
88 Int. J. Space-Based and Situated Computing, Vol. 4, No. 2, 2014

Copyright © 2014 Inderscience Enterprises Ltd.

An approach for developing an interoperability
mechanism between cloud providers

Meriem Thabet* and Mahmoud Boufaida
LIRE Laboratory,
Software Technologies and Information Systems Department,
Constantine 2 University,
25000, Algeria
E-mail: thabet.meriem@hotmail.fr
E-mail: mboufaida@umc.edu.dz
*Corresponding author

Fabrice Kordon
LIP6 Laboratory,
Pierre and Marie Curie University,
4, place Jussieu, 75252 Paris, Cedex 05, France
E-mail: fabrice.kordon@lip6.fr

Abstract: Due to the presence of numerous cloud service providers, the requirement is emerging
for interoperability between them so that companies can choose multiple suppliers to fit their
needs. This paper provides an approach to address the problem of cloud interoperability. We aim
at facilitating the collaboration among providers by proposing an architecture based on an agent
society, to support and ensure the data portability and interoperability. For that, we define a
two-phase migration protocol that enables data portability by permitting providers to exchange
data regardless of their infrastructure, tools and platforms, according to a specific demand in
order to satisfy companies’ needs.

Keywords: cloud provider; interoperability; data portability; agent; heterogeneous clouds;
migration protocol; space-based situated computing.

Reference to this paper should be made as follows: Thabet, M., Boufaida, M. and Kordon, F.
(2014) ‘An approach for developing an interoperability mechanism between cloud providers’,
Int. J. Space-Based and Situated Computing, Vol. 4, No. 2, pp.88–99.

Biographical notes: Meriem Thabet is preparing her PhD thesis in the field of cloud
interoperability at the Software Technologies and Information Systems Department of
Constantine 2 University in Algeria. She is affiliated to LIRE Laboratory. She received her
Master degree in 2010. She is currently working on multi-agent systems, web service, data
portability and interoperability issues in cloud computing environments.

Mahmoud Boufaida is a Full Professor at the Software Technologies and Information Systems
Department of Constantine 2 University in Algeria. He heads the Research Group ‘Information
Systems and Knowledge Bases’. He has managed and initiated multiple national and
international level projects including interoperability of information system and integration of
applications in organisations. His research interests include cooperative information systems,
web databases, software engineering and service oriented architectures.

Fabrice Kordon is a Full Professor at the University of Pierre et Marie Curie and the Head of the
Team ‘Modelling and Verification in the ‘Network and Distributed Systems’ at LIP6 Laboratory.
His research interests mainly concern: distributed systems, software engineering and formal
methods.

This paper is a revised and expanded version of a paper entitled ‘An agent-based architecture and
a two-phase protocol for the data portability in clouds’ presented at 27th International
Conference on Advance Information Networking and Applications Workshops, Barcelona,
Spain, 2013.

 An approach for developing an interoperability mechanism between cloud providers 89

1 Introduction

Despite the increasing use of clouds technology by
companies, their interoperability remains a problem due to
the risk of becoming trapped in proprietary approaches that
could contradict the objectives of the system. Therefore,
interoperability plays an important role in making the
providers’ services more reliable. Moreover, companies
often need more than one service provider to work together
to meet their needs (Kim, 2009). Unfortunately, existing
cloud computing solutions have not been built with
interoperability in mind (Sheth and Ranabahu, 2010a). They
usually lock customers into a single cloud provider, those
hinder the portability of data or software relying on them
(Joe, 2010).

Among the problems arising from the numerous cloud
computing solutions is the lock-in, where data and
applications can hardly be moved to other systems
(thus locked-in) forcing cloud users to rely on one service
provider (Sheth and Ranabahu, 2010b). Users must then
decide in advance the cloud service provider they will use.
This hinders the use of clouds. So, solving this provider
lock-in relies on an ability to let different cloud service
providers cooperate.

