
Génération aléatoire d’arbres
et applications

Alexis Darrasse

Journée des doctorants des laboratoires LIP6 et LTCI
1er Octobre 2008

Random sampling

Combinatorial structures
Random input for testing (software validity,
server robustness)

Property visualization (large scale)
Model adequation - Check conjectures

Boltzmann sampling

C set of objects γ with size function || : C → N

Boltzmann model, parameter x

Px (γ) =
x |γ|

C(x)
where C(x) =

∑
γ∈C

x |γ|

Combinatorial classes defined by specification grammars
Oracle for computing C(x)

Properties
Guarantees uniformity (between objects of the same size)
Result size is random, but can be tuned with parameter x
Linear complexity of sampling→ huge objects

Boltzmann sampling

Properties
Guarantees uniformity (between objects of the same size)
Result size is random, but can be tuned with parameter x
Linear complexity of sampling→ huge objects

construction sampler with parameter x

C = I ΓC(x) := ε

C = Z ΓC(x) := z

C = A+ B ΓC(x) := Bern A(x)
C(x) −→ ΓA(x) | ΓB(x)

C = A× B ΓC(x) := 〈 ΓA(x) ; ΓB(x) 〉

C = SEQ(A) ΓC(x) := Geom A(x) =⇒ ΓA(x)

Specifications

O’Caml
type expression =

Const of float
| Var of string
| Sum of expression * expression
| Prod of expression * expression

Combinatorics

E = Z ∪ Z ∪ E × E ∪ E × E

Generating function

E(z) =
∞∑

n=0

Enzn with En = # expr. with n const. or var.

E(z) =2z + 2E2(z)

Expressions Boltzmann sampler

type expression =
Const of float

| Var of string
| Sum of expression * expression
| Prod of expression * expression

E = Z ∪ Z ∪ E × E ∪ E × E

Sampler
let rec rand_exp () =

let r = Random.float 1.0 in
if r < 0.25 then Const 1.0
else if r < 0.5 then Var "foo"
else if r < 0.75 then Sum (rand_exp (), rand_exp ())
else Prod (rand_exp (), rand_exp ())

;;

Result
rand_exp ();;
- : expression =
Prod (Var "foo",
Sum (Prod (Var "foo", Sum (Sum (Const 1., Var "foo"), Var "foo")),
Sum
(Sum (Prod (Prod (Const 1., Var "foo"), Const 1.),

Prod (Var "foo", Var "foo")),
Sum
(Prod

(Sum
(Prod
(Prod
(Prod
(Prod (Sum (Const 1., Prod (Var "foo", Var "foo")), Var "foo"),
Sum
(Prod
(Sum
(Prod
(Prod (Var "foo",
Sum (Var "foo",
Sum (Sum (Prod (Const 1., Var "foo"), Var "foo"),
Const 1.))),

Sum (Sum (Var "foo", Var "foo"),
Prod (Var "foo", Prod (Const 1., Var "foo")))),

Var "foo"),
Sum (Prod (Var "foo", Const 1.),
Sum (Const 1.,
Sum (Const 1.,
Prod (Sum (Const 1., Const 1.),
Prod (Prod (Var "foo", Var "foo"), Var "foo")))))),

Const 1.)),
Const 1.),

Sum (Const 1., Var "foo")),
Prod (Sum (Var "foo", Sum (Prod (Const 1., Var "foo"), Var "foo")),
Const 1.)),

Const 1.),
Var "foo"))))

Constructible classes

specification ordinary g.f. exponential g.f.
(unlabelled) (labelled)

ε / atom I / Z 1 / x 1 / x

Union C = A ∪ B C(x) = A(x) + B(x) Ĉ(x) = A(x) + B(x)

Product C = A× B C(x) = A(x)× B(x) Ĉ(x) = A(x)× B(x)

Sequence C = SEQ(A) C(x) = 1
1−A(x) Ĉ(x) = 1

1−A(x)

Set C = SET(A) exp

(∞∑
k=1

(−1)k−1

k
A(xk)

)
Ĉ(x) = exp(A(x))

Multiset C = MSET(A) exp

(∞∑
k=1

1
k

A(xk)

)
–

Cycle C = CYC(A)
∞∑

k=1

ϕ(k)

k
log

1
1− A(xk)

Ĉ(x) = log 1
1−A(x)

And more to come. . .

Applications

Planar and other graphs
Automata
Boolean expressions
RNA structures
Software testing
Plane partitions
. . .

