
EAI Endorsed Transactions on Serious Games Research Article

Formal Framework to improve the reliability of
concurrent and collaborative learning games
I. Mounier1,2, A.Yessad1,2,∗, T. Carron1,2,3, F. Kordon12, J-M. Labat1,2

1Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, 75005, Paris, France
2CNRS, UMR 7606, LIP6
3Université de Savoie, 73000, Chambéry, France

Abstract

Multi-player learning games are complex software applications resulting from a costly and complex
engineering process, and involving multiple stakeholders (domain experts, teachers, game designers,
programmers, testers, etc.). Moreover, they are dynamic systems that evolve over time and implement complex
interactions between objects and players.
Usually, once a learning game is developed, testing activities are conducted by humans who explore the
possible executions of the game’s scenario to detect bugs. The complexity and the dynamic nature of multi-
player learning games enforces the complexity of testing activities. Indeed, it is impracticable to explore
manually all possible executions due to their huge number. Moreover, the test cannot verify some properties
on multi-player and collaborative scenarios, such as paths leading to deadlock between learners or prevent
learners to meet all objectives and win the game. This type of properties should be verified at the design stage.
We propose a framework enabling a formal modeling of game scenarios and an associated automatic
verification of learning game’s scenario at the design stage of the development process. We use Symmetric Petri
nets as a modeling language and choose to verify properties by means of model checkers. This paper discusses
the possibilities offered by this framework to verify learning game’s properties before the programming stage.

Keywords: Concurrent and Collaborative learning Game; Scenario Modeling; Scenario Verification; Model Checking;
Symmetric Petri Nets

1. Introduction

Context. Learning games can be defined as “(digital)
games used for purposes other than mere entertain-
ment” [1]. They are a way to help people to acquire
domain knowledge and develop skills. Fabricatore [2]
defines a learning game as : “[...] a virtual environment
and a gaming experience in which the contents that we
want to teach can be naturally embedded with some
contextual relevance in terms of the game-playing [...]”.

Learning games are complex software applications
resulting from a costly and complex engineering
process, involving multiple stakeholders (domain
experts, game designers, designers, programmers,
testers, etc.). In addition, the learning games implying
multiple players are dynamic systems that evolve over
time and implement complex interactions between
objects and players. Once a learning game is developed,

∗Corresponding author. Amel.Yessad@lip6.fr

testing activities are conducted by humans who explore
the possibles executions of the game to detects bugs.

Problem. The complexity and dynamic nature of multi-
player learning games enforce the complexity of testing
activities. Indeed, exploring all possible execution paths
manually is impossible due to their large number. Also,
multi-player learning games belong to the class of
systems for which it is well known that testing activities
are not sufficient to ensure reliability.

Moreover, testing activities do not allow to verify
specification properties and are intrinsically performed
too late because they require the game to be
implemented first; thus, detected problems are costly
to correct.

Contribution. To avoid costly testing procedures and
improve the learning game reliability, we propose to
perform automatic formal verification of scenarios of
learning games at the design stage. Our objective is
to ensure that a learning game satisfies properties
which are extremely difficult to assess by means of

1

 Received on 29 December 2013, accepted on 05 March 2014, published on 22 May 2014

Copyright © 2014 I. Mounier , et al licensed to ICST. This is an open access article distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/sg.1.2.e4

EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4 EAI for Innovation

European Alliance

mailto:<Amel.Yessad@lip6.fr>

I. Mounier, et al

tests only. Once the verification has been performed
on an abstract specification, development starts from
a validated design. It seems clear that after the formal
verification, the test of learning games will be less
costly.

This paper presents a verification approach enabling
automatic verification of learning game properties.
Among the available techniques, we chose the Petri nets
to formally specify the learning game and the model
checking techniques to verify properties.

Petri nets are a mathematical notation suitable for the
modeling of concurrent and dynamic systems [3]. Due
to the dynamic nature of learning games, we selected
a particular Petri net model: Symmetric net with bags.
Model checking is a powerful way to verify systems; it
automatically provides complete proof of correctness,
or explains, via a counter-example, why a system is not
correct [4].

The paper presents our methodological approach that
is illustrated thanks to two case studies based on real
learning game as a proof of concept.

Content. Section 2 presents relevant properties for
learning games. Section 3 details our approach. Then,
we apply it to two case studies in section 4. Section 5
explains the automatic verification of properties before
presenting some related work in section 6 .

2. Relevant Properties for Serious Games
Our work aims at verifying automatically (using model
checking) properties of serious games at the design
stage. We classify expected properties along two axes
(see table 1). A serious game is a system which combines
features relating to games and learning. Thus, the first
classification axe deals with the type of a property:

• Learning property: it is related to the learning
characteristics like the skills, the business process
or the quizes .

• Gaming property: it is related to the fun like win
a duel, avoid the monster or unlock the door.

The second axis defines the scope of a property (and
therefore, the algorithms that are used for the scenario
validation):

• Invariant are properties that are always verified in
the game,i.e., in any state of the game.

• Reachability properties are the properties that are
verified in at least a game state that is reached
from the initial state. The occurrence or not of this
state depends on the sequence of actions of the
player.

• Temporal properties that are expressed using a
temporal logic like CTL or LTL [5] and involve

Learning-dependent Game-dependent

In
v.

“The learner can always
improve his skills or at
least maintain them” “The
player can always call for
help”

"It is always possible to perform an
action before the game ends”, "a player
can always replay an action"

R
ea

ch
.

“The player can acquire all
skills”, “The player reaches
a quiz”

“The player can reach the virtual lab” or
“The player can win (respectively lose)
the game”, "’win a duel", "avoid the
monster" or "unlock the door"

Te
m
p
.

