded 16 923 times.

I am the only French author to have published at both SOSP [1] and OSDI

2

http://www.concur2016.ulaval.ca/program/speakers/
http://mi2s.imag.fr/just-right-consistency
http://mi2s.imag.fr/just-right-consistency
https://project.inria.fr/epfl-Inria/workshops/workshop-2016/
http://www.codemesh.io/codemesh2015/marc-shapiro
https://www.royalholloway.ac.uk/computerscience/events/eventsarticles/seminarmarcshapirorescheduled.aspx
https://www.royalholloway.ac.uk/computerscience/events/eventsarticles/seminarmarcshapirorescheduled.aspx
http://www.liafa.univ-paris-diderot.fr/~jhamza/netys/
http://research.microsoft.com/en-us/um/redmond/events/MysorePark/CCDP11.htm
http://www.curryon2015.heathermiller.net/2015/sessions/encapsulating-replication-high-concurrency-and-consistency-with-crdts.html
http://events-tce.technion.ac.il/systems-day-2014/program/
http://www.cs.technion.ac.il/~colloq/20140602_14_30_Shapiro.html
http://www.maki.tu-darmstadt.de/sfb_maki/dls/ss2013/shapiro.de.jsp
http://www.maki.tu-darmstadt.de/sfb_maki/dls/ss2013/shapiro.de.jsp
http://zvonimir.info/events/ec2-2013/
http://zvonimir.info/events/ec2-2013/
http://research.ihost.com/verico/
http://events.telecom-sudparis.eu/wetice/
http://events.telecom-sudparis.eu/wetice/
http://research.microsoft.com/en-us/um/redmond/events/mysorepark/ccdp11.htm
http://research.microsoft.com/en-us/um/redmond/events/mysorepark/ccdp11.htm
http://icfp06.cs.uchicago.edu
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13081
http://www.dagstuhl.de/de/programm/kalender/semhp/?semnr=13081

[17].2

The Inria research in the area of Distributed Systems and Services was eval-
uated in October 2016 by an external evaluation panel. Their assessment of the
Regal research group contains the following:

Regal has generated a number of notable papers that have gained trac-
tion in the academic community, for example the work on failure detec-
tors and on CRDTs. The panel emphasizes that the work on CRDTs
typifies what we expect from great research institutes: original ideas that
defy the status quo and move the field towards new directions, opening
the door for new classes of research results. Multiple panel members
expressed the view that when first hearing about CRDTs, they dismissed
the idea as “crazy.” Yet, the work done by the REGAL team has not
only convinced skeptical academics that this is actually a good idea, but
also managed to get traction among developers of real systems. INRIA
should be very proud of what they have achieved.

[...] The partnership with Basho Technologies on the implementation
of CRDTs in the cloud database Raik [sic] is a an enormous outcome,
with many users of Raik now using them. Finally, the adoption of
CRDTs in the infrastructure of large enterprises such as Facebook and
TomTom highlights the true depth of impact and partnership that the
team has with industry. This impressive performance in industrial col-
laboration is further strengthened by participation in a large number of
EU projects.

The panel members were Dilma Da Silva (Chair), Salima Benbernou, Yolande
Berbers, Ewa Deelman, Maurice Herlihy, Flavio Junqueira, Antony Rowstron,
and Liuba Shrira.

1.2 Research Perspective

Fueled by the proliferation of mobile devices and of cloud services, computing is
undergoing major changes. On the one hand, data is becoming more decentralised,
across numerous private, mobile, capable devices, that often hold the most recent,
authoritative updates. On the other, data is increasingly produced, processed, and
stored in the cloud.

As users are more and more interconnected in large-scale social networks, the
issues of concurrency, latency tolerance, consistency and security become more

2 The premier publication venues for the systems community are SOSP, OSDI and EuroSys.

3

acute. The amount of available user data increases steeply, and privacy issues
cannot be ignored.

Large-scale services need to decentralise, in order to tolerate latency and to
ensure availability in the presence of network partitions. Therefore, architects of
cloud services such as Amazon, Google or Facebook have turned to optimistic
replication and eventual consistency, validating our long-term vision. However,
they have been using ad-hoc, unprincipled approaches, that provide little in the
way of useful guarantees. Application programmers remain unable to comprehend
the costs and consequences of a design decision.

Recently, the pendulum has been swinging back to strong consistency, because
weak forms of consistency appear anomalous to application developers. However,
weaker consistency can result in order-of-magnitude cost/energy/performance im-
provement [4]. There is no one-size-fits-all solution, and the strong/weak consis-
tency trade-offs are here to stay.

Our thesis is that this bottom-up approach, shoe-horning an application to
a predefined consistency model, is the wrong way to look at the problem. In-
stead, we would like to start from the requirements of the application and to tailor
consistency precisely to application requirements.

Our approach starts with a data model for replicated systems that pro-
vides both backward compatibility with sequential systems and correctness. Our
Conflict-Free Replicated Data Types (CRDTs) have a standard sequential seman-
tics and provably converge under concurrent updates. Applications invoke transac-
tions, which perform multiple reads and updates in a consistent and all-or-nothing
fashion.

Next, we examine what application-level properties of the data (or invariants)
the database can guarantee while remaining available. These include Equivalence
and Partial-Order relations between objects. Operations that impact only Equiv-
alence and Partial-Order invariants can be commute (and hence be available),
as long as the system supports transactions and causal consistency respectively.
Therefore, we advocate ensuring Transactional Causal Consistency (TCC) as the
baseline model. TCC is the strongest model that does compromise availability,
and ensures both Equivalence and Partial-Order type invariants.

TCC is not sufficient to ensure sequential correctness in all cases, which is
why the CAP result is relevant; however, it is often overkill to impose a total
order of all operations. To address this issue, we use the CISE static analysis tool,
which checks for the remaining Precondition-Stable type invariants in the context
of a concurrency control model. If the check is positive, this proves that the
consistency model is strong enough to guarantee the application invariants. If not,

4

the tool provides guidance that helps the application developer, either weaken the
semantics, or strengthen the concurrency control, to precisely the amount required
by the application specification.

By combining TCC with CISE, we prove that all the application’s sequential
invariants are safe. We ensure the best possible availability (and hence perfor-
mance) that is allowed by the application semantics. At the same time we ensure
that synchronisation is strong enough to guarantee safety, without requiring any
guesswork by the application developer. The system is as available as possible,
and as consistent as necessary.

There remain many challenges in supporting this hybrid model and in scaling
the database to hundreds of thousands of database replicas at the edge, in order
to support the requirements of so-called “Fog Computing.” One is how to imple-
ment Transactional Causal Consistency at such a scale, without excessive size of
metadata and without excessive delays; and, in particular, how to ensure partial
replication without impacting correctness. This is likely to require some kind of
hierarchical partitioning of the database, which must be adaptive as usage patterns
change over time. Another challenge is ensuring security guarantees (which can be
viewed as a specific kind of invariant) despite weak consistency. We also believe
that scalability and the need to tailor consistency to application requirements will
be helped by decomposing consistency models into (mostly-)orthogonal primitives,
which can be implemented as (mostly-)independent modules.

An important operational requirement is to improve the visibility of, and con-
trol over, the actual workings and behaviours of distributed systems. Beyond our
existing CISE analysis, we need better tools for proving correctness and removing
errors. We need tools for deploying and monitoring distributed systems; tools for
generating and executing system and application tests; and tools that help analyse
the performance and diagnose bottlenecks.

The area of replication and consistency has received much research attention.
However, it is still not well understood by practioners. We note that, even in
research circles, the guarantees and subtleties of weaker models are not receiving
much attention. Yet, a better understanding of consistency is essential to building
and using massive-scale systems at an acceptable cost. My current research agenda
is to improve this understanding, first by decomposing consistency models along
orthogonal axes, and second by identifying the invariants that are guaranteed
along each point of the axes. Eventually I hope to be able to use this knowledge
constructively, creating consistency protocols tailored to specific uses by composing
primitives.

5

2 Current research: bridging the CAP gap be-
tween correctness and availability

Application design includes deciding on a data schema and on a set of transactions,
and identifying data invariants, i.e., properties that the stored data must maintain.
Even in a sequential execution, updates must be written carefully to maintain the
invariants. For instance, for a bank to maintain the invariant that accounts are
never non-negative, the withdraw(amt) operation must check that amt is less than
the current balance.

Thus, we make the crucial assumption that, if in some state of the database the
data invariants are true, every individual update operation will leave the invariants
true. We say that application operations are correct in isolation (the “C” in ACID).

The challenge is to maintain the same invariants when running above a
database with concurrency. We can now define precisely what we mean by the
guarantee of a consistency model. If the application is Correct-In-Isolation, the
invariants are true in any sequential execution; sequential execution guarantees all
invariants. The guarantee of a consistency model is the class of invariants that re-
mains true at all times, transparently and without requiring any extra involvement
by the application programmer.

Only the strongest consistency model, Strict Serialisability (SSER), guarantees
all classes of invariants. Although distributed implementations of SSER exist (e.g.,
Google’s Spanner), their availability, performance, scalability, and monetary cost
are questionable. These constraints imply to use weaker models, yet any weaker
model has anomalies that break some invariants.

Indeed, the CAP Theorem points to an inherent conflict between consistency
guarantees on the one side, and availability and performance on the other. We
propose to bridge this CAP gap, by understanding which application invariants are
compatible with availability, and tailoring the consistency model precisely to the
application requirements. The good news is that correctness and high availability
do not necessarily conflict. The bad news is that this cannot be transparent, and
requires a deeper understanding of the application’s invariants. We propose a
new methodology, Just-Right Consistency, to match consistency and application
requirements, synchronising only when strictly necessary, based on a novel static
analysis (Section 2.3).

6

2.1 Conflict-Free Replicated Data Types (CRDTs)

The standard data model, based on registers (read/write memory cells) does not
support concurrency well. The first order of business is to provide a suitable data
model that supports concurrent updates, while minimising exposure to concur-
rency anomalies.