Application of random sampling of trees:
XML document sampling

The framework

Combinatorics

Sampler Oracle

Random object

Application domain

The framework

Combinatorics

Sampler Oracle

Random object

RELAX NG

RELAX NG - Compact syntax
An example

start = expr

expr = element const {
attribute val { xsd:integer },
empty }

| element var {
attribute val { xsd:string },
empty }

| element sum { expr, expr }
| element prod { expr, expr }

Operator correspondance

RELAX NG Combinatorics
empty I

data/value/text Z
choice ∪
group ×

oneOrMore SEQ

define(X) X = . . .
ref(X) X

element/attribute Z × . . .

The framework

< 1000 lines

< 500 lines
C. Pivoteau

RELAX NG

Combinatorics

Sampler Oracle

Random object

ruby

ruby maple

maple

ruby

Some results

grammar file # el. s.c.c. oracle
ternary trees 1024 2 1 0.260s

RSS 9.5K 10 1 0.320s
PNML 23K 22 1 0.322s
ILP 1 21K 20 6 0.416s
ILP 6 99K 51 31 0.828s

RELAX NG 124K 33 18 0.696s
XSLT 168K 40 17 0.469s

XHTML 289K 47 32 0.932s
XML Schema 237K 59 9 0.528s
XHTML basic 284K 53 38 1.080s
XHTML strict 1.2M 80 58 2.414s

XHTML 1.5M 93 66 3.798s
SVG tiny 1.6M 49 7 0.371s
SVG full 6.3M 118 27 0.718s
MathML 2.2M 182 48 2.432s

OpenDocument 2.8M 500 101 6.544s
DocBook 11M 407 295 143.411s

Current state

Sampling performance
In 2 minutes:

100 ILP 1 documents of size > 1000 (64MB)

In 1 minute:
1 ILP 1 document of size > 100000 (61MB)

on a Core 2 Duo with 1GB of RAM

Work in progress

Namespaces not yet implemented

interleave not yet treated correctly

Attributes should be sets, not sequences

Samplers for data must be provided by the user

The document is not serialized until the sampling is over

A generic framework

RELAX NG

Combinatorics

Sampler Oracle

Random object

A generic framework

RELAX NG Algebraic data types

Combinatorics

Sampler Oracle

Random object

Our prototypes

Extension for algebraic datatypes in QuickCheck (Haskell)
Algebraic datatype sampler for O’Caml (with B. Canou)

data Prog = Prog Dec Stat deriving (Typeable, Data, Show)
data Dec = Nodec | Ondec Id Type | Manydecs Dec Dec deriving (Typeable, Data, Show)
data Id = A | B deriving (Typeable, Data, Show)
data Type = Int | Bool deriving (Typeable, Data, Show)
data Stat = Noop | Assign Id Exp | Seq Stat Stat deriving (Typeable, Data, Show)
data Exp = Zero | Succ Exp deriving (Typeable, Data, Show)

main = do gen <- getStdGen
g <- toGenIO (undefined::Prog)
putStrLn . show $ generate 1 gen g