“The player can not com-
plete the level as long as he
does not have the compe-
tence C”

“The player must perform at least one
game action before winning or loosing”

Table 1. Classification of properties (invariant, reachability and
temporal)

several states of the game and often express
a sequence of game’s states and define causal
relations between states in the game.

Table 1 provides instances of properties that show
intersection between the two axes.

The problem is thus to be able to verify such types of
properties. In this aim, we need (1) a formalization for
expressing these constraints and properties of a serious
game and (2) a operational framework for automatic
verification.

3. Verification Framework
Today, the learning game’s industry and even the game’s
industry in general use human testers to detect bugs in
games. Obviously, this method is costly and unreliable
(Most of games receive several patches after their
release date). In our approach, we assume that the
learning game’s scenarios become more reliable and the
development less costly if the scenarios’ specifications
are verified prior to implementation. This early
verification is particularly adapted to verify properties
such as the ones presented in section 2. Before
presenting our verification approach, we propose a
generic pattern describing a wide range of learning
games that fits our approach. It concerns learning
games that are organized on activities with inputs and
outputs.

3.1. Generic Pattern for learning Games
Our research focuses on multi-players learning games
where scenarios are composed of activities, often
presented to players as challenges. An activity requires
a player to have acquired some skills and some virtual
objects and provides him with new skills and virtual
objects (game state), depending on his performance.
Thus, only players having the required skills and virtual
objects (vo) may perform an activity.

2 EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4

EAI for Innovation
European Alliance

Formal Framework to improve the reliability of concurrent and collaborative learning games

Figure 1 shows an activity diagram of a learning game
scenario. Activities can be performed in sequence (e.g.
Act1, then Act2), in parallel (e.g. Act2 and Act3) or are
collaborative (e.g. Act6 requires players 1 and 2 to be
performed).

3.2. Verification Method
Verification for software systems is commonly classified
into three classes: simulation, algebraic methods and
model checking. All can be applied to a design model,
once the behavior of the system is appropriately
specified.

Simulation is not well-adapted when we want to
cover the whole execution space. Algebraic methods
are difficult to operate and require highly skilled
and experienced engineers. Model checking [6], is
well-adapted to finite systems, despite an intrinsic
combinatorial explosion problem: it is based on an
exhaustive investigation of the system’s state space and
is fully automated.

We advocate that model checking is best suited
for learning games. It is a good compromise between
the accuracy of provided diagnostics and the automa-
tion/cost of the procedure because:

• it provides automatic verification of properties,

• it is more reliable than simulation (as well as tests
on the final product with human testers),

• it requires little expertise in logical reasoning,

• it always terminates (with sufficient memory
resources and when we consider finite systems)
with a yes or no (then providing a useful
counterexample) answer.

3.3. Symmetric Petri Nets with Bags (SNB)
Among the multiple variants of Petri Nets, we chose
Colored nets that are necessary to get a reasonable sized
specification, thanks to the use of colors to model data.
Next, within the large variety of colored Petri Nets, we
selected Symmetric Nets with Bags [7] where tokens
can hold bags of colors. They support optimized model
checking techniques [8]. Moreover, the notion of bags
is relevant to modeling some dynamic aspects that are
typical of learning games in a much simpler way than
with most other colored Petri nets.

Act1 Act2 Act4

Act3 Act5

Act6
vo1 vo2

vo2,vo4

vo 2,vo3,vo4

Player 1

skill1
skill1,skill2

skill1,skill2,skill3
skill1,skill2

Player 1 Player 1

Player 2 Player 2

Player 1
Player 2

Figure 1. Scenario of a learning game

We provide here an informal presentation of
Symmetric Nets and use them to model the generic
pattern of learning game we presented.

Informal Definition and Example. A petri net is a bipartite
graph composed of places (circles), that represent
resources (e.g, the current state of a player in the game)
and transitions (rectangles) that represent actions and
consume resources to produce new ones. Some guards
([conditions] written near a rectangle) can be added to
transitions.

Let us first present SNB by means of a simple
example, the SaleStore (see Figure 2). People enter the
sale store through an airlock with a capacity of two
(of course, only a single person may enter too). Then,
people may buy items (at most two but possibly zero
if none fits their need) and leave with the acquired
items. Let us note that this example has two scalable
parameters: P, the number of involved people in the
system and G, the number of available gifts in the
warehouse.

The model in Figure 2 illustrates most of the main
features of SNB. First, there are several color types
giving the place’s domains: simple color types like
People or Gift are called classes, while bags such as
BagPeople or BagGift and cartesian products such as
PeopleBagGift are built upon basic color classes.

Variables which are formal parameters for transition
binding are declared in the Var section. A basic variable
such as p can be bound to represent any element of
People. A variable such as BP represents a multiset
(or bag) of People; since it is tagged by the unique

keyword, it can actually only be bound to a subset
of People (each element in BP appears at most once).
Variable BG is not tagged with unique keyword; it could
be bound to any multiset of gifts (if the warehouse was
configured to contain several instances of each gift for
instance).

Transition guards can be used to constrain the
cardinality of a Bag variable : the constraint [card(BP) <
3 and card(BP) > 0] on airlock model its capacity of
at most 2 people (the airlock does not operate empty),
while the constraint on shopping bounds the number of
gifts bought in the store by each person.

Let us now consider the SNB of Figure 3 that
models a learning game activity. Place beforeActivity
holds players and their context: skills and virtual
objects (stored in bags)1. The initial marking M

in place beforeActivity contains one token per
player (identified by p) associated with its skills
and virtual objects (sets S and V respectively). Place
activityDesc holds the required skills and virtual
objects for each activity. The initial marking M’ in

1Here, only a set (not a bag) is required for skills, which is denoted by
the keyword unique in the declaration of variables S, S-In and S-Out.