For instance, we can represent updates to a shared counter, not as writes but as
addition and subtraction. Since these operations commute, all replicas that receive
the same updates converge, even if received in different orders. We generalise this
insight to a data model designed for asynchronous replication, called Conflict-free
Replicated Data Types, or CRDTs.

A CRDT is a pre-packaged replicated data type that encapsulates replication
and concurrency. Replicas of a CRDT can be updated in parallel without synchro-
nisation, and are guaranteed to converge to a sensible value, without loss. CRDTs
come in different flavours. In addition to counters, we have designed CRDT sets,
maps, graphs, sequences, and specific kinds of registers.

A well-designed CRDT behaves just like its counterpart sequential datatype,
when used sequentially. If two updates commute in the sequential specification,
then the same updates concurrently converges to the same result as the sequential
execution. The key challenge in CRDT design is providing a sensible semantics
for concurrent updates that do not commute. For instance, for an object of type
Set, there is no obvious “right” semantics for insert (e) || remove (e) (concurrently
adding and removing the same element). In fact, any outcome that is determistic
and does not depend on the order of delivery (or any other external factor) will
provide the convergence property. Therefore, our library provides different CRDT
set variants that differ only in the result of insert (e) || remove (e). In the Add-Wins
semantics, insert takes precedence over a concurrent remove of the same element.
Using the Last-Writer-Wins type, the operation that happened at the highest
clock time takes precedence. It is up to the application developer to decide which
of these variants is most appropriate for her application.

The intuition behind CRDTs previously appeared in the research folklore, but
my co-author Nuno Preguiça and I were the first to conceptualise the idea and
to explore its mathematical properties. The state space of a CRDT data type
is a semi-lattice; updates move state forwards in the semi-lattice, and merging
replicas is the least-upper-bound operation. In an alternative (but equivalent)
view, a CRDT is an object whose concurrent updates commute. Our first CRDT
design was Treedoc, a simple and available solution to the problem of decentralised
concurrent editing [43: ICDCS 2009, GS=130]. We formulated the principles of
CRDTs at SSS 2011 [65: GS=220]. We developed a collection of useful CRDT

7

designs [66: BEACTS, GS=82], [64: Inria RR, GS=152]. Our primary example is
the OR-Set, an add-wins set that we show to be correct [11: DISC 2012]. Recently
we revisited CRDT registers [83] and efficient sequence designs for concurrent
editing [14].

Application developers build their applications by using CRDTs in a similar
way they use traditional abstract data types. In addition, selecting a specific
CRDT determines how their applications behave when concurrent updates occur.

CRDTs have been adopted by industry, for instance, Basho’s riak database or
TomTom’s NavCloud, and prompted publications by such eminent researchers in
the Distributed Systems and Programming Language and Verification communities
as Rodrigo Rodrigues, Peter Bailis, Hagit Attiya, Eric Brewer, Marcos Aguilera,
Peter Van Roy, Sebastian Burckhardt, Alexey Gotsman or Ahmed Bouajjani.

Taken together, my papers on CRDTs total 668 GS citations [11, 12, 43, 55, 64–
66, 81].

2.2 Available invariants

We identify two classes of invariants that a database can guarantee without com-
promising availability: type EQ and PO.

2.2.1 EQ: Equivalence-type invariants between data items

One common case is to maintain some kind of equivalence relation between data
items. For example, in a social network, ensuring that if A is a friend of B, then B
is also a friend of A. Modifying one of the items requires to modify the other “at the
same time.” The application groups these updates in a transaction. The database
ensures that a client observes either all of the transaction’s updates (even if made
to different servers), or none. This All-Or-Nothing property (the “A” property in
ACID) does not require synchronisation. If two replicas cannot communicate, then
one does not see the updates at the other; if they can, the whole all-or-nothing
package is visible. Either way, both sites remain available to their local users.

The converse property to All-or-nothing, often overlooked, is to ensure that
reads are consistent within a transaction. To ensure this, transactions have the
snapshot property, whereby all the reads of a transaction. Like all-or-nothing, the
snapshot property does not compromise availability.

8

2.2.2 PO: Invariants based on a partial order

A second class of highly-available invariants is based on a partial order. Examples
include numerical inequality of the form A ≥ B. Another example is an implica-
tion; for instance, a social network where user A can post on B’s wall only if they
are friends: posted(T ,A,B) ⇒ friend(A,B). A very common case is referential
integrity, of the form f(x) ∈ A⇒ x ∈ B where A and B are tables.

The general approach to maintaining this kind of invariant is to perform up-
dates “in the right order,” for instance by following the Demarcation Protocol. If
some replica could observe the updates in a different order, the invariant might be
violated. Thus, to guarantee this class of invariants, the database should ensure
causal consistency : if some event happens before another, then all replicas must
observe them in that same order. In contrast, unrelated or concurrent events can
be observed in any order.

Many models, including for instance Serialisability, ensure a slightly weaker
guarantee, transitive visibility : if some transaction T2 reads the result of a trans-
action T1, then all replicas observe those events in the order T1 followed by T2.
However, if T2 does not read from T1, the transactions are considered unrelated,
even if the same client performed them in some order.

The order is typically implemented by piggy-backing ordering information on
top of update messages, and not making visible a received update unless its de-
pendencies have themselves been made visible. This does have some overhead, but
does it not impact availability.

2.3 Non-available invariants: PS, the CISE analysis, and
Just-Right Consistency

We now address invariants that are not compatible with availability. They are
what makes the CAP theorem relevant.

We assumed earlier that application updates are correct-in-isolation. Each
update operation must test some preconditions to ensure that it will leave the
invariants true. For instance, before accepting a withdraw(amt), the bank applica-
tion checks that amt le balance, in order to ensure the invariant balance ≥ 0. Let
us call this class of invariants Precondition-Stable (PS).

This check can be fooled by replication and concurrency. The problem is that
this precondition is not stable, i.e., between the moment where the application
checks the precondition to true, and the moment where it subtracts the amount,
the precondition may have become false because of a concurrent withdrawal.

9

For instance, in the bank application, concurrent withdrawals are problematic,
but concurrent deposits can never violate the invariant. Furthermore, not all
withdrawals will lead to a violation; for example, if the initial balance was e10,000,
concurrent withdrawals of e1 will not be a problem.

A first approach is to move the necessary synchronisation out of the critical
path by batching and using escrow techniques. The bank example generalises to
numeric invariants used by many applications; therefore we have devised a new
Bounded Counter CRDT [8: SRDS 2015, GS=10].

More generally, we wish to synchronise operations only if this is required to
maintain the invariant. However, this is tricky: too little synchronisation and the
database gets corrupted; too much and the application grinds to a halt. Getting
this right requires a detailed knowledge of the application.

To ensure PS invariants, our insight is that it is not necessary to order all
operations: ordering is necessary only to prevent unstable concurrency or non-
commutative operation. We presented this idea informally at EuroSys 2015 [7:
GS=26], and formalised and proved its soundness at POPL 2016 [25: GS=17].
We have implemented this so-called CISE logic in a tool [39, 40], thus enabling
the application developer to ensure that her application is both correct, and as
available as possible given the invariant.

2.4 Stronger guarantees for available consistency: Transac-
tional Causal Consistency

We have identified two classes of invariants that can be guaranteed transparently in
an available system: EQ invariants using transactions, and PO using a transitive-
or causal-visibility model.

Transactional Causal Consistency (TCC) ensures both. Without TCC, some
very basic expectations about the system are violated. It’s very hard for a devel-
oper to understand what’s happening if updates are delivered in anomalous order,
and many applications have PO invariants such as referential integrity. Similarly,
without transactions, it is very difficult to maintain relations between different
objects correctly.

TCC is the strongest model that does not compromise high availability.3

Causal consistency maintains a (partial) order of events. This requires to
piggy-back ordering meta-data on top of messages. In many cases, the size of

3 Previous authors have called causal visibility the strongest available model, but they over-
looked EQ invariants and transactions.

10

meta-data can become intolerable, for instance a vector clock with thousands of
entries, one per process. We have devised a number of techniques to keep this cost
down, by leveraging a constrained communication topology [82: Middleware 2015,
GS=17] and/or strongly-consistent clusters [3: ICDCS 2016, GS=4].

The all-or-nothing property comes almost for free in causal consistency, simply
by giving the same timestamp to all the updates of a transaction.

However, the snapshot property raises difficulties in a partitioned/sharded
database. Naïve approaches tend to synchronise, which should be avoided; we
have identified a trade-off between availability and staleness, which we leverage
and try to close [3, 78, 82].

Our PhysiCS protocol provides efficient and scalable support for consistent
snapshots for a number of transactional protocols, for instance NMSI (non-
monotonic snapshot isolation), a causally-consistent variant of Snapshot Isolation
[79]. It is the first protocol to rely on a single scalar taken from a physical clock
for tracking causal dependencies and building causally consistent snapshots. Its
commit protocol ensures atomicity and the absence of write-write conflicts. THE
PhysiCS approach increases concurrency and reduces abort rate and metadata
overhead as compared to state-of-art systems.

For geo-replication to scale beyond a few data centres, and in particular to
be able to cache data at the edge, requires partial replication. This means that a
DC will replicate only the portion of the data that is of interest to it; for example
in a key-value store, the DC might store values corresponding to a portion of the
keys only. Under partial replication, it is particularly challenging to ensure causal
consistency guarantees in an available way, since a partial replica may lack some
of the information required to ensure the transitivity of causal order, and fetching
that data on demand impacts availability. We are working on designing a causally
consistent protocol for geo-distributed partial replication [15]. Our key insight is
to move the burden of dependency checking, away from a DC receiving an update,
which may lack information, to the originating DC. An update occurring at some
server of one DC is sent directly to its sibling replica(s) at other DCs, but it is not
made visible to readers at the receiving DC until the origin DC confirms that its
dependencies have been received.