$./prog
Prog (Manydecs (Manydecs (Manydecs Nodec Nodec) (Manydecs Nodec (Manydecs Nodec
(Manydecs (Manydecs (Manydecs (Ondec B Bool) (Manydecs (Manydecs (Manydecs (Manydecs
(Manydecs (Ondec B Int) (Manydecs (Ondec A Int) (Manydecs (Manydecs (Ondec A Bool)
(Manydecs (Ondec B Int) Nodec)) (Manydecs Nodec (Ondec A Int))))) (Ondec A Int))
(Manydecs (Manydecs (Manydecs (Manydecs (Manydecs Nodec (Manydecs Nodec (Manydecs
(Manydecs (Manydecs (Ondec A Int) Nodec) Nodec) Nodec))) (Manydecs (Manydecs
Nodec Nodec) Nodec)) (Manydecs Nodec (Manydecs (Manydecs (Manydecs (Manydecs
(Ondec A Bool) (Manydecs (Manydecs Nodec (Manydecs (Ondec B Int) (Ondec A
Bool))) Nodec)) (Manydecs (Manydecs (Manydecs (Ondec B Bool) Nodec) (Ondec B
Bool)) (Manydecs (Ondec A Int) (Manydecs (Ondec B Bool) (Ondec A Bool)))))
Nodec) Nodec))) (Ondec B Int)) (Manydecs Nodec (Manydecs (Manydecs (Manydecs
(Manydecs (Ondec B Int) Nodec) (Manydecs Nodec (Manydecs Nodec (Manydecs
(Manydecs (Manydecs (Manydecs (Manydecs (Manydecs (Ondec A Int) Nodec) Nodec)
Nodec) Nodec) (Manydecs (Manydecs (Manydecs Nodec (Ondec B Bool)) Nodec)
(Manydecs Nodec (Manydecs (Manydecs Nodec (Manydecs (Manydecs (Manydecs
(Manydecs Nodec Nodec) (Manydecs (Manydecs Nodec (Manydecs (Ondec B Int)
(Manydecs (Ondec A Bool) Nodec))) (Manydecs Nodec (Manydecs Nodec Nodec))))
Nodec) (Ondec A Int))) Nodec)))) Nodec)))) Nodec) Nodec)))) (Manydecs (Manydecs
(Ondec A Bool) (Manydecs (Manydecs (Manydecs (Ondec B Int) (Manydecs (Manydecs
Nodec (Ondec A Int)) (Manydecs (Manydecs Nodec (Manydecs (Ondec A Bool) Nodec))
(Manydecs (Ondec B Int) (Ondec A Int))))) Nodec) (Manydecs Nodec (Manydecs
(Manydecs (Manydecs Nodec (Manydecs (Manydecs Nodec (Ondec A Bool)) (Manydecs
(Ondec A Bool) (Manydecs Nodec Nodec)))) (Manydecs (Manydecs (Ondec A Bool)
(Manydecs (Manydecs (Manydecs (Manydecs Nodec (Manydecs (Manydecs (Ondec B Int)
(Ondec B Int)) (Manydecs Nodec Nodec))) (Manydecs (Manydecs Nodec (Manydecs
(Manydecs Nodec Nodec) Nodec)) (Manydecs (Manydecs Nodec Nodec) (Manydecs
(Ondec A Bool) (Ondec A Int))))) (Manydecs (Manydecs Nodec Nodec) (Manydecs
(Manydecs (Manydecs (Manydecs (Manydecs (Manydecs (Manydecs (Manydecs (Manydecs
(Manydecs (Ondec B Int) (Manydecs Nodec (Ondec B Bool))) Nodec) Nodec)
(Manydecs (Manydecs (Ondec A Int) (Manydecs (Manydecs (Manydecs (Ondec A Bool)
(Manydecs Nodec (Manydecs Nodec (Manydecs (Manydecs (Ondec A Int) (Manydecs
(Manydecs (Ondec A Int) (Manydecs Nodec (Manydecs Nodec (Manydecs (Manydecs
(Manydecs (Manydecs Nodec Nodec) (Manydecs Nodec (Ondec B Int))) (Manydecs
Nodec (Manydecs Nodec (Manydecs Nodec (Manydecs (Manydecs (Manydecs (Ondec B
Bool) Nodec) Nodec) Nodec))))) Nodec)))) (Ondec A Int))) Nodec)))) Nodec)
(Manydecs (Manydecs (Ondec B Int) (Manydecs Nodec (Manydecs (Manydecs (Manydecs
(Manydecs (Ondec A Bool) (Manydecs Nodec Nodec)) (Manydecs (Manydecs Nodec
Nodec) (Manydecs (Manydecs Nodec Nodec) (Manydecs Nodec Nodec)))) (Manydecs
(Ondec B Int) (Manydecs (Manydecs (Manydecs Nodec (Manydecs (Ondec A Bool)
Nodec)) Nodec) (Ondec B Bool)))) Nodec))) Nodec))) Nodec)) (Ondec B Int))
(Ondec A Int)) Nodec) (Manydecs (Manydecs (Ondec B Int) (Manydecs Nodec
(Manydecs (Ondec A Bool) (Ondec A Bool)))) Nodec)) (Manydecs (Ondec B Int)
(Manydecs (Manydecs (Ondec B Bool) (Ondec B Int)) (Manydecs Nodec Nodec))))
(Manydecs (Manydecs (Ondec A Int) (Manydecs (Ondec A Bool) (Ondec A Bool)))
Nodec)))) (Manydecs (Manydecs Nodec (Manydecs Nodec Nodec)) (Manydecs Nodec
(Manydecs (Ondec A Int) Nodec))))) (Manydecs Nodec Nodec))) (Manydecs Nodec
Nodec))))) Nodec)) (Manydecs Nodec Nodec))) (Manydecs (Manydecs (Manydecs Nodec
Nodec) (Manydecs Nodec (Manydecs Nodec Nodec))) Nodec)) (Manydecs Nodec
Nodec))))) (Manydecs Nodec Nodec)) (Seq (Seq (Seq (Seq (Assign A Zero) (Seq
Noop (Seq Noop (Seq Noop (Seq Noop Noop))))) (Assign B Zero)) (Seq Noop (Assign
A Zero))) Noop)

A generic framework

RELAX NG Algebraic data types

Combinatorics

Sampler Oracle

Random object

A generic framework

RELAX NG Algebraic data types UML?

w/ A. Mougenot

Combinatorics

Sampler Oracle

Random object

A generic framework

RELAX NG Algebraic data types UML? ???

Combinatorics

Sampler Oracle

Random object

	Introduction
	XML
	Specification-based testing