3 EAI Endorsed Transactions on Serious Games

 04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation
European Alliance

I. Mounier, et al

Class
 People is 1..P;
 Gift is 1..G;
Domain
 BagPeople is bag (People);
 BagGift is bag(Gift);
 PeopleBagGift is <People, BagGift>;

Var
 p in People;
 BP in unique BagPeople;
 BG in BagGift;

<BG><p>

<BP><BP>

<p,{BG}>

<Gift.all>
Gift

warehouse

shopping
[card(BG) < 3]

airlock

[card(BP) < 3 and
card(BP) > 0]

PeopleBagGift
out

People
ready

<People.all>
People
waiting

Figure 2. The SaleStore example modeled with a SNB

<a,{S-In},{V-In}, {S-Out}, {V-Out}>

<a,{S-In},{V-In}, {S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

<p, {flooses(a, S, S-In, S-Out)},
 {floosev(a, V, V-In, V-Out)}>

<a, p, {S},{V},{S-In},{V-In},{S-Out}, {V-Out}>

<p, {S}, {V}>

<p, {fwins(a, S, S-In, S-Out)},
 {fwinv(a, V, V-In, V-Out)}>

<p,{S},{V}><p,{S},{V}>

<p,{S},{V}>

<p,{S},{V}>

M'

activityDesc

afterActivity

winAlooseA

[V-In included in V and
S-In included in S]

start

M

inActivity

beforeActivityclass
 Activities is 1..maxAct;
 Players is 1..maxPlayers;
 Skills is 1..maxSkills;
 VirtualObjects is 1..maxObjects;
Domain
 BagSkills is bag(Skills);
 BagVirtualObjects is bag (VirtualObjects);
 PCV is <Players,BagSkills,BagVirtualObjects>;
 ACVCV is <Activities,BagSkills,BagVirtualObjects,
 BagSkills, BagVirtualObjects>;
 APCVCV is <Activities,Players,BagSkills,

 BagVirtualObjects, BagSkills,BagVirtualObjects>;
Var
 a in Activities;
 p in Players;
 S, S-In, S-Out in unique BagSkills;
 V, V-In, V-Out in BagVirtualObjects;

[card(S) = maxSkills]

winGame

[card(S) < maxSkills]

continueGame

winner

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

Figure 3. Modeling a game activity in SNB.

place activityDesc contains a token per activity
(identified by a) associated with its prerequisite (S-In
and V-In) and the information needed to compute the
consequence of the activity on the player (in terms of
S-Out and V-Out).

Each activity begins (firing of transition start)
only when players’ skills and virtual objects (game
state) include the prerequisite ones. Then, the activity
may end in failure (transition looseA) or successfully
(transition winA). Functions fwin and floose represent
the evolution of skills and virtual objects at the end of
the activity (dropped in place beforeActivity).

The SNB shown in figure 3 allows us to model with
a very abstract and concise manner a learning game
scenario. This powerful expressiveness permits us to
have the whole scenario on a “small” graph (useful for
automatic execution) but for a better understanding,
it is possible to imagine it “deployed”: one for each
activity as we will illustrate in the fourth section.

Interest of SNB. The SNB are appropriate to model
learning games for three main reasons.

First, their capacity to structure data in tokens with
sets and multisets (bags) allows to capture the dynamic
part of learning games well: here, the number of skills
and virtual objects that varies during a game (and can
be empty).

Second, they provide an easy modeling of operations
such as union or inclusion tests in transition guards.
This allows for a more compact specification.

Third, SNB preserve the use of symmetry-based
techniques allowing efficient state space analysis [8]
that is of particular interest for the formal analysis of
learning games. The model in Figure 3 is exactly the
one that is verified (once max values defined), it is not
mandatory to instantiate it per activity and player. We
have thus a powerful formalism and some tools to verify
the expected properties of a serious game.

4. Application against two Case Studies

As a proof of concept, we apply our automatic verifica-
tion approach to several learning game scenarios. These
latter are constructed on different versions of a Game
Based Learning Management System called “Learning
Adventure” (LA). It is a 3D multi-player environment.

Activities Activity input Activity output

chmod (a1) “file permissions” area
(vo1), chest closed
(vo2)

“basic commands” area
(vo3), chest opened (vo4),
file permissions (sk1)

copy (a2) “basic commands”
area (vo3)

“advanced commands” area
(vo5), file commands (sk2)

documentation (a3) chest opened (vo4),
file commands (sk2)

linux architecture (sk3)

Table 2. Description of activities in “Nuxil”

4 EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation

European Alliance

Formal Framework to improve the reliability of concurrent and collaborative learning games

Players can move within this environment, performing
activities in order to acquire skills.

 All these scenarios have been ecologically experi-mented
in an institute of technology by 60 students : these
experiments were carried out in our university with co-
located settings. During the experiment, four groups of
around fifteen students with their teacher were present
successively in the classroom equipped with 15 computers.
Each student accessed the virtual environment through his/
her workstation, and had a personal (adapted) view on the
world. These students used the environment for
approximately two hours and half.

In the first scenario, named Nuxil, the players
had the same role and could perform same activities
in the same order. They had a parallel evolution
without synchronization or shared objects. The second
scenario for its part was devoted to collaborative
learning: during a same session, 3 groups of players
followed the same idea of quest but with different
order of activities. Thus, in the second scenario, we
had more problems related to scheduling activities:
three concurrent scenarios with a shared resource and
synchronization’s problems, inside the groups players.

4.1. First Case Study: multi-player and parallel
scenarios
In the Nuxil scenario, the players explore the
environment and have to use linux commands (e.g.
copy (cp), move (mv), edit file permissions (chmod),
...) in the activities proposed. The objective is to offer
to players a concrete metaphor of linux commands
through a visual and interactive environment. For
instance, in the scenario, the command “mv” serves to
move objects between the game’s areas and “chmod” to
provide permissions for opening a chest.

