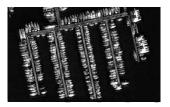
Parallélisme approximatif entre objets flous

Maria Carolina VANEGAS OROZCO Dir: Isabelle Bloch, Henri Maître

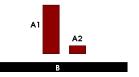
Insitut TELECOM ParisTech (ENST)

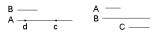
September 30, 2008



Raisonnement spatial et la relation parallèle

- Une composante fondamentale du raisonnement spatial est la modélisation de relations entre les objets.
- La relation de parallélisme est présente entre objets fabriqués par l'homme, dans les images satellitaires.
- On peut observer la relation de parallélisme, par exemple entre:
 - La frontière de deux objets
 - Deux objets
 - Un groupe d'objets et un objet
 - Deux groupes d'objets
- Le parallélisme entre segments à été largement étudié dans le domaine de l'organisation perceptuelle.





Quelques Considérations

- Le parallélisme doit être considéré comme un degré
- La symétrie et la transitivité sont discutables

- Veut-on donner le même degré de satisfaction de la relation parallèle aux deux situations?
- Pour évaluer la relation il est nécessaire qu'au moins un des objets soit allongé.
- Il peut être intéressant de considérer certains parties des objets pour l'évaluation

Parallélisme entre segments flous

"A est parallèle à B"

Vrai quand:

- \blacksquare La partie de B qui est vue par A a la même orientation que A.
- 2 Une grande proportion de A voit B dans la direction normale à A.
 - On utilise la dilatation directionnelle à la direction \vec{u}_{θ_A} pour trouver le partie de B qui est vue par A.
 - La partie de A qui voit B est égale a la partie de A qui est vue par B dans la direction ū_{θA+π}.
 - $lue{}$ On utilise une fonction μ_{α} pour évaluer la 2ème condition.
 - Le degré de parallélisme est trouvé en appliquant une conjonction entre les deux conditions

Parallélisme entre segments flous

"A est parallèle à B"

Vrai quand :

- 1 La partie de *B* qui est vue par *A* a la même orientation que *A*.
- 2 Une grande proportion de A voit B dans la direction normale à A.
 - On utilise la dilatation directionnelle à la direction \vec{u}_{θ_A} pour trouver le partie de B qui est vue par A.

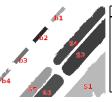
- La partie de A qui voit B est égale a la partie de A qui est vue par B dans la direction $\vec{u}_{\theta_A+\pi}$.
- lacksquare On utilise une fonction μ_{α} pour évaluer la 2ème condition.

■ Le degré de parallélisme est trouvé en appliquant une conjonction entre les deux conditions

Parallélisme entre objets

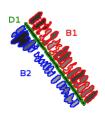
Parallélisme entre deux objets

■ Faire l'évaluation entre la partie de la frontière de chaque objet qui est face a l'autre objet


Parallélisme entre un groupe d'objets et une objet

Soit $\{A_i\}$ un groupe d'objets et B un autre objet

- Les objets du groupe doivent être alignés.
- L'évaluation est fait avec la frontière de B qui voit $\{A_i\}$, et la frontière des objets qui est la plus proche de B
- Il ne faut pas que chaque élément du groupe soit parallèle à B.


Résultats

	Α	В	$\mu_{ N}(A, B)$	$\mu_{ N}(B,A)$
	b2	S4	0.94	0.55
	b3	S5	0.97	0.87
	b4	S5	0.89	0.66
	S2	S4	0.97	0.97
	S4	S1	0.87	0.94
	S5	S3	0.90	0.95
1	S3	S1	0.78	0.43
L	b1	S4	0.90	0.69

Α	В	$\mu_{ N}(A, B)$	$\mu_{ N}(B,A)$
B1	D1	0.94	0.94
B2	D1	0.95	0.95
B1	B2	0.85	0.87

- On obtient des résultats symétriques lorsque les objets ont la même extension spatiale.
- Les résultats obtenus concordent avec l'intuition

Conclusions et Perspectives

- La relation de parallélisme dépend du contexte et de la situation.
- Étendre la notion du parallélisme et de l'alignement pour des objets de différent tailles.
- Modéliser d'autres relations.
- Raisonnement spatial sur des images satellitaires.