The work presented in this paper proposes an approach,
which aims at overcoming the lock-in problem and ensures
interoperability between cloud service providers. To do so,
we claim that data portability is a fundamental requirement
and a necessary precondition to be fulfilled (Loutas et al.,
2011), because it lets different services from several
providers share data.

The proposed approach provides an architecture that
relies on a registry describing all the offered services via a
‘description and publication agent’ and on an intermediate
layer managing services invocation by companies through a
coordinator agent. This architecture also relies on the use of
mobile agents in order to move data from one cloud to
another. We specify a two-phase migration protocol, which
shows the data transfer among clouds. Each cloud defines
its own data format, platforms and tools. Since data format
exchanged among cloud providers still suffer from clouds’
heterogeneity, we advocate the intervention of adapter
agents to convert data formats moved from one environment
to another.

This paper is organised as follows. Section 2
presents a short overview of our approach. Section 3
describes the designed architecture and the interoperability
mechanism focusing on the used components. The
migration protocol of the mobile agent and the different
actions of the adapter agent are defined in Sections 4 and 5.
Section 6 demonstrates how the migration protocol
can be used by means of a case study, processed on a
prototype implementation. Some related works are
discussed in Section 7. Finally, Section 8 draws a
conclusion of this paper and shows future directions of this
research work.

2 Overview of the proposed approach

We describe in this section our approach to ensure
interoperability between different cloud service providers.
The essence of this approach is to ease the collaboration
among clouds and let them share data regardless their
platforms, structure and tools.

Data portability is a key factor to achieve
interoperability, because data sharing remains the most
critical aspect of getting the clouds to work together. So, the
common linking thread among these clouds will be the data.
As long as the data can be interchanged between different
cloud services (Shahab, 2010), the needs of the companies
will be largely met.

Our main contribution resides in the use of agent
technology. The agent paradigm brings some useful
characteristics such as intelligence, autonomy, cooperation
and mobility. The mobility aspect allows an agent to
process information on the server and to send only the
relevant. This minimises communication costs and reduces
significantly the execution time of tasks.

As a matter of fact, our agent-based architecture relies
on a service registry, where the providers’ services are
described and published via a ‘description and publication
agent’ in this registry. This latter provides all the services as
atomic services that will be discovered and invoked through
an intermediate layer.

In order to ensure the data portability among different
clouds, we use the concept of mobile agent that can carry
the company’s data from one provider to another if such a
need arises, due to their ability to move between different
environments. Moreover, the heterogeneity of clouds is
another significant issue, because when the data has to be
interchanged between clouds, the format becomes important
and needs to be appropriate according to providers. This
issue can be solved by using the adapter agents. These last
convert the data format exchanged from one model to
another.

3 An agent-based architecture

The interoperability system proposed in this paper is
divided into two parts: static and dynamic (see Figure 1).
The static part presents the different used components in our
architecture (resources and agents) that are described in
Section 3.1. The dynamic part shows how these components
are invoked during the three interoperability process phases.
The description and publication of the services phase
permits to define the services offered by providers and to
publish them in the registry. The phase of services
discovery relies on the charge of identifying and invoking
services by companies. Finally, the phase of portability and
adaptation of the exchanged data is related to data sharing
and their translation from one provider’s model to the model
used by another one. More details of these phases are
explained in Section 3.2.

90 M. Thabet et al.

Figure 1 Global overview of the architecture

In fact in our approach, the concepts of ‘registries’,
‘description and publication agent’, and ‘discovery module’
have been inspired from Ishak et al. (2008). We have
integrated these concepts in our architecture in order to
facilitate the collaboration among cloud providers. Also, we
will not develop these aspects in this work because we are
only focusing on the problem of the portability and
adaptation of data.

3.1 Components of the architecture

This section describes the components used in our
architecture, which is based on two kinds of components:
resources and agents.

3.1.1 Resources

They are of two types:

• Service registry (global registry): it is an entity that
contains the description of services offered by different
suppliers. It consists of two modules. The publication
module enables the cloud providers to publish the
descriptions of their services. The discovery module
allows companies to discover and identify services and
their providers.