2.5 AntidoteDB

The Antidote database [75] is a geo-replicated database for geo-cloud systems, de-
signed to bridge the CAP gap. It stores data on behalf of applications in a highly
parallel and highly distributed fashion. It has an available architecture, to be as
efficient, scalable and low-cost as possible. Antidote scales from single-machine

11

to geo-replicated deployments. Similarly to a Content Delivery Network (CDN)
it improves application responsiveness, performance and scalability by replicat-
ing data near the user; whereas a CDN does this for restricted kinds of content,
Antidote performs a similar feat for mutable database data.

Antidote’s data model builds on an extensive library of CRDTs, including not
only the familiar Last-Writer-Wins and Multi-Value registers, but also counters,
sets, maps, sequences, and bounded counters. It currently supports clients written
in JavaScript, Java and Erlang; any other language can be supported through
its protocol-buffer interface. Unlike many recent cloud databases, there are no
restrictions on transactions, i.e., a transaction will consistently read or update any
number of CRDT objects, not necessarily known in advance (so-called “interactive”
transactions) [3: ICDCS 2016].

The base consistency model is TCC, which provides the strongest guarantees
for an available system; optionally, an individual transaction can run seamlessly in
synchronous mode, in order to provide as much consistency as necessary. Within
a DC, independent shards are assigned disjoint sets of keys; a transaction involves
only those shards that are accessed by the transaction, thus allowing disjoint trans-
actions to run in parallel. A TCC transaction never aborts (only the optional
synchronous transactions can abort).

Antidote maintains multiple versions of an object; recent versions are cached
in memory and can be accessed concurrently without blocking. Antidote’s TCC
semantics and its internal design tolerate delayed or duplicate messages, as well as
long periods of disconnection, without impacting the performance of local trans-
actions. The meta-data required to maintain causal consistency is “lean but safe”
[82]; it consists of vector clocks with one entry per DC; therefore, we expect An-
tidote to be able to scale to several dozens of DCs.

Antidote is currently undergoing an extensive experimental performance mea-
surement campaign, using the FMKe benchmark application (modeled after the
Danish Healthcare network FMK). Initial results confirm that Antidote has trans-
action latency of the order of milliseconds (depending on the number of reads and
writes in the transaction). Throughput scales well, from a maximum of approxi-
mately 10 000 FMKe transactions/s with a single DC of four Antidote servers, to
19 000 FMKe transactions/s with three DCs of four servers.

Antidote, CISE, and FMKe were developed in the EU-funded project
SyncFree, which I led; see Section 4.3 for more information.

12

http://syncfree.lip6.fr/

2.6 Consistency in 3D

Comparisons of different consistency models often try to place them in a linear
strong-to-weak order. However this view is clearly inadequate, since it is well
known, for instance, that Snapshot Isolation and Serialisability are incomparable.
In the interest of a better understanding, we propose a new classification, along
three dimensions, related to: a total order of writes, a causal order of reads,
and transactional composition of multiple operations. A model may be stronger
than another on one dimension and weaker on another. We believe that this new
classification scheme is both scientifically sound and has good explicative value.
We study the three-dimensional design space intuitively, placing a number of well-
known models in this 3D space, and relating the degrees of each axis with the
invariant classes that they guarantee.

This work was presented at Int. Conf. on Concurrency Theory (CONCUR
2016) as an invited keynote talk [68].

2.7 Merging Semantics for Conflict Updates in Geo-
Distributed File Systems

In cooperation with the Scality SA company, a large-scale software-defined storage
provider, we have studied how to design a geo-distributed file system. The system
should be highly available and should conform closely to the POSIX semantics. We
leveraged CRDTs and the CISE analysis. Our file system model, and our merging
semantics for resolving conflict updates, fully describes a Posix-like file system,
with all of its components including hard links. This model is able to identify all
conflict cases which are classified into direct, such as concurrent updates to the
same file, and indirect, such as cycles in the namespace of the file system. The
merging semantics resolve all types of conflicts while being able to preserve the
effect of all conflict updates. Our implementation of the system and the merging
semantics outperforms the existing systems in terms of feature completeness.

This work was presented at Systor 2015 [74: GS=8].

3 Other contributions

3.1 1976–1990: Proxies and fragmented objects

My initial work focused on patterns and structures for programming distributed
systems, which were at the time a novel idea. I proposed the concept of a proxy [49:

13

ICDCS 1986, GS=390]. Proxies implement the Fragmented Object (FO) concept.
An FO is a single distributed object with local representatives on each node. This
structure, on the one hand provides transparency for clients (they only talk to the
local proxy), but on the other also provides the system developer with flexibility to
design and place distributed components (since the client does not observe them)
[36]. My group designed the SOS operating system [57: Computing Systems 1989,
GS=154] supporting FOs (and implemented using FOs).

SOS was influential and generated a number of publications. It provided the
basis for subsequent research on communication protocols [35], on programming
languages for distributed computing [56: ECOOP 1989] [26], and on object per-
sistence and migration.

SOS was developed within the European Commission project SOMIW. Proxies
are now ubiquitous in all distributed systems, e.g., on the WWW. SOS influenced
several later systems, e.g., the COOL (Chorus Object-Oriented Layer) product of
Chorus Systèmes, Guide, Globe or Amadeus.

3.2 1989: Chorus virtual memory subsystem

I participated in the design and formalisation of the Chorus virtual memory sub-
system. This system was remarkable in offering a unified interface and implemen-
tation for diverse hardware and software requirements. The paper was published
at SOSP 1989 [1: GS=147].

3.3 1990–1999: Distributed references and garbage collec-
tion

Remote, mobile and persistent objects, as pioneered in SOS, proved to be a
generally-useful idea. To support them, I designed a distributed referencing mech-
anism called Stub-Scion Pair Chains (SSPC) [58, 59: PODC+TR 1992, GS=226].
SSPCs are capable of referencing remote and mobile objects and support automatic
distributed garbage collection. They were designed to be efficient and robust. Re-
binding was added later, to deal with dynamic situations [51: ICDCS 1994].

Garbage collection (GC) automates object management and persistence, but it
is difficult in distributed systems [41]. Building on SSPCs, I published extensively
on GC in the classical distributed-system model, i.e., disjoint nodes communicat-
ing by asynchronous messages [50: SRDS 1991], [58: PODC 1992], in particular
the difficult challenge of collecting distributed cycles of garbage [33: PLDI 1998,
GS=31] [32, 60].

14

This topic is an excellent example of the interplay between fundamental re-
search and practical impact. SSPCs were designed to fulfill a practical need, but
the mechanism and the garbage collection algorithms were designed from first
principles.

Dolev’s PODC 2006 keynote cites Reference 58 as a “Century Paper.” SSPCs
influenced systems such as Globe, implementations of Corba and Java RMI, and
is widely cited in papers on distributed objects and distributed garbage collection.
SSPCs were developed under EU Esprit funding (project Harness), under a grant
from Novell Unix Systems Laboratory, and under a contract with CNET.

3.4 1993–2000: Garbage collection in a cached memory

Distributed systems are often based on a shared-memory model, using pointers
and not remote references. In practice, memory replication and caching algorithms
cannot guarantee absolute consistency.

This departs radically from the classical message-passing model of distributed
systems, and requires a completely new approach to garbage collection. The
Larchant system, which I designed with Paulo Ferreira, [16, 18] was the first to
do so. The following pragmatic decisions ensured efficiency and scalability [17:
OSDI 1994, GS=61]. Larchant GC combines tracing and counting. Memory is
divided into units of replication. Each unit maintains meta-data enabling the GC
to trace its pointer graph independently of other units. When a unit is modified
in memory, the next run of tracing GC modifies the associated meta-data, setting
off counting for downstream units. Cross-unit cycles of garbage are collected by
tracing multiple units opportunistically as they are present in a same cache.

With this design in mind, I formulate a set of general safety invariants [19, 20,
54, 60]. To ensure that GC is independent of consistency, the “Union Rule” states
that an object may be collected only if it is not reachable in the union of local
pointer graphs. GC events and consistency events are locally ordered, to ensure
that pointer mutations are not missed, while still allowing the GC to be mostly
decoupled from consistency. Message ordering rules ensure that objects are not
collected prematurely.

Based on the Larchant results, from 1997 to 2000, I was the Principal Inves-
tigator of the European Long-Term Research project PerDiS “A Persistent Dis-
tributed Store for Collaborative Engineering Applications.” This system supports
direct and efficient sharing of data between applications, even those executing at
different times or different locations [13, 21]. Memory accesses are transactional,
memory is replicated consistently and is garbage collected. PerDiS supports secure

15

data sharing and is fault tolerant. The persistent memory was used for a suite of
cooperative CAD applications for the building industry.

A paper on Larchant was published at OSDI 1994 [17]. Larchant received
a grant from Digital Equipement Corporation. PerDiS was an EU Long-Term
Research project, of which I was the leader.

3.5 1998–2005: Disconnected operation and reconciliation

Users co-operating over PerDiS requested the ability to work in isolation. This
requires disconnected operation and reconciliation of update conflicts. I was thus
motivated by practical needs to study the fundamentals of optimistic replication
[47: Computing Surveys 2005, GS=608]. I identified conflicts as the symptom of
a violation of application invariants. To avoid them, the proposed solution is to
reify application invariants, i.e., make them first-class objects, called constraints
[30: PODC 2001, GS=200]. This enables the scheduler to avoid schedules that
would lead to conflicts, in a principled, flexible, general manner. This concept
was implemented in the IceCube system [42: CoopIS 2003, GS=70], a general-
purpose, multi-application reconciler, parameterised by application semantics [63],
for disconnected operation.

IceCube was developed at Microsoft Research Cambridge. I was invited to
give a keynote presentation on this work at BDA 2002 [52].