Nuxil activities allow players to acquire skills (e.g.
training on file commands). In this scenario, the
players evolve separately and don’t interact directly.

In this paper, we selected the specification of three
activities to illustrate our approach; their inputs and
outputs are presented in table 2. We deliberately
distinguish virtual objects (voi) and skills (ski) in the
description of an activity (ai). This allows us to update
them separately, based on the failure or success in a
activity .

Modeling the Case Study. To verify Nuxil scenario,
we instantiated the generic pattern of figure 3
into the model of figure 4 where Activities =
{a1, a2, a3}, Skills = {sk1, sk2, sk3} and V irtualObjects =
{vo1, vo2, vo3, vo4, vo5}.

In order to be able to start the game scenario with
the activities of table 2, a player must have at least the
virtual objects vo1 and vo2. Therefore we consider that
initial marking M of place beforeActivity is such that

<a,{S-In},{V-In},
{S-Out}, {V-Out}>

<a,{S-In},{V-In},
{S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},

{S-Out}, {V-Out}>

<p, {S},{V}>

<p, {S}, {V}> <p, {S U S-Out},
{V} U {V-Out} \ {V-In}>

M'activityDesc

winActivity

looseActivity

[V-In included in V and
S-In included in S and
card(S) < 3]

start

inActivity

M

beforeActivity

Figure 4. Part of the Nuxil game model

for each player p, M contains the token {〈p, ∅, {vo1, vo2}}.
The initial marking M’ of place activityDesc is
{〈a1, ∅, {vo1, vo2}, {sk1}, {vo3, vo4}〉, {〈a2, ∅, {vo3}, {sk2},
{vo5}〉}, {〈a3, {sk2}, {vo4}, {sk3}, ∅〉}.

This SNB models how players acquire skills and
virtual objects. For instance, the activity description
{〈a1, ∅, {vo1, vo2}, {sk1}, {vo3, vo4}〉means that the player
who has the state {vo1, vo2} and without skills (the
empty set ∅) can perform the activity a1 and if he
performs successfully this activity he acquires the skill
{sk1} and reaches the state {vo3, vo4}. Thus, when a
player loses an activity, its skills and virtual objects set
(game state) are not modified. When he wins one, he
loses the virtual objects needed to perform the activity
and wins the ones produced by the activity. New skills
increase its skills set.

The Nuxil scenario allowed us to simplify the
generic model by merging places beforeActivity,
afterActivity and winner. We assume the game ends
once all skills are obtained by a player. At this stage, no
new activity should start.

For example (see Figure 4), let’s imagine that the
“chmod activity (a1)” has been achieved. The player
has in his SB (Skill’s Bag) : sk1 (file permissions) and
in his VB (Virtual objects’ Bag): 2 virtual objects/states
(e.g. he obtains a key letting him access to the “basic
commands area” (vo3) and “the chest is opened”
(vo4)). At this point, the player can perform only
the “copy activity” (a2). In case of a success of
this “copy activity”, the player acquires a new skill
“file commands” (sk2) and one virtual object: he is
moved to “advanced commands area” (vo5) as rewards
as explained on the table 2 (vo3 is removed but not vo4).
In case of failure, we are back in the initial state but it
is possible to get specific virtual objects in that case for
remediation purpose (this possibility is not modeled in
the Figure 4).

5 EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation

European Alliance

I. Mounier, et al

Verification. The model of Figure 4 allows unfair
executions (e.g. a player will never play even when he
can), that invalidate properties in unrealistic scenarios.
To avoid this, we only consider fair executions.
Temporal logic verification algorithms are well suited
to deal with such fairness constraints.

Since the formal representation of the learning game
allows the construction of the reachability/quotient
graph, we can automatically verify invariant, reachabil-
ity or temporal properties. We present two groups of
properties. The first one concerns game deadlocks that
are linked to the identification of the wining states. The
second one concerns the success of learning process, i.e.
a player may always increases his skills. The properties
are informally expressed but they all can be stated as
temporal logic formulas [4] that can be automatically
model-checked with Crocodile tool [8].

WinningProperty Let us first define the property
winner(p) stating that a player won the game. We call
WinningP roperty the property identifying the end of
the game.

A player wins the game if he holds all the required
skills. Therefore, winner(p) is true if: ∃〈p, {S}, {V }〉 ∈
bef oreActivity such that card(S) = maxSkills. In other
words, a token in place beforeActivity is such that the
skills set holds all possible skills.

The game can end when all players (or
one) win(s) all the activities. In the first case,
WinningP roperty ⇔ ∀p ∈ Players, winner(p). In
the second case, WinningP roperty ⇔ ∃p ∈ Players,
winner(p).

If we want to model a game where only a player
can win (i.e. once a player wins, the others cannot
begin a new activity) we must change the guard of
transition start. This transition can be fired only if the
marking of place beforeActivity does not contain a
token 〈p, {S}, {V }〉 such that winner(p).

DeadlockProperty Unexpected deadlocks do not sat-
isfy WinningP roperty, therefore some executions
where no player can win are possible.

If we want to verify that an ending state is always
reachable (i.e. it is always possible to finish the
game with a winner), we have to verify that a state
WinningP roperty is always reachable from the initial
configuration of the game. Such a property is a temporal
logic property since it has to be verified within each
execution.

Learning process property We want to verify that a
player always has the possibility to increase his skills
(until he wins the game). Such a property is a temporal
logic property since it is necessary to compare the states

along each execution. We call increaseSkillsP roperty
the associated property.

We define first the increaseStrictly(s, s′ , p) property
where s and s′ are two symbolic states and p a player.
increaseStrictly(s, s′ , p) is true if the set of skills of
player p at state s is strictly included in the set of skills
of player p at state s′ .