• Local registry: it is a limited copy of the global
registry. This registry stores information about the most
requested services by companies, in order to speed their
discovery and to guide companies in choosing them.

3.1.2 Agents

Four types of agents are defined in our system (see the list
below). They cooperate to provide services with a high
added value. Each agent is capable of flexible autonomous
actions in order to achieve its objectives.
• Description and publication agent: it handles the

discovery and publication of services and consists of
two modules. The description module describes all the
services provided. The publication module saves all
these descriptions in the registry. The internal tasks of
this agent are shown in Thabet and Boufaida (2013).

• Coordinator agent: this agent coordinates all
communications between agents and manages the
accesses to the registry through its communication
module. It also contains an activation module that
triggers the mobile agent when it is necessary by
sending it a message. The transfer of results to the
company is made at the level of the exploitation
module.

 An approach for developing an interoperability mechanism between cloud providers 91

Figure 2 Coordinator agent and its internal tasks

Figure 3 Mobile agent and its internal tasks

• Mobile agent: in this context, the concept of mobile

agent appears as a solution to facilitate the data
portability. These agents search and collect data by
performing some processing (search, collect, filter).
This processing reduces the amount of information
carried by agents, therefore the network traffic.

• Adapter agent: this type of agent enables the
conversion of data formats retrieved from one cloud to
another. Thus, each cloud must have its own adapter
agent, which collects and reconstructs all the results
received from the mobile agents and converts them
according to the format of the provider recipient.

3.2 Different phases of the interoperability process

As mentioned above our system is based on three phases.
The aims of these phases are as follows.

3.2.1 Description and publication of services

This phase shows how the provided services are described
and defined. It requires the use of a ‘description and
publication agent’ and a ‘service registry’ to register the
web services. This agent describes the services and stores
these descriptions in the global registry. In other words, it
can publish the providers’ services or modify them by using
the publication module.

3.2.2 Discovery of services by companies

It is the process of identifying the web services that have
been previously published. In this phase, all the services are
sought and located from the registry. Only those that are
potential to meet companies’ needs are discovered by using
the intermediate layer. This latter contains three
components: the coordinator agent, the discovery module
and the local registry. Following the call of the discovery
module by the coordinator agent, this module searches in

the local registry in order to find the most requested services
by companies. In case of certain services are not found in
the local registry, another research is done in the global
registry. After the discovery process is complete, the results
will be transmitted to the coordinator agent that will invoke
the service provider and send the results to the company.

3.2.3 Portability and adaptation of exchanged data

This phase is related to the interoperability aspect. It
constitutes the originality of our approach. When a company
invokes a service provider that requires the use of data from
one or more other cloud providers, a set of generated mobile
agents is activated. These agents allow searching, collecting
and filtering data by crossing the cloud. However, the
heterogeneity of cloud service providers is another problem
because each provider uses its own data structure. So, this
requires the intervention of adapter agents for converting
the data format exchanged from one environment to
another. Each cloud has its own adapter agent.

4 A two-phase migration protocol of the mobile
agent

The sequence of all the messages that are exchanged
between agents forms the migration protocol of the mobile
agent. Figure 4 shows a set of transitions between the
mobile agent ‘MA’ the coordinator agent ‘CA’ and the
adapter one ‘AA’. The migration protocol of our mobile
agent is composed of two essential phases: activation and
migration.

• Activation of the mobile agent: after having received
the request from the provider and after having
performed a research in the registry by the discovery
module, the coordinator agent sends a message to
activate the mobile agent: activate (API, data, MA).

92 M. Thabet et al.

• Migration of the mobile agent: after having activated
the mobile agent, this latter extracts the different
parameters of the message that have been received at
the interface. After their transmission, at the level of the
searching module, the mobile agent migrates within the
cloud to search the required information.

The mobile agent clones itself and sends its replica to agents
to inform them about the sites that it has already visited.
This method does not eliminate all redundancy of research,
but allows for a compromise between, the loss of time in
existing research and the excessive messages that can
sometimes be penalised without satisfactory result.