3.6 2004–2013: More available strong consistency

Strong consistency aims to maintain strong system invariants by disallowing con-
current conflicting updates, or equivalently ensuring a total order of updates. I
have taken a principled approach to improving its performance, scalability and
availability while ensuring strong consistency, by leveraging application semantics.
(See also next section.)

My Action-Constraint Framework (ACF) provides a framework for expressing
specific requirements and behaviours in replication and consistency, by reifying
operations as actions and invariants as constraints. It allowed us to study pes-
simistic vs. optimistic algorithms, and total vs. partial replication [62: OPODIS
2004, GS=35].

The Telex system is an application platform system, parameterised by ACF
annotations that formalise the application semantics [10]. Telex adapts consis-
tency to application requirements, but contrary to our later work (based on static

16

analysis, described in Section 2.3) it requires detailed developer input and relies
in part on run-time heuristics.

With my student Pierre Sutra, I designed novel consensus algorithms that
leverage the results of speculative execution [73], minimise aborts and roll-backs
[69], remain safe in the presence of partial replication [70], or leverage operation se-
mantics [71]. A number of applications have been developed above Telex, including
a cooperative model editor [38].

We developed a consensus algorithm leveraging commutativity, called Fast
Genuine Generalized Consensus (FGGC) [72: SRDS 2011, GS=9]. FGGC the
first such protocol to reach the theoretical minimum, and as a consequence, it
outperforms Generalized Paxos by a wide margin on a WAN.

Two promising approaches to ensure scalability under strong consistency are
Snapshot Isolation (SI) and Genuine Partial Replication (GPR). SI removes syn-
chronisation on reads, and it aborts only write-write conflicts; GPR ensures that
independent transactions do not need to communicate.

With Pierre Sutra and Masoud Saeida Ardekani, we established an important
impossibility result: with interactive transactions (i.e., whose read- and write-
sets are not known in advance), SI and GPR are mutually exclusive [46: Euro-
Par 2013]. We (Masoud, Marek Zawirski and myself) also showed how different
snapshot models impact the performance trade-offs [44]. Accordingly, we designed
a novel SI-like consistency model, Non-Monotonic Snapshot Isolation (NMSI), that
is compatible with GPR and that leverages a consistent but liberal snapshot model;
it performs orders of magnitude better than previous models such as SI or PSI
(Parallel Snapshot Isolation) [45: SRDS 2013]. In fact its performance approaches
that of weak consistency.

We also built a modular framework for composing (with only a few hundred
lines of code) and comparing protocols fairly [4: Middleware 2014, GS=8]. We
measured orders-of-magnitude scalability difference between strong and weak pro-
tocols and identified the sources of these differences.

3.7 2004–2015: Fine-grain concurrency and garbage collec-
tion in large-scale multicore computers

In a related but separate research thread, I work on algorithms for advanced mul-
ticore computers, fine-grain concurrency, garbage collection, and persistence.

While working at MSRC, I collaborated with Maurice Herlihy, Tony Hoare
and Victor Vafeiadis on design and proof methods for concurrency. It is very
difficult to reason about interference between threads in fine-grain shared-memory

17

concurrent programs, because of combinatorial explosion and non-determinism.
However, well-constructed programs use some form of concurrency control to avoid
dangerous interleavings. Taking this structure into account simplifies reasoning.
To verify this insight, we studied a family of fine-grain implementations of a linked
list [80: PPoPP 2006, GS=77]. The “Rely-Guarantee” approach is well adapted to
both informal and formal reasoning [53].

I was invited to give a keynote speech on this subject at ICFP 2006 [53].

With my colleagues Gaël Thomas and Julien Sopena, and our student Lokesh
Gidra, I recently addressed the issues of scalable concurrent garbage collection
algorithms for NUMA computers.

On contemporary cache-coherent Non-Uniform Memory Access (ccNUMA)
architectures, applications with a large memory footprint suffer from the cost
of the garbage collector (GC), because, as the GC scans the reference graph,
it makes many remote memory accesses, saturating the interconnect between
memory nodes. We address this problem with NumaGiC, a GC with a mostly-
distributed design. In order to maximise memory access locality during collection,
a GC thread avoids accessing a different memory node, instead notifying a remote
GC thread with a message; nonetheless, NumaGiC avoids the drawbacks of a pure
distributed design, which tends to decrease parallelism. We compare NumaGiC
with Parallel Scavenge and NAPS on two different ccNUMA architectures run-
ning on the Hotspot Java Virtual Machine of OpenJDK 7. On Spark and Neo4j,
two industry-strength analytics applications, with heap sizes ranging from 160GB
to 350GB, and on SPECjbb2013 and SPECjbb2005, NumaGiC improves overall
performance by up to 45% over NAPS (up to 94% over Parallel Scavenge), and
increases the performance of the collector itself by up to 3.6× over NAPS (up to
5.4× over Parallel Scavenge).

This work was published at PLOS 2011 [22: GS=25], ASPLOS 2013 [23:
GS=26] and ASPLOS 2015 [24: GS=12].

4 Professional activities and service

4.1 Community service

I am a member of the ACM since 1981. I am a Senior Member of the ACM and
a speaker for ACM’s Distinguished Speaker Program (DSP). I was previously a
member of ACM’s Distinguished Service Award committee.

For many years I have been at the forefront of growing and organizing the
CS/Informatics community, which is still extremely fragmented in Europe.

18

As Vice-Chair of SIGOPS, I was instrumental in bringing SOSP to Europe for
the first time in 1997, and again in 2005.

I created and chaired the French chapter of ACM Sigops in 1996.

In 2004, I created EuroSys scientific society, the pan-European chapter of ACM
Sigops, which I chaired for five years. In 2006 I initiated the EuroSys conference,
which has grown to be one of the top systems conferences.

I was instrumental in creating the ACM Europe Council, of which I was a mem-
ber since its inception in 2008, until 2015. I initiated and ran the 2011 Workshop
of European ACM Chapters, and recently created the ACM Council of European
Chapter Leaders.

I was recently elected a member of the board of Société Informatique de France
(SIF), the French learned society in Informatics. I am in charge of research, inter-
national relations and industrial relations.

I participated in several networks of excellence on several aspects large-scale
distributed computing systems (from Broadcast, 1992, to the Euro-TM Action on
Transactional Memories, current). I created the ERSADS series of winter schools
in distributed systems (European Research Symposium on Advanced Distributed
Systems, 1995–2001).

4.2 Expert advice

I was a member of the “Consolidator Grants” for the PE6 (Computer Science)
selection panel of the European Research Council (ERC), for the period 2012–
2016.

I recently co-chaired Dagstuhl workshops, “Consistency in Distributed Sys-
tems” (2013) and “Security and Dependability for Federated Cloud Platforms”
(2012). I will co-chair the Dagstuhl workshop “Data Consistency in Distributed
Systems: Algorithms, Programs, and Databases” in Feb. 2018.

I am a member of the External Advisory Board of the NOVA Laboratory
for Computer Science and Informatics (NOVA LINCS) of Universidade Nova de
Lisboa.

I was PC co-chair for OPODIS 2014 and I am currently a member of the
OPODIS Steering Committee (2014–2016).

I was the Vice-Chair of COST Action IC1001 Euro-TM.

I participated in various program committees, notably ASPLOS 2017, 2016
(external), and 2012, OPODIS 2016, 2013 and 2007, Middleware 2015, PPoPP

19

http://www.sigops-france.fr/
http://www.eurosys.org/
http://www.cs.kuleuven.be/conference/EuroSys2006/
http://europe.acm.org/
http://lip6.fr/Marc.Shapiro/acmWorkshop/
http://lip6.fr/Marc.Shapiro/acmWorkshop/
http://europe.acm.org/chapters.html
http://europe.acm.org/chapters.html
http://www.societe-informatique-de-france.fr/
http://www.societe-informatique-de-france.fr/
http://www.eurotm.org/
http://nova-lincs.di.fct.unl.pt/the-center/organization/
http://nova-lincs.di.fct.unl.pt/the-center/
http://nova-lincs.di.fct.unl.pt/the-center/
http://www.unl.pt/en/
http://www.unl.pt/en/
http://www.eurotm.org/
http://novel.ict.ac.cn/ASPLOS2017/committees.html
http://www.ece.cmu.edu/calcm/asplos2016/organization.html
http://www.ece.cmu.edu/calcm/asplos2016/organization.html
http://opodis2016.etsisi.upm.es/organization.html
http://www-sop.inria.fr/manifestations/opodis2013/
http://2015.middleware-conference.org/committees/program-committee/
https://sites.google.com/site/ppopp2014/
https://sites.google.com/site/ppopp2014/

2014 (external), 2008, and 2012, EuroSys 2010; Euro-Par (Track chair) 2005, 2008,
etc. I have served as reviewer for journals such as: Concurrency and Computation:
Practice and Experience (CCPE, Wiley); Distributed Computing (Springer); J. of
Computer and System Sciences (JCSS, Elsevier); J. of Parallel and Distributed
Computing (JPDC, Elsevier); Science of Computer Programming (SCP, Elsevier);
Technique et Science Informatiques (TSI, Hermès); Trans. on Autonomous and
Adaptive Systems (TAAS, ACM); Trans. on Computer Systems (TOCS, ACM);
Trans. on Computers (IEEE); Trans. on Knowledge and Data Engineering (TKDE,
IEEE); Trans. on Parallel and Distributed Systems (TPDS, IEEE); Trans. on
Programming Languages and Systems (TOPLAS, ACM); Very Large Database J.
(VLDB).

I have acted as project reviewer for a number of grant agencies, including:
European Commission (Esprit, FP6, FP7 and FET); European Research Coun-
cil (ERC); US-Israel Binational Science Foundation; Swedish Research Council;
Swiss National Research Council (SNSF); French Agence Nationale de la Recherche
(ANR).

4.3 Funding

Here I list my major sources of external funding in the recent period.