Then, increaseSkillsP roperty = ∀p ∈ Players, ∀s,
reachable state, set of skills is equal to Skills or
there is a execution that leads to a state s′ such that
increaseStrictly(s, s′ , p).

These properties have been checked thanks to a
specific tool and thus to validate these aspects of the
Nuxil scenario. Nevertheless, always more complex
scenarios are imagined and with this complexity, new
requirements in terms of properties verification appear
(collaborative aspects, concurrency, etc.).

4.2. Second Case Study: Concurrent and
Collaborative Scenario
Context and description of the experiments. The second
experiment concerns a mixed reality learning game.
This type of games concerns domains that present the
particularity of exhibiting both theoretical knowledge
and practical know-how (operations in manufacturing
or medicine, for example) [9]. For such practical
domains, the full digital learning games are not efficient
and especially cannot guarantee both effective learning
and assessment of the techniques [10]: it is so important
to come back to the real world and thus develop a
mixed-reality learning game.

Thus, we implemented for the second experiment a
mixed-reality scenario where the course was dedicated
to the Electronics field. The learning content dealt with
“Electronic wiring diagrams”. The aim of the session
(role playing game) was to assess the knowledge and
know-how of the students about these latter. More
precisely, they had to create a new “very accurate”
controller: a 3-axis wiimote-like controller thanks to an
accelerometer. The teacher wanted to know whether the
students were able to identify when a wiring diagram
is valid, whether they knew how to realize a technical
object from a wiring diagram, using Arduino boards,
and whether they could test this technical object. In
the scenario implemented, the students were divided
up into three groups where the students of the same
group collaborated to perform activities in predefined
order. The scenario was (1) concurrent because some
resources were shared between the three groups acting
in parallel, and (2) collaborative because the students
of a same group have to perform together the activities
in order to achieve several collective goals.

The students were explicitly allowed to communicate
through the chat tool provided with the system
(integrated within the Game) and were warned that

6 EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation

European Alliance

Formal Framework to improve the reliability of concurrent and collaborative learning games

Start

Task
Identification

NPC: Alan
Turing

Collecting
Items

(diagrams)

Collecting
Items
(softs)

Task
Identification
NPC: Bishop

Collecting
Items

(components)

Task
Identification
NPC: Ritchie

Looking for
NPC:

Controller
robot

A1

A2

A3

MR1

Tabletop

Arduino
construction

MR2

End

Players
creation

Groups
creation

group1

group2

group3

group1, group3

group2

group1, group2

group3

group1

group2, group3

Figure 5. Non formal scheme representing the multiple scenarios

they would be observed concerning the use of the
system.

Concurrent aspects. The second scenario is shown
schematically in the Figure 5. It is based on seven
main activities (Start, A1, MR1, A2, A3, MR2, End)
that constitute the main quest (the activities Ai are
performed in the virtual world and the activities MRi ,
stands for MixedReality, are performed in the real
life). For synchronization constraints and motivation
purposes, three activity sequencing are available for the
set of activities {A1,MR1, A2, A3} and which correspond
to the three students’ groups: the sequence A1-MR1-
A2-A3, the sequence A2-A3-A1-MR1 and the sequence
A3-A1-MR1-A2. The MR1 activity is achieved on a
multitouch tabletop, it is collaborative between the
students of the same group and is performed in mutual
exclusion between groups. Some benefits of learning
game are due to immersion and motivation aspects:
if a group is obliged to wait, the immersion feeling
will be broken so several concurrent scenarios must be
imagined in order to avoid such loss of motivation.

To verify such scenarios thanks to our Petri net
approach, we first model the game with the SNB of
Figures 6 and 7. The model of Figure 6 represents
de sequencing of activities without detailing them.
A group is identified by an identity and the bag
holding the players belonging to the group. The
initial marking of place beforeGame contains all the
groups, it is <1,{p1,p2,p3,p4}>+ <2,{p1,p2,p3,p4}>+

<3,{p1,p2,p3,p4}> when we have 3 groups with 4
players each. We can easily model a game with more

or less groups and a number of players not the same in
each group.

Place ActivitiesOrder contains the pre-defined
sequencing. The tokens are structured as follows
<idG,idA,idANext> where idG is the identity of the
group performing the activity idA and IdANext is the
activity the group has to perform after idA. Therefore
we can define one sequence per group. The activity 0

is the initialization of the game (the creation of the
group, we haven’t modeled it), the first to be performed
by each group. The activity 4 allows to know when a
group has finished the game’s scenario. Therefore the
initial marking of place ActivitiesOrder is <1,0,1>+

<1,1,2>+ <1,2,3>+ <1,3,4>+ <2,0,2>+ <2,2,3>+

<2,3,1>+ <2,1,4>+ <3,0,3>+ <3,3,1>+ <3,1,2>+

<3,2,4>. With respect to this marking, all the groups
can perform all the proposed activities in the pre-
defined order.

To verify that access to tabletop is performed in
mutual exclusion, we have to refined the model
of activity MR1, which is done by the model of
Figure 7. The places beforeActivity, beforeMR1 and
ActivitiesOrder are the same as in Figure 6. It was
necessary to duplicate them on this second model to
show how arcs related to transition MR1 in Figure 6 are
dispatched between new transitions of Figure 7. The
place tableTop with 1 as initial marking ensures that
the groups can access to the tabletop one at a time.