Each agent that does not lead to a definitive result in a
predefined time is ignored.

The filtering module selects the received results and
sends them to the exploitation module. Filtering can be done
progressively from the reception of data, to improve
performance in terms of time. Once the mobile agent
produces the results, which the address is known by all the
other mobile agents, it sends a direct message to the adapter
agent. This message contains the corresponding data
according to the specified request.

In the next section we present the different actions of the
adapter agent.

Figure 4 Migration protocol

Figure 5 Adapter agent’s actions

 An approach for developing an interoperability mechanism between cloud providers 93

5 Data flow management using the adapter agent

After receiving the request (needed data) from the mobile
agents (it can be more than one mobile agent depending on
the demand), the adapter agent makes the necessary
processing on data and sends the results (converted data) to
the recipient provider, as shown in Figure 5. The structure
of the adapter agent is mentioned in Thabet and Boufaida
(2013). The adapter agent has two principal functions:

• Extraction and adaptation of data: through the
adaptation module of the adapter agent. First, this latter
extracts the data from the request and converts them to
the format used by the database of the recipient
provider (Provider B). Finally, it sends the data to the
result composition module that will transmit them to
the provider B.

• Composition of results: once the input data have been
converted to the data model of the provider B, they are
sent to the result composition module, which sorts and
sends them to the provider B. This latter, executes and
offers the requested services and sends the result to the

coordinator agent that transmits the response to the
company.

6 Application to a case study

In this section, we present a case study of interoperability
between two cloud providers in order to create the
dashboard of the company.

6.1 Prototype implementation

AUML modelling language is used to represent different
levels of abstraction. During the design of class diagram,
two levels of abstraction are commonly used: conceptual
and implementation level.

• Conceptual level: this level is a view of multi-agent
system eliminating all the superficial information
(attributes, operations), in order to understand the
structure of the architecture.

• Implementation level: it provides the content of the
classes (attributes and operations).

Figure 6 Class diagram (see online version for colours)

Figure 7 Classes used in our architecture (see online version for colours)

94 M. Thabet et al.

6.2 The case study

We illustrate our solution via a case study of using two
cloud service providers. Our contribution is based on the
achievement of the interoperability at the software as a
service (SaaS) level. In our case, the end-user is a company
that needs to choose different providers in order to realise
its dashboards.

In fact, it is reasonable that companies use multiple
cloud providers to satisfy their purposes and customers’
needs, in order to perfect their offerings and develop
themselves. But the problem that arises is where most of the
companies will end up with heterogeneous environment of
different types of cloud providers. So, the common linking
thread among these disparate cloud services will be the data.
These last can be interchanged among heterogeneous clouds
(Shahab, 2010).

In our case, the company uses the software of ‘customer
relationship management’ (CRM), ‘human resources’ (RH)
of the cloud provider A and the dashboard software of the
cloud provider B, in order to create its dashboards for sales
tracking (CRM) and monitoring of absenteeism (RH). To do
so, the company needs its data in the provider A. In other
words, this data must be imported by the provider A and
integrated in the cloud provider B.

In this instance, the invocation of providers A and B
should be ordered. It should be managed and provided by
the coordinator agent. It should also be performed in a

specific order. First, the provider B must be invoked
because it needs data of the provider A that will be invoked
later. So, the provider B invokes the coordinator agent by a
request including the needed data to integrate them and
offer the required services.

After having received the request by the provider B, the
coordinator agent activates the mobile agent of the provider
A that migrates within the cloud to accomplish its task. This
agent searches, collects, filters the requested data and sends
them to the adapter agent.

In order to create the first dashboard, the mobile agent
must search the data that concern all the products like:
product code, description of products, and all the
information that has a relation with vendor: commands,
price, sale date and current stock level. For the second
dashboard, the mobile agent searches the needed data,
which are always sought by the provider B, like the
personnel data: age, sex, grade, holiday and their working
time.