I was the co-ordinator (main PI) of the European project SyncFree, which ran
from 2013 to 2016 [77]. SyncFree build upon CRDTs and addressed the scientific
and practical challenges of massive-scale available distributed systems. Antidote
and the CISE tool are outcomes of SyncFree to address the challenge of building
synchronization-free (or -reduced) distributed systems. These results are available
as open source on GitHub [76]; more information can be found on the Antidot-
eDB [75] and Lasp [37] websites. The industrial partners of SyncFree were Basho,
Trifork, Rovio and Erlang Solutions Ltd. (ESL). The academic partners were In-
ria, U. Nova de Lisboa (associated with U. do Minho), Tech. U. Kaiserslautern,
U. Catholique de Louvain, and Koç U. The total EU funding for SyncFree was
2 669 995e, of which 557 661e for Inria.

This line of research continues with the European project LightKone (2017–
2019), co-ordinated by Peter Van Roy, with a total funding of 3 570 994e, of which
395 568e for Inria. LightKone aims to push the envelope of scalability to general-
purpose edge computing.

I am the PI of the ANR project RainbowFS, which started Jan. 2017 and runs
for four years. The partners are Inria/UPMC, CNRS-LIG, Télécom ParisSud,
and Scality SA. It aims to use and extend the just-right consistency approach

20

https://sites.google.com/site/ppopp2014/
https://sites.google.com/site/ppopp2014/

towards building an entreprise-grade, petabyte-scale file system. Its total funding
is 919 534e, of which 359 554e for Inria.

Previously I was the PI of the ANR ConcoRDanT project, which aimed to
develop the understanding and the technology of CRDTs. The partners were
Inria, LORIA, and U. Nova de Lisboa. The total funding was 321 742e, of which
184 192e for Inria. ConcoRDanT ran from 2010 to 2014.

Before that, I had received research grants from Google and Microsoft Re-
search.

References
[1] V. Abrossimov, M. Rozier, and M. Shapiro. Generic virtual memory management

for operating system kernels. In Symp. on Op. Sys. Principles (SOSP), pages 123–
136, Litchfield Park AZ, USA, December 1989. Assoc. for Computing Machinery.
doi: 10.1145/74850.74863. URL http://doi.acm.org/10.1145/74850.74863.

[2] Marcos K. Aguilera, Leonardo Querzoni, and Marc Shapiro, editors. Prin-
ciples of Distributed Systems, volume 8878 of Lecture Notes in Comp. Sc.,
Cortina d’Ampezzo, Italy, December 2014. Springer-Verlag. doi: 10.1007/
978-3-319-14472-6. URL http://link.springer.com/book/10.1007/978-3-319-14472-6.

[3] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. Cure: Strong
semantics meets high availability and low latency. In Int. Conf. on Distributed Comp.
Sys. (ICDCS), pages 405–414, Nara, Japan, June 2016. doi: 10.1109/ICDCS.2016.
98. URL http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98.

[4] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. G-DUR: A middleware
for assembling, analyzing, and improving transactional protocols. In Int. Conf. on
Middleware (MIDDLEWARE), pages 13–24, Bordeaux, France, December 2014. doi:
10.1145/2663165.2663336. URL http://dx.doi.org/10.1145/2663165.2663336.

[5] Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, Carla Ferreira,
Mahsa Najafzadeh, and Marc Shapiro. Putting the consistency back into eventual
consistency. In W. on Large-Scale Dist. Sys. and Middleware (LADIS), Cambridge,
UK, April 2014.

[6] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro. Towards fast invariant preservation in geo-
replicated systems. Operating Systems Review, 49(1):121–125, January 2015. doi: 10.
1145/2723872.2723889. URL http://doi.acm.org/10.1145/2723872.2723889. Selected
Papers from LADIS 2014 Eighth Workshop on Large-Scale Distributed Systems and
Middleware.

21

http://doi.acm.org/10.1145/74850.74863
http://link.springer.com/book/10.1007/978-3-319-14472-6
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2016.98
http://dx.doi.org/10.1145/2663165.2663336
http://doi.acm.org/10.1145/2723872.2723889

[7] Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, Carla Ferreira,
Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back into eventual con-
sistency. In Euro. Conf. on Comp. Sys. (EuroSys), pages 6:1–6:16, Bordeaux, France,
April 2015. doi: 10.1145/2741948.2741972. URL http://dl.acm.org/citation.cfm?
doid=2741948.2741972.

[8] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo
Rodrigues, and Nuno Preguiça. Extending eventually consistent cloud databases for
enforcing numeric invariants. In Symp. on Reliable Dist. Sys. (SRDS), pages 31–36,
Montréal, Canada, September 2015. IEEE Comp. Society, IEEE Comp. Society. doi:
10.1109/SRDS.2015.32. URL http://dx.doi.org/10.1109/SRDS.2015.32.

[9] Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen Clement, Sérgio
Duarte, Carla Ferreira, Johannes Gehrke, João Leitão, Nuno Preguiça, Rodrigo
Rodrigues, Marc Shapiro, and Viktor Vafeiadis. Geo-replication: Fast if possible,
consistent if necessary. Data Engineering Bulletin, 39(1):81–92, March 2016. URL
http://sites.computer.org/debull/A16mar/A16MAR-CD.pdf.

[10] Lamia Benmouffok, Jean-Michel Busca, Joan Manuel Marquès, Marc Shapiro,
Pierre Sutra, and Georgios Tsoukalas. Telex: A semantic platform for coopera-
tive application development. In Conf. Française sur les Systèmes d’Exploitation
(CFSE), Toulouse, France, September 2009. URL http://lip6.fr/Marc.Shapiro/
papers/Telex-CFSE-2009.pdf.

[11] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. Brief announcement: Semantics of eventually
consistent replicated sets. In Marcos K. Aguilera, editor, Int. Symp. on Dist. Comp.
(DISC), volume 7611 of Lecture Notes in Comp. Sc., pages 441–442, Salvador, Bahia,
Brazil, October 2012. Springer-Verlag. doi: 10.1007/978-3-642-33651-5_48. URL
http://dx.doi.org/10.1007/978-3-642-33651-5_48.

[12] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Ba-
quero, Valter Balegas, and Sérgio Duarte. An optimized conflict-free replicated
set. Rapport de Recherche RR-8083, Institut National de la Recherche en In-
formatique et Automatique (Inria), Rocquencourt, France, October 2012. URL
http://hal.inria.fr/hal-00738680.

[13] Xavier Blondel, Paulo Ferreira, and Marc Shapiro. Implementing garbage collection
in the PerDiS system. In W. on Persistent Object Sys. (POS), Tiburon CA, USA,
August 1998. URL http://lip6.fr/Marc.Shapiro/papers/IGCPS_pos8.pdf.

[14] Loïck Briot, Pascal Urso, and Marc Shapiro. High responsiveness for group editing
CRDTs. In Int. Conf. on Supporting Group Work, pages 51–60, Sanibel Island,
FL, USA, November 2016. Assoc. for Computing Machinery, Assoc. for Computing
Machinery. doi: 10.1145/2957276.2957300. URL http://dx.doi.org/10.1145/2957276.
2957300.

22

http://dl.acm.org/citation.cfm?doid=2741948.2741972
http://dl.acm.org/citation.cfm?doid=2741948.2741972
http://dx.doi.org/10.1109/SRDS.2015.32
http://sites.computer.org/debull/A16mar/A16MAR-CD.pdf
http://lip6.fr/Marc.Shapiro/papers/Telex-CFSE-2009.pdf
http://lip6.fr/Marc.Shapiro/papers/Telex-CFSE-2009.pdf
http://dx.doi.org/10.1007/978-3-642-33651-5_48
http://hal.inria.fr/hal-00738680
http://lip6.fr/Marc.Shapiro/papers/IGCPS_pos8.pdf
http://dx.doi.org/10.1145/2957276.2957300
http://dx.doi.org/10.1145/2957276.2957300

[15] Tyler Crain and Marc Shapiro. Designing a causally consistent protocol for geo-
distributed partial replication. In Carlos Baquero and Marco Serafini, editors, W.
on Principles and Practice of Consistency for Distr. Data (PaPoC), co-located with
EuroSys 2015, Bordeaux, France, April 2015. ACM SIG on Op. Sys. (SIGOPS),
Assoc. for Computing Machinery. doi: 10.1145/2745947.2745953. URL http://dx.
doi.org/10.1145/2745947.2745953.

[16] Paulo Ferreira and Marc Shapiro. Distribution and persistence in multiple and
heterogeneous address spaces. In Int. W. on Object Orientation in Op. Sys. (I-
WOOOS), pages 83–93, Asheville, NC, USA, December 1993. IEEE Comp. Society.
doi: 10.1109/IWOOOS.1993.324924.

[17] Paulo Ferreira and Marc Shapiro. Garbage collection and DSM consistency. In
Symp. on Op. Sys. Design and Implementation (OSDI), pages 229–241, Monterey
CA, USA, November 1994. ACM. URL http://www.usenix.org/publications/library/
proceedings/osdi/ferr.html.

[18] Paulo Ferreira and Marc Shapiro. Garbage collection of persistent objects in dis-
tributed shared memory. In W. on Persistent Object Sys. (POS), pages 176–
191, Tarascon, France, September 1994. Springer-Verlag. URL http://lip6.fr/Marc.
Shapiro/papers/GC-PERS-DSM_POS94.pdf.

[19] Paulo Ferreira and Marc Shapiro. Larchant: Persistence by reachability in dis-
tributed shared memory through garbage collection. In Int. Conf. on Distributed
Comp. Sys. (ICDCS), pages 394–401, Hong Kong, May 1996. doi: 10.1109/ICDCS.
1996.507987. URL http://lip6.fr/Marc.Shapiro/papers/LPRDSMGC_icdcs96.pdf.