Verifying that two groups cannot arrive in front of the
tabletop at the same time needs to consider only fair
executions satisfying “All groups progress at a similar
speed”, therefore we consider only executions such

7

EAI Endorsed Transactions on Serious Games

04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI Endorsed Transactions on Serious Games

04 2013 - 05 2014 | Volume 1 | Issue 2 | e4

EAI Endorsed Transactions on Serious Games

 04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation
European Alliance

I. Mounier, et al

that a group can progress again only if the other ones
have progressed. These assumption is realistic since in
the real life, if the first group to perform activity 1
progresses very slowly, it can be rejoined in front of
the tabletop by the group that has to perform activity
1 in second. As this property is verified on a model that
gives an abstraction of the activities, the verification
results may be invalidated regarding the specification
of each activity. At this stage, the performed verification
ensures that the pre-defined activities order is coherent
with the expected results, it will not be responsible
of unexpected waiting time. Indeed, it is important
to notice that these verifications enhance the global
reliability in addition to beta testing but can not
avoid unexpected, non formalized (or formalizable)
properties.

The formal property to verify is “there is at most one
token in place beforeMR1”. It is an invariant property
automatically verified.

Collaborative aspects. Concerning this scenario, a lower
analysis level can be envisaged: the collaborative aspect
inside the groups. Inside a group, some collaborative
tasks have to be done: for example, the players of the
same group find and collect all the right electronic
components dispatched over the virtual world. In a
previous version of this learning game scenario, it
was possible that three students achieved the collect
of items whereas the last one has not yet identified
this task. When urgently called by the others for
getting access to the (next) MR1 Zone, the game did
not validate the quest and blocked all the group for
“unexpected” reason.

To verify such scenarios thanks to our Petri net
approach we have to detail concerned activities. We
model activities A2 and A3 with the SNB of Figure 8.
The collaborative part of activity A1 can obviously be
modeled the same way. As for the refinement of activity
MR1, the places ActivitiesOrder and beforeActivity

of Figure 8 are the same as in Figure 6.

In this part of the game, the group does not progress
as a single entity but all the players that compose
it progress individually. Therefore, we first have to
split the group into its players. The split function,
on the output arc of transition A23_1, performs this
operation. This function has two parameters, a n-uplet
and a number that identifies the component of the n-
uplet that is split. In our example, the split n-uplets
are <idG,BP,idA> where idG is the identity of the
group, BP is the bag of the players belonging to the
group and idA is the identity of the performed activity.
We split the token regarding the second component,
therefore we obtain a token <IdG,idPlayer,IdA> for
each player IdPlayer of BG. The players can then play
independently from each other during the activity.

The function nbElem is applied to an activity
(respectively, a group identifier). It returns the number
of items to find in order to finish the activity
(respectively, the number of players that compose
the group). The place itemsToCollect contains the
items needed to complete each activity, the place
collectedItems contains for each group and each
activity the set of already collected items. The
transition lookingForMission models the fact that the
identification of the task is not immediate. Each player
has to look for the non-playable character (NPC) that
will gives him the information on the task.

When a player has identified the task, he begins to
search and collect the item. Each time he finds one
of them, his group set of collected items is updated.
Once a group has collected all the needed items, all
the group players have to finish the activity. They can
not continue to collect new items, they all have to
finish the activity. The guards of transitions collect

and end2 ensure that once all the expected items have
been collected by the group, no member of the group
continue to collect. Transitions end_1 and its associated
guard and end_2 ensure that once all the items have
been collected, all the players finish the current activity.
The place synchronization contains, for each group,
the set of players that are aware that all items have
been collected by the group. Once this set holds all
the players of a group, the group can go to the next
activity. The initial marking of place synchronization

associates the empty set with all groups.
Once again, to verify that a group must finish the

activity when all the needed items have been collected,
we have not to consider unfair executions such that a
player will never play even when he can. If we consider
the model without the transition end_1 and the guard of
transition lookingForMission, the property may not be
verified even with fairness constraint. If a player has not
identified the task while the others have collected all
the needed items, the first player may continue to look
for the task, therefore the group can no more progress,
transition A23_2 can not be fired and the activity can
not be finished.

The formal property to verify is “once there is a token
<IdA, IdG, {BI}> with card(BI) = nbElem(IdA) in
place collectedItems, all the executions will reach a
state such that <IdG,BP,i> ∈ beforeActivity and IdG,

IdA, i> ∈ activitiesOrder” (once a group has all the
expected items, it will eventually finish the activity and
go to the next activity). It is a temporal property that we
can verify automatically.

5. Automatic Verification of Properties
Once the properties are specified for a learning
game scenario, we formalize them for the automatic
verification. In our case, we use (1) the temporal logic

8 EAI Endorsed Transactions on Serious Games

04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation
European Alliance

Formal Framework to improve the reliability of concurrent and collaborative learning games

< idG, BP >

< idG, BP, 4> < idG, BP, idANext>

< idG, BP, idANext>

< idG, BP, idA>< idG, BP, idA>

< idG, BP, idA>

< idG,BP,idA>

< idG,BP, idA>

< idG, BP >

< idG, 0, idANext>

< idG, 0, idANext>

<idG,idA,idANext>

<idG,idA,idANext>

<idG,idA,idANext>

<idG,idA,idANext>

afterGame

MR2

beforeMR1

MR1

[idA = 2 OR idA = 3]

A23

[idA = 1]
A1

MA

ActivitiesOrder

beforeActivity

Class
Activities is 0..4;

 IdGroups is 1..MaxGroups;
Players is 1..MaxPlayers;
Items is 1..MaxItems;

Domain
BagPlayers is bag(Players);
BagItems is bag(Items);
Group is <IdGroupe,BagPlayers>;
GroupActivity is <IdGroupBagPlayers,Activities>;
ActivitiesSequence is <idGroup, Activities,Activities>;
ActivityItems is <Activity,Items>;
GroupItems is <Activity,idGroup,BagItems>;

Variable
!!idG in IdGroups;
idA,idANext in Activities;
idPlayer in Players;
idItem in Items;
BP in unique BagPlayers;
BI in unique BagItems;