[20] Paulo Ferreira and Marc Shapiro. Modelling a distributed cached store for garbage
collection: the algorithm and its correctness proof. In Eric Jul, editor, Euro. Conf. on
Object-Oriented Pging. (ECOOP), volume 1445 of Lecture Notes in Comp. Sc., pages
234–259, Brussels, Belgium, July 1998. Springer-Verlag. doi: 10.1007/BFb0054094.
URL http://dx.doi.org/10.1007/BFb0054094.

[21] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, João Garcia, Sytse
Kloosterman, Nicolas Richer, Marcus Roberts, Fadi Sandakly, George Coulouris,
Jean Dollimore, Paulo Guedes, Daniel Hagimont, and Sacha Krakowiak. PerDiS:
design, implementation, and use of a PERsistent DIstributed Store. In S. Krakowiak
and S. K. Shrivastava, editors, Recent Advances in Distributed Systems, volume 1752
of Lecture Notes in Comp. Sc., chapter 18, pages 427–452. Springer-Verlag, February
2000. doi: 10.1007/3-540-46475-1_18. URL http://www.springerlink.com/content/
vmptt4r5k418udvy/.

[22] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. Assessing the scala-
bility of garbage collectors on many cores. Best papers from PLOS’11, SIGOPS
Oper. Sys. Review (OSR), 45(3):15–19, December 2011. doi: 10.1145/2094091.
2094096. URL http://doi.acm.org/10.1145/2094091.2094096.

23

http://dx.doi.org/10.1145/2745947.2745953
http://dx.doi.org/10.1145/2745947.2745953
http://www.usenix.org/publications/library/proceedings/osdi/ferr.html
http://www.usenix.org/publications/library/proceedings/osdi/ferr.html
http://lip6.fr/Marc.Shapiro/papers/GC-PERS-DSM_POS94.pdf
http://lip6.fr/Marc.Shapiro/papers/GC-PERS-DSM_POS94.pdf
http://lip6.fr/Marc.Shapiro/papers/LPRDSMGC_icdcs96.pdf
http://dx.doi.org/10.1007/BFb0054094
http://www.springerlink.com/content/vmptt4r5k418udvy/
http://www.springerlink.com/content/vmptt4r5k418udvy/
http://doi.acm.org/10.1145/2094091.2094096

[23] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A study of the
scalability of stop-the-world garbage collectors on multicores. In Int. Conf. on Archi.
Support for Prog. Lang. and Systems (ASPLOS), pages 229–240, Houston, TX, USA,
March 2013. Assoc. for Computing Machinery. doi: 10.1145/2499368.2451142. URL
http://dx.doi.org/10.1145/2499368.2451142.

[24] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. Nu-
maGiC: a garbage collector for big data on big NUMA machines. In Int. Conf.
on Archi. Support for Prog. Lang. and Systems (ASPLOS), pages 661–673, Istan-
bul, Turkey, March 2015. Assoc. for Computing Machinery. doi: 10.1145/2694344.
2694361. URL http://dx.doi.org/10.1145/2694344.2694361.

[25] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. ’Cause I’m strong enough: Reasoning about consistency choices in dis-
tributed systems. In Symp. on Principles of Prog. Lang. (POPL), pages 371–
384, St. Petersburg, FL, USA, 2016. doi: 10.1145/2837614.2837625. URL http:
//dx.doi.org/10.1145/2837614.2837625.

[26] Yvon Gourhant and Marc Shapiro. FOG/C++: a fragmented-object generator. In
C++ Conference, pages 63–74, San Francisco, CA, USA, April 1990. Usenix.

[27] Youssef Hamadi and Marc Shapiro. Pushing log-based reconciliation. Int. J.
on Artif. Intelligence Tools (IJAIT), 14(3–4):445–458, June 2005. doi: 10.1142/
S0218213005002193. URL http://dx.doi.org/10.1142/S0218213005002193.

[28] Claudia-Lavinia Ignat, Gérald Oster, Pascal Molli, Michèle Cart, Jean Ferrié, Anne-
Marie Kermarrec, Pierre Sutra, Marc Shapiro, Lamia Benmouffok, Jean-Michel
Busca, and Rachid Guerraoui. A comparison of optimistic approaches to collab-
orative editing of Wiki pages. In Int. Conf. on Collaborative Comp.: Network-
ing, Apps. and Worksharing (CollaborateCom), number 3, White Plains, NY, USA,
November 2007. doi: 10.1109/COLCOM.2007.4553878. URL http://dx.doi.org/10.
1109/COLCOM.2007.4553878.

[29] Bettina Kemme, André Schiper, Ganesan Ramalingam, and Marc Shapiro. Dagstuhl
seminar review: Consistency in distributed systems. SIGACT News, 45(1):67–89,
March 2014. ISSN 0163-5700. doi: 10.1145/2596583.2596601. URL http://doi.acm.
org/10.1145/2596583.2596601.

[30] Anne-Marie Kermarrec, Antony Rowstron, Marc Shapiro, and Peter Druschel. The
IceCube approach to the reconciliation of divergent replicas. In Symp. on Principles
of Dist. Comp. (PODC), Newport, RI, USA, August 2001. ACM SIGACT-SIGOPS,
ACM Press. doi: 10.1145/383962.384020. URL http://doi.acm.org/10.1145/383962.
384020.

[31] Nishith Krishna, Marc Shapiro, and Karthikeyan Bhargavan. Brief announcement:
Exploring the consistency problem space. In Symp. on Principles of Dist. Comp.

24

http://dx.doi.org/10.1145/2499368.2451142
http://dx.doi.org/10.1145/2694344.2694361
http://dx.doi.org/10.1145/2837614.2837625
http://dx.doi.org/10.1145/2837614.2837625
http://dx.doi.org/10.1142/S0218213005002193
http://dx.doi.org/10.1109/COLCOM.2007.4553878
http://dx.doi.org/10.1109/COLCOM.2007.4553878
http://doi.acm.org/10.1145/2596583.2596601
http://doi.acm.org/10.1145/2596583.2596601
http://doi.acm.org/10.1145/383962.384020
http://doi.acm.org/10.1145/383962.384020

(PODC), pages 168–168, Las Vegas, Nevada, USA, July 2005. ACM SIGACT-
SIGOPS. doi: 10.1145/1073814.1073845. URL http://doi.acm.org/10.1145/1073814.
1073845.

[32] Fabrice le Fessant, Ian Piumarta, and Marc Shapiro. A detection algorithm for
distributed cycles of garbage. In OOPSLA W. on Garbage Collection and Memory
Management, Atlanta, GA, USA, October 1997. URL http://lip6.fr/Marc.Shapiro/
papers/DADCG_gcmm97.pdf.

[33] Fabrice le Fessant, Ian Piumarta, and Marc Shapiro. An implementation of complete,
asynchronous, distributed garbage collection. In Conf. on Prog. Lang. Design and
Implementation, Montreal, Canada, June 1998. ACM SIGPLAN. doi: 10.1145/
277650.277715. URL http://doi.acm.org/10.1145/277650.277715.

[34] Mihai Leţia, Nuno Preguiça, and Marc Shapiro. Consistency without concurrency
control in large, dynamic systems. Operating Systems Review, 44(2):29–34, April
2010. doi: 10.1145/1773912.1773921. URL http://doi.acm.org/10.1145/1773912.
1773921.

[35] Mesaac Makpangou and Marc Shapiro. The SOS object-oriented communication
service. In Proc. 9th Int. Conf. on Computer Communication, Tel Aviv, Israel,
October–November 1988.

[36] Mesaac Makpangou, Yvon Gourhant, Jean-Pierre Le Narzul, and Marc Shapiro.
Fragmented objects for distributed abstractions. In T. L. Casavant and M. Singhal,
editors, Readings in Distributed Computing Systems, pages 170–186. IEEE Com-
puter Society Press, July 1994.

[37] Christopher S. Meiklejohn and Peter Van Roy. Lasp, a language for distributed,
eventually consistent computations. Website https://lasp-lang.org/, 2016.

[38] Jonathan Michaux, Xavier Blanc, Pierre Sutra, and Marc Shapiro. A semanti-
cally rich approach for collaborative model edition. In Symp. on Applied Com-
puting (SAC), volume 26, pages 1470–1475, TaiChung, Taiwan, March 2011. ACM
SIGAPP, Assoc. for Computing Machinery. doi: 10.1145/1982185.1982500. URL
http://doi.acm.org/10.1145/1982185.1982500.

[39] Mahsa Najafzadeh and Marc Shapiro. Demo of the CISE tool, November 2015. URL
https://youtu.be/HJjWqNDh-GA. YouTube video.

[40] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc
Shapiro. The CISE tool: Proving weakly-consistent applications correct. In W.
on Principles and Practice of Consistency for Distr. Data (PaPoC), EuroSys 2016
workshops, London, UK, April 2016. ACM SIG on Op. Sys. (SIGOPS), Assoc. for
Computing Machinery. doi: 10.1145/2911151.2911160. URL http://dx.doi.org/10.
1145/2911151.2911160.

25

http://doi.acm.org/10.1145/1073814.1073845
http://doi.acm.org/10.1145/1073814.1073845
http://lip6.fr/Marc.Shapiro/papers/DADCG_gcmm97.pdf
http://lip6.fr/Marc.Shapiro/papers/DADCG_gcmm97.pdf
http://doi.acm.org/10.1145/277650.277715
http://doi.acm.org/10.1145/1773912.1773921
http://doi.acm.org/10.1145/1773912.1773921
https://lasp-lang.org/
http://doi.acm.org/10.1145/1982185.1982500
https://youtu.be/HJjWqNDh-GA
https://youtu.be/HJjWqNDh-GA
http://dx.doi.org/10.1145/2911151.2911160
http://dx.doi.org/10.1145/2911151.2911160

[41] David Plainfossé and Marc Shapiro. A survey of distributed garbage collection
techniques. In Henry G. Baker, editor, Int. W. on Memory Management (IWMM),
volume 986 of Lecture Notes in Comp. Sc., pages 211–249, Kinross, Scotland, UK,
September 1995. Springer-Verlag. doi: 10.1007/3-540-60368-9_26. URL http://
lip6.fr/Marc.Shapiro/papers/SDGC_iwmm95.pdf.

[42] Nuno Preguiça, Marc Shapiro, and Caroline Matheson. Semantics-based reconcili-
ation for collaborative and mobile environments. In Int. Conf. on Coop. Info. Sys.
(CoopIS), volume 2888 of Lecture Notes in Comp. Sc., pages 38–55, Catania, Sicily,
Italy, November 2003. Springer-Verlag. URL http://www.springerlink.com/content/
xygj6u96h1kgew05/.

[43] Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, and Mihai Leţia. A com-
mutative replicated data type for cooperative editing. In Int. Conf. on Distributed
Comp. Sys. (ICDCS), pages 395–403, Montréal, Canada, June 2009. doi: 10.1109/
ICDCS.2009.20. URL http://doi.ieeecomputersociety.org/10.1109/ICDCS.2009.20.

[44] Masoud Saeida Ardekani, Marek Zawirski, Pierre Sutra, and Marc Shapiro. The
space complexity of transactional interactive reads. In Int. W. on Hot Topics in
Cloud Data Processing (HotCDP), pages 4:1–4:5, Bern, Switzerland, April 2012.
Assoc. for Computing Machinery. doi: 10.1145/2169090.2169094. URL http://doi.
acm.org/10.1145/2169090.2169094.

[45] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot
Isolation: scalable and strong consistency for geo-replicated transactional systems.
In Symp. on Reliable Dist. Sys. (SRDS), pages 163–172, Braga, Portugal, October
2013. IEEE Comp. Society. doi: 10.1109/SRDS.2013.25. URL http://dx.doi.org/10.
1109/SRDS.2013.25.

[46] Masoud Saeida Ardekani, Pierre Sutra, Marc Shapiro, and Nuno Preguiça. On
the scalability of snapshot isolation. In Felix Wolf, Bernd Mohr, and Dieter
Mey, editors, Euro. Conf. on Parallel and Dist. Comp. (Euro-Par), volume 8097
of Lecture Notes in Comp. Sc., pages 369–381, Aachen, Germany, August 2013.
Springer-Verlag. doi: 10.1007/978-3-642-40047-6_39. URL http://dx.doi.org/10.
1007/978-3-642-40047-6_39.

[47] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Surveys,
37(1):42–81, March 2005. doi: 1057977.1057980. URL http://doi.acm.org/10.1145/
1057977.1057980.

[48] Marc Shapiro. An experiment in distributed program design, using control enrich-
ment. In Int. Conf. on Distributed Comp. Sys. (ICDCS), Miami-Ft. Lauderdale FL,
USA, October 1982.

26

http://lip6.fr/Marc.Shapiro/papers/SDGC_iwmm95.pdf
http://lip6.fr/Marc.Shapiro/papers/SDGC_iwmm95.pdf
http://www.springerlink.com/content/xygj6u96h1kgew05/
http://www.springerlink.com/content/xygj6u96h1kgew05/
http://doi.ieeecomputersociety.org/10.1109/ICDCS.2009.20
http://doi.acm.org/10.1145/2169090.2169094
http://doi.acm.org/10.1145/2169090.2169094
http://dx.doi.org/10.1109/SRDS.2013.25
http://dx.doi.org/10.1109/SRDS.2013.25
http://dx.doi.org/10.1007/978-3-642-40047-6_39
http://dx.doi.org/10.1007/978-3-642-40047-6_39
http://doi.acm.org/10.1145/1057977.1057980
http://doi.acm.org/10.1145/1057977.1057980

[49] Marc Shapiro. Structure and encapsulation in distributed systems: the Proxy Prin-
ciple. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pages 198–204, Cambridge,
MA, USA, May 1986. IEEE.

[50] Marc Shapiro. A fault-tolerant, scalable, low-overhead distributed garbage detec-
tion protocol. In Symp. on Reliable Dist. Sys. (SRDS), pages 208–217, Pisa, Italy,
October 1991. doi: 10.1109/RELDIS.1991.145426.

[51] Marc Shapiro. A binding protocol for distributed shared objects. In Int. Conf.
on Distributed Comp. Sys. (ICDCS), pages 134–141, Poznan, Poland, June 1994.
doi: 10.1109/ICDCS.1994.302403. URL http://ieeexplore.ieee.org/iel2/980/7460/
00302403.pdf?tp=&arnumber=302403&isnumber=7460.

[52] Marc Shapiro. Réplication : les approches optimistes (conf. invitée). In Philippe
Pucheral, editor, Journées Bases de Données Avancées (BDA), Évry, France, Octo-
ber 2002. Invited Talk.

[53] Marc Shapiro. Practical proofs of concurrent programs. In Int. Conf. on Functional
Programming (ICFP), pages 123–123, Portland, Oregon, USA, September 2006.
ACM Sigplan, Assoc. for Computing Machinery. doi: 10.1145/1159803.1159819.
URL http://doi.acm.org/10.1145/1159803.1159819. Invited Talk.

[54] Marc Shapiro and Paulo Ferreira. Larchant-RDOSS: a distributed shared persistent
memory and its garbage collector. In Jean-Michel Hélary and Michel Raynal, editors,
W. on Distributed Algorithms (WDAG), number 972 in Lecture Notes in Comp. Sc.,
pages 198–214, Le Mont Saint-Michel, France, September 1995. Springer-Verlag.
doi: 10.1007/BFb0022148. URL http://lip6.fr/Marc.Shapiro/papers/LRDSPMGC_
wdag95.pdf.

[55] Marc Shapiro and Nuno Preguiça. Designing a commutative replicated data type.
Rapport de Recherche RR-6320, Institut National de la Recherche en Informatique
et Automatique (Inria), Rocquencourt, France, October 2007. URL http://lip6.fr/
Marc.Shapiro/papers/Commutative-Replicated-Data-Type-RR-6320_2007-10.pdf.

[56] Marc Shapiro, Philippe Gautron, and Laurence Mosseri. Persistence and migration
for C++ objects. In Stephen Cook, editor, Euro. Conf. on Object-Oriented Pging.
(ECOOP), British Computer Society Workshop Series, pages 191–204, Nottingham,
GB, July 1989. The British Computer Society, Cambridge University Society.

[57] Marc Shapiro, Yvon Gourhant, Sabine Habert, Laurence Mosseri, Michel Ruffin,
and Céline Valot. SOS: An object-oriented operating system — assessment and
perspectives. Computing Systems, 2(4):287–338, December 1989. URL http://www.
usenix.org/publications/compsystems/1989/fall.html.

[58] Marc Shapiro, Peter Dickman, and David Plainfossé. Robust, distributed references
and acyclic garbage collection. In Symp. on Principles of Dist. Comp. (PODC),

27

http://ieeexplore.ieee.org/iel2/980/7460/00302403.pdf?tp=&arnumber=302403&isnumber=7460
http://ieeexplore.ieee.org/iel2/980/7460/00302403.pdf?tp=&arnumber=302403&isnumber=7460
http://doi.acm.org/10.1145/1159803.1159819
http://lip6.fr/Marc.Shapiro/papers/LRDSPMGC_wdag95.pdf
http://lip6.fr/Marc.Shapiro/papers/LRDSPMGC_wdag95.pdf
http://lip6.fr/Marc.Shapiro/papers/Commutative-Replicated-Data-Type-RR-6320_2007-10.pdf
http://lip6.fr/Marc.Shapiro/papers/Commutative-Replicated-Data-Type-RR-6320_2007-10.pdf
http://www.usenix.org/publications/compsystems/1989/fall.html
http://www.usenix.org/publications/compsystems/1989/fall.html

pages 135–146, Vancouver, Canada, August 1992. ACM. doi: 10.1145/135419.
135448. URL http://doi.acm.org/10.1145/135419.135448. Superseded by [59]: cor-
rects a bug, more elegant, more informative.

[59] Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Robust, dis-
tributed references supporting acyclic garbage collection. Rapport de Recherche
1799, Institut National de la Recherche en Informatique et Automatique (Inria),
Rocquencourt, France, November 1992. URL http://lip6.fr/Marc.Shapiro/papers/
SSPC_rr1799.pdf.

[60] Marc Shapiro, Fabrice le Fessant, and Paulo Ferreira. Recent advances in distributed
garbage collection. In S. Krakowiak and S. K. Shrivastava, editors, Recent Advances
in Distributed Systems, volume 1752 of Lecture Notes in Comp. Sc., chapter 5, pages
104–126. Springer-Verlag, February 2000. doi: 10.1007/3-540-46475-1_5. URL
http://www.springerlink.com/content/11xn227wnvhn0972/.

[61] Marc Shapiro, Karthikeyan Bhargavan, Yek Chong, and Youssef Hamadi. Brief
announcement: A formalism for consistency and partial replication. In Rachid
Guerraoui, editor, Int. Symp. on Dist. Comp. (DISC), volume 3274/2004 of Lecture
Notes in Comp. Sc., Trippenhuis, Amsterdam, the Netherlands, October 2004. ISBN
0302-9743.

[62] Marc Shapiro, Karthikeyan Bhargavan, and Nishith Krishna. A constraint-based
formalism for consistency in replicated systems. In Int. Conf. on Principles of
Dist. Sys. (OPODIS), number 3544 in Lecture Notes in Comp. Sc., pages 331–
345, Grenoble, France, December 2004. doi: 10.1007/11516798_24. URL http:
//dx.doi.org/10.1007/11516798_24.

[63] Marc Shapiro, Nuno Preguiça, and James O’Brien. Rufis: mobile data sharing using
a generic constraint-oriented reconciler. In Conf. on Mobile Data Management, pages
146–151, Berkeley, CA, USA, January 2004. doi: 10.1109/MDM.2004.1263052. URL
http://lip6.fr/Marc.Shapiro/papers/mdm-2004-final.pdf.