MG

beforeGame

Start

Figure 6. Formal model of the concurrent scenario, the MR1 activity is performed in mutual exclusion

<idG,BP,idANext>

[idA = 1]
<idG,
idA,
idANext>

<idG,
idA,
idANext>

beforeActivity ActivitiesOrder

< idG,
BP,
idA>

beforeMR1

< idG, BP,idA> < idG, BP, idA>

MR1_1 duringMR1

MR1_2

1
tableTop

Figure 7. MR1 activity

as a formalism for describing the properties and (2)
both the CPN-AMI [11] and the Crocodile tool [8] as
model checkers, able to process efficiently Symmetric
Nets. These model checkers terminate (when we
have sufficient memory resources and consider finite
systems) with a positive answer or a negative one. If one
property is not verified (negative answer), the model
checker provides a useful counterexample. This counter
example is useful to correct the specifications.

For instance, in the second case study, despite having
found all the items, the players of one group were
blocked in the collaborative activity A1. The reason was
that one player was blocked and could not progress in
this activity. The model checker allowed as to detect this
design problem and correct it by adding the transitions
Transitions end_1 and its associated guard and end_2

(see Figure 8). These two transitions ensure that once
all the items have been collected, all the players finish
the current activity.

Another example is that the model checkers allowed
us, in the first case study, to detect that there is not an
activity sequencing where all skills {S} of the domain
are reachable. In this case, it was sufficient to (1) specify
the corresponding property: reachable({S}) is true if:

∃〈p, {S}, {V }〉 such that card(S) = maxSkills, and to (2)
use the model checker in order to detect that this
property is not valid.

6. Related Work
Petri nets are widely used in both academia and
industry to model concurrent systems since they are
well adapted to this class of problem. However, only
a few studies address the use of Petri nets and model
checkers for games.

Moreover, in most cases, Petri nets are just used to
analyze game scenarios in order to adapt them to the
player. In [12], the authors discuss the applicability
of Petri Nets to model game systems and game flows
compared with other languages such as UML. Brom
and al. used this specification technique to prototype
a story manager for the game Europe 2045[13]. The
work presented in [14] uses place/transition Petri nets
to assess the progression of players in games once they
are developed.

Other studies focus on the analysis of game scenarios
at the design stage. For instance, the “Zero game studio”
group [15] uses causal graphs to model game scenarios.

9

EAI Endorsed Transactions on Serious Games

04 2013 - 05 2014 | Volume 1 | Issue 2 | e4

EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation

European Alliance

I. Mounier, et al

<idG,idPlayer,idA>

<idG,BP,idANext>

<idG,idA,idANext>

<idG,idA,idANext>

<idG,BP,idA>

<idG,BP,idA>
<idG,BP U {idPlayer}>

<idG,BP,idA>

<idG,idPlayer,idA>

<idG,BP,idA> <idG,BP U {idPlayer}

<idA,idG,BI>

<idA,idG,BI>

<idG,idPlayer,idA>
<idA,idG, BI U {idItem}

<idA,idG,BI>

<idA,idItem>

<,idA,idItem>

<idG,idPlayer,idA>

<idG,
idPlayer,
idA>

<idG,
idPlayer,
idA>

split(<idG,BP,idA>,2)

<idG,
idPlayer,
idA>

<idG,
idPlayer,
idA>

<idG,
idPlayer,
idA>

<idG,
idPlayer,
idA>

ActvitiesOrder

beforeActivity

[card(BP) = nbPlayers(idG)]

A23_2

end_1
[card(BP) <> 0]

MS synchronization

end_2

[card(BI) = nbElem(idA)]

collectingItems

MI

itemsToCollect

collectedItems

waitingForTask
collect

[card(BI) < nbElem(idA)]
TaskIdentification

[idA = 2 OR
idA = 3]

A23_1

[card(BP) = 0]
lookingForTask

Figure 8. Collaborative activities A2 and A3

The work presented in [16] defines a set of safety and
liveness properties of games that should be verified
in the game scenarios before their implementation. In
the domain of Technology-Enhanced Learning, Petri
nets are used to capture the semantics of the learning
process and its specificities. In particular, Hierarchical
Petri nets are used in [17] to model desirable properties.
The objective is to help designers to design and
optimize e-learning processes.

We consider these research studies to be close to ours.
The originality of our work can be summarized in three
points:

• our work aims to detect inconsistencies and
design errors in the learning game specifications.

• the formal framework that we propose addresses
in the same way both the learning and game
properties

• the SNB model that we choose and its optimized
model checking techniques allow us to verify
specifications automatically and efficiently.

7. Conclusion
We presented a formal verification-based approach for
the design of learning games. It relies on Symmetric
nets with Bags and the use of model checking to
verify automatically behavioral properties of learning
games. Our objective is to reduce cost and complexity
of learning games elaboration by enabling early error
detection (at design stage).

One interesting point of our approach is to provide
a procedure helping engineers to elaborate the design
of their learning game. In particular, we propose
a classification of properties that are relevant in
that domain. It is then possible to infer from these
patterns an efficient verification procedure involving
the appropriate model checkers (i.e. the one that
implements the most efficient algorithms for a given
property pattern).

Another important point is the use of Symmetric
Petri nets with bags that better tackle the combinatorial
explosion problem intrinsic to the model checking of
complex systems.

We applied our approach to two real case studies for
assessment purposes. Even if these case studies remain
small, they show different contexts and encouraging
results. This work is part of a project aiming at
designing efficient formal verification based procedures
for the design of learning games.

The formal model, once it is verified, could be a basis
for an automated implementation of a learning game
execution engine. In the long term, this could decrease
the time of implementation as well as cut a large part of
its costs.

Future Work A trend is to exploit the formal
specification to extract relevant scenarios for testing
purposes. Subsequently, human tester would have
directives to follow during their testing work.

The formal specification can also be exploited to
compute the pre-defined aspects of games that are

10 EAI Endorsed Transactions on Serious Games
04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation

European Alliance

Formal Framework to improve the reliability of concurrent and collaborative learning games

modeled through initial marking of some places. The
second example illustrated this need. Before the game
can be played, it is necessary to define, for each group,
an activities order that must satisfy some conditions. We
have verified that a given pre-defined order is relevant,
it would be interesting to study how scheduling and
control theory results allow us to compute, among all
the possible orders, the “good ones” [18, 19].

Another trend is to define transformation rules in
order to construct semi-automatically Petri nets from
some more user friendly models of scenarios such as
eAdventure [20], LEGADEE [21].

Acknowledgements
This work was supported in part by the Region Ile de France
and by the french Ministry for the Economy, Industry and
Employment (FUI). We would like to thank them for their
support in the "PlaySerious" project.

References
[1] Tarja Susi, Mikael Johannesson, and Per Backlund. Seri-

ous Games: An Overview. Institutionen för kommunika-
tion och information, 2007.

[2] Carlo Fabricatore. Learning and videogames: an
unexploited synergy. In AECT National Convention - a
recap. Secaucus, NJ : Springer Science + Business Media,
2000.

[3] K. Jensen and L. Kristensen. Coloured Petri Nets :
Modelling and Validation of Concurrent Systems. Springer,
2009.

[4] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and Ph. Schnoebelen. Systems and
Software Verification. Model-Checking Techniques and
Tools. Springer, 2001.

[5] Edmund M. Clarke. The birth of model checking. In
25 Years of Model Checking, volume 5000 of LNCS, pages
1–26. Springer, 2008.

[6] E.M. Clarke, O. Grumberg, and D. Peled. Model checking.
MIT Press, 1999.

[7] S. Haddad, F. Kordon, L. Petrucci, J-F. Pradat-Peyre, and
N. Trèves. Efficient State-Based Analysis by Introducing
Bags in Petri Net Color Domains. In 28th American
Control Conference (ACC’09), pages 5018–5025. IEEE
Press, 2009.

[8] M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg.
Crocodile: a Symbolic/Symbolic tool for the analysis
of Symmetric Nets with Bag. In 32nd International

Conference on Petri Nets and Other Models of Concurrency,
volume 6709 of LNCS, pages 338–347. Springer, 2011.

[9] Sébastien George and Audrey Serna. Introducing
mobility in serious games: Enhancing situated and
collaborative learning. In Julie A. Jacko, editor, Human-
Computer Interaction, volume 6764 of Lecture Notes in
Computer Science, pages 12–20. Springer, 2011.

[10] Karen Schrier. Using augmented reality games to teach
21st century skills. In ACM SIGGRAPH 2006 Educators
Program, SIGGRAPH ’06, New York, NY, USA, 2006.
ACM.

[11] A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet,
X. Renault, and Y. Thierry-Mieg. New features in CPN-
AMI 3 : focusing on the analysis of complex distributed
systems. In 6th International Conference on Application of
Concurrency to System Design (ACSD’06), pages 273–275,
Turku, Finland, 2006. IEEE Computer Society.

[12] Manuel Araújo and Licínio Roque. Modeling Games
with Petri Nets. In Breaking New Ground: Innovation in
Games, Play, Practice and Theory: Proceedings of the 2009
Digital Games Research Association Conference, London,
2009.

[13] C. Brom, V. Sisler, and T. Holan. Story manager in
’Europe 2045’ uses petri nets. In ICVS 2007, volume
4871 of Lecture Notes in Computer Science, pages 38–50.
Springer, 2007.

[14] Amel Yessad, Pradeepa Thomas, Bruno Capdevila
Ibáñez, and Jean-Marc Labat. Using the petri nets for
the learner assessment in serious games. In ICWL, pages
339–348, 2010.

[15] Craig A. Lindley. The gameplay gestalt, narrative, and
interactive storytelling. In Proceedings of the Computer
Games and Digital Cultures Conference, pages 6–8, 2002.

[16] R. Champagnat, A. Prigent, and Estraillier P. Scenario
building based on formal methods and adaptative
execution. In International Simulation and gaming
association, 2005.

[17] Feng He and J. Le. Hierarchical Petri-nets model for
the design of e-learning system. In Proceedings of the
2nd international conference on Technologies for e-learning
and digital entertainment, Edutainment’07, pages 283–
292. Springer, 2007.

[18] Peter Brucker. Scheduling algorithms (4. ed.). Springer,
2004.

[19] P.J.G. Ramadge and W.M. Wonham. The control of
discrete event systems. Proceedings of the IEEE, 77(1):81–
98, 1989.

[20] Universidad Complutense Madrid. http://e-
adventure.e-ucm.es.

[21] LIRIS, Lyon. http://liris.cnrs.fr/legadee/.

11
EAI Endorsed Transactions on Serious Games

04 2013 - 05 2014 | Volume 1 | Issue 2 | e4EAI for Innovation
European Alliance

	1 Introduction
	2 Relevant Properties for Serious Games
	3 Verification Framework
	3.1 Generic Pattern for learning Games
	3.2 Verification Method
	3.3 Symmetric Petri Nets with Bags (SNB)
	Informal Definition and Example
	Interest of SNB

	4 Application against two Case Studies
	4.1 First Case Study: multi-player and parallel scenarios
	Modeling the Case Study
	Verification

	4.2 Second Case Study: Concurrent and Collaborative Scenario
	Context and description of the experiments
	Concurrent aspects
	Collaborative aspects

	5 Automatic Verification of Properties
	6 Related Work
	7 Conclusion
	Untitled