[64] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehen-
sive study of Convergent and Commutative Replicated Data Types. Rapport de
Recherche 7506, Institut National de la Recherche en Informatique et Automatique
(Inria), Rocquencourt, France, January 2011.

[65] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Xavier Défago, Franck Petit, and V. Villain, editors,
Int. Symp. on Stabilization, Safety, and Security of Dist. Sys. (SSS), volume 6976
of Lecture Notes in Comp. Sc., pages 386–400, Grenoble, France, October 2011.
Springer-Verlag. doi: 10.1007/978-3-642-24550-3_29. URL http://www.springerlink.
com/content/3rg39l2287330370/.

28

http://doi.acm.org/10.1145/135419.135448
http://lip6.fr/Marc.Shapiro/papers/SSPC_rr1799.pdf
http://lip6.fr/Marc.Shapiro/papers/SSPC_rr1799.pdf
http://www.springerlink.com/content/11xn227wnvhn0972/
http://dx.doi.org/10.1007/11516798_24
http://dx.doi.org/10.1007/11516798_24
http://lip6.fr/Marc.Shapiro/papers/mdm-2004-final.pdf
http://www.springerlink.com/content/3rg39l2287330370/
http://www.springerlink.com/content/3rg39l2287330370/

[66] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Convergent
and commutative replicated data types. Bulletin of the European Association for
Theoretical Computer Science (EATCS), (104):67–88, June 2011. URL http://www.
eatcs.org/images/bulletin/beatcs104.pdf.

[67] Marc Shapiro, Masoud Saeida-Ardekani, and Pierre Sutra. Exploring the spectrum
of strongly-consistent transactional protocols. In W. on Large-Scale Dist. Sys. and
Middleware (LADIS), Cambridge, UK, October 2014. URL http://ladisworkshop.
org/node/10.

[68] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. Consistency in
3D. In Josée Desharnais and Radha Jagadeesan, editors, Int. Conf. on Con-
currency Theory (CONCUR), volume 59 of Leibniz Int. Proc. in Informatics
(LIPICS), pages 3:1–3:14, Québec, Québec, Canada, August 2016. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany. doi: 10.4230/
LIPIcs.CONCUR.2016.3. URL http://drops.dagstuhl.de/opus/volltexte/2016/6188/
pdf/LIPIcs-CONCUR-2016-3.pdf.

[69] Pierre Sutra and Marc Shapiro. Comparing optimistic database replication tech-
niques. In Bases de Données Avancées (BDA), Marseille, France, October 2007.
URL http://lip6.fr/Marc.Shapiro/papers/sutra-shapiro-bda2007.pdf.

[70] Pierre Sutra and Marc Shapiro. Fault-tolerant partial replication in large-
scale database systems. In Euro. Conf. on Parallel and Dist. Comp. (Euro-
Par), pages 404–413, Las Palmas de Gran Canaria, Spain, August 2008.
doi: 10.1007/978-3-540-85451-7_44. URL http://www.springerlink.com/content/
g667712123656274/.

[71] Pierre Sutra and Marc Shapiro. Fast Genuine Generalized Consensus. Rapport
de Recherche ???, Institut National de la Recherche en Informatique et Automa-
tique (Inria), Rocquencourt, France, May 2010. URL http://hal.archives-ouvertes.fr/
hal-00476885.

[72] Pierre Sutra and Marc Shapiro. Fast Genuine Generalized Consensus. In Symp. on
Reliable Dist. Sys. (SRDS), pages 255–264, Madrid, Spain, October 2011. doi: 10.
1109/SRDS.2011.38. URL http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=
6076784.

[73] Pierre Sutra, João Barreto, and Marc Shapiro. Decentralised commitment for op-
timistic semantic replication. In Int. Conf. on Coop. Info. Sys. (CoopIS), Vilam-
oura, Algarve, Portugal, November 2007. doi: 10.1007/978-3-540-76848-7_21. URL
http://www.springerlink.com/content/u126126582647jmx/.

[74] Vinh Tao, Marc Shapiro, and Vianney Rancurel. Merging semantics for conflict
updates in geo-distributed file systems. In ACM Int. Systems and Storage Conf.

29

http://www.eatcs.org/images/bulletin/beatcs104.pdf
http://www.eatcs.org/images/bulletin/beatcs104.pdf
http://ladisworkshop.org/node/10
http://ladisworkshop.org/node/10
http://drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf
http://drops.dagstuhl.de/opus/volltexte/2016/6188/pdf/LIPIcs-CONCUR-2016-3.pdf
http://lip6.fr/Marc.Shapiro/papers/sutra-shapiro-bda2007.pdf
http://www.springerlink.com/content/g667712123656274/
http://www.springerlink.com/content/g667712123656274/
http://hal.archives-ouvertes.fr/hal-00476885
http://hal.archives-ouvertes.fr/hal-00476885
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6076784
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6076784
http://www.springerlink.com/content/u126126582647jmx/

(Systor), pages 10.1–10.12, Haifa, Israel, May 2015. doi: 10.1145/2757667.2757683.
URL http://dx.doi.org/10.1145/2757667.2757683.

[75] The SyncFree Consortium. AntidoteDB: A planet-scale, available, transactional
database with strong semantics. Website http://antidoteDB.eu/, .

[76] The SyncFree Consortium. SyncFree GitHub. URL https://github.com/SyncFree, .

[77] The SyncFree Consortium. The SyncFree European FP7 project. Website http:
//syncfree.lip6.fr/, .

[78] Alejandro Z. Tomsic, Tyler Crain, and Marc Shapiro. An empirical perspective
on causal consistency. In Carlos Baquero and Marco Serafini, editors, W. on
Principles and Practice of Consistency for Distr. Data (PaPoC), co-located with
EuroSys 2015, Bordeaux, France, April 2015. ACM SIG on Op. Sys. (SIGOPS),
Assoc. for Computing Machinery. doi: 10.1145/2745947.2745949. URL http:
//dx.doi.org/10.1145/2745947.2745949.

[79] Alejandro Z. Tomsic, Tyler Crain, and Marc Shapiro. PhysiCS-NMSI: efficient
consistent snapshots for scalable snapshot isolation. In W. on Principles and Practice
of Consistency for Distr. Data (PaPoC), London, UK, April 2016. Euro. Conf. on
Comp. Sys. (EuroSys), Assoc. for Computing Machinery. doi: 10.1145/2911151.
2911166. URL http://dx.doi.org/10.1145/2911151.2911166.

[80] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving cor-
rectness of highly-concurrent linearisable objects. In Symp. on Principles and Prac-
tice of Parallel Prog. (PPoPP), pages 129–136, New York, USA, March 2006. doi:
10.1145/1122971.1122992. URL http://doi.acm.org/10.1145/1122971.1122992.

[81] Marek Zawirski, Marc Shapiro, and Nuno Preguiça. Asynchronous rebalancing of a
replicated tree. In Conf. Française sur les Systèmes d’Exploitation (CFSE), page 12,
Saint-Malo, France, May 2011. URL http://lip6.fr/Marc.Shapiro/papers/Asynch%
20rebalancing%20of%20a%20replicated%20tree%20Zawirski-CFSE-2011.pdf.

[82] Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas,
and Marc Shapiro. Write fast, read in the past: Causal consistency for client-side ap-
plications. In Int. Conf. on Middleware (MIDDLEWARE), pages 75–87, Vancouver,
BC, Canada, December 2015. ACM/IFIP/Usenix. doi: 10.1145/2814576.2814733.
URL http://dx.doi.org/10.1145/2814576.2814733.

[83] Marek Zawirski, Carlos Baquero, Annette Bieniusa, Nuno Preguiça, and Marc
Shapiro. Eventually consistent register revisited. In W. on Principles and Prac-
tice of Consistency for Distr. Data (PaPoC), London, UK, April 2016. Euro. Conf.
on Comp. Sys. (EuroSys), Assoc. for Computing Machinery. doi: 10.1145/2911151.
2911157. URL http://dx.doi.org/10.1145/2911151.2911157.

30

http://dx.doi.org/10.1145/2757667.2757683
http://antidoteDB.eu/
https://github.com/SyncFree
http://syncfree.lip6.fr/
http://syncfree.lip6.fr/
http://dx.doi.org/10.1145/2745947.2745949
http://dx.doi.org/10.1145/2745947.2745949
http://dx.doi.org/10.1145/2911151.2911166
http://doi.acm.org/10.1145/1122971.1122992
http://lip6.fr/Marc.Shapiro/papers/Asynch%20rebalancing%20of%20a%20replicated%20tree%20Zawirski-CFSE-2011.pdf
http://lip6.fr/Marc.Shapiro/papers/Asynch%20rebalancing%20of%20a%20replicated%20tree%20Zawirski-CFSE-2011.pdf
http://dx.doi.org/10.1145/2814576.2814733
http://dx.doi.org/10.1145/2911151.2911157

	Research overview
	Approach and impact
	Research Perspective

	Current research: bridging the CAP gap between correctness and availability
	Conflict-Free Replicated Data Types (CRDTs)
	Available invariants
	EQ: Equivalence-type invariants between data items
	PO: Invariants based on a partial order

	Non-available invariants: PS, the CISE analysis, and Just-Right Consistency
	Stronger guarantees for available consistency: Transactional Causal Consistency
	AntidoteDB
	Consistency in 3D
	Merging Semantics for Conflict Updates in Geo-Distributed File Systems

	Other contributions
	1976–1990: Proxies and fragmented objects
	1989: Chorus virtual memory subsystem
	1990–1999: Distributed references and garbage collection
	1993–2000: Garbage collection in a cached memory
	1998–2005: Disconnected operation and reconciliation
	2004–2013: More available strong consistency
	2004–2015: Fine-grain concurrency and garbage collection in large-scale multicore computers

	Professional activities and service
	Community service
	Expert advice
	Funding