Indeed, our mobile agent generates other agents to speed
and facilitate the research of data, to process the requests of
clients as soon as possible. After that, it sends a direct
message to the adapter agent of the provider B. This
message includes a document containing the required data.
In the example below, we show how the mobile agent is
used to ensure the data portability. Our interaction diagram
is inspired from Rabia and Amjad (2012).

Figure 8 Interactions between the mobile agent, the coordinator agent and the adapter one (see online version for colours)

 An approach for developing an interoperability mechanism between cloud providers 95

In this instance, we have based the realisation of our
approach on a case study that we did by integrating agents,
with using database management systems (DBMS): the
relational MySQL cluster database for the provider A and
the column family database (HBase) for the provider B.
These databases are heterogonous. Each database has its
own structure and type of data. To do so, the adapter agent
is used to solve the problem of heterogeneity and to
facilitate data integration by the cloud provider B.

Table 1 Different DBMS used in the study case

Cloud service
providers DBMS Data model Exchange

function

Provider A
(CRM, RH)

MySQL
cluster

Relational MySQL
cluster to

HBase
Provider B
(dashboard
software)

HBase Column
family

/

As mentioned in Table 1, the provider A uses the MySQL
Cluster database to store all information concerning
products, vendors and so on.

The database used in the provider A is called ‘Provider
A’ that contains several tables, which represent all the
information such as: products, customers, vendors.

In our case, we rely on the tables: Product, Catalogue
and ControlSupervisor.

The table ‘Product’ concerns all the data about product
like: ID-product, price, quantity, description and so on.

The table ‘ControlSupervisor’ concerns all the data
‘about supervisor like: ID-supervisor, supervisor name,
report and so on.

The table ‘Catalogue’ is used for saving all the
identifiers of products that are already controlled by the
supervisor. In other words, to know the products that are
sold and those that are stored.

Indeed, the relation between ‘Catalogue’ and ‘Product’
tables is ‘one to many because each catalogue is made for
multiple products, while the relation between ‘Product’ and
‘ControlSupervisor’ tables is ‘one to one because each
product has one and only one control per day.

In order to execute the service of dashboard for Sales
Tracking by the provider B, we have to migrate the
subschema, which is composed of the tables ‘Product’ and
‘ControlSupervisor’ of the MySQL Cluster database to the
Hbase database. So that the company can achieve its
dashboard. Figure 9 shows an example that illustrates the
performed conversions between two cloud providers when a
migration of data occurs. It presents a conversion of
subschema of the relational database to the column family
database.

According to this conversion, we note that the linked
tables in the relational model with relation ‘one to one’ are
transformed into a column family, the operations are
transformed into a column in HBase and each primary key
(ID) is transformed into a line.

Figure 9 HBase conceptual model of relational schema (see online version for colours)

96 M. Thabet et al.

6.3 Using the implementation of the case study

In this section, we simulate the migration protocol of the
mobile agent. In order to implement our protocol, we should
use an agent-based platform that permits the implementation
of their different agents. Several platforms are supplied as
software packages, such as JADE, ZEUS.

In our work, we use the JADE platform (Bellifemine et
al., 1999) because of its known facilities. Among them we
mention the following (Fabio et al., 2003):

• This platform can be split among several hosts. Only
one Java application and therefore only one Java
Virtual Machine, is executed on each host.

• The JADE platform provides security mechanisms for
its proper use.

• The agents are implemented as Java threads and live
within agent containers that provide the runtime
support to the agent execution.

• The platform offers an efficient transport of ACL
messages inside the same agent platform.

• It provides a library of FIPA interaction protocols.

In JADE (Bellifemine et al., 1999), the agents are
represented as instances of the Java class. Each java class is
an extension of the basic agent class (included in jade.core).
For our protocol, we define an interoperability package that
includes two classes: Coordinator and Mobile.

1 the coordinator class that describes the coordinator
agent behaviour, which initiates the first phase of the
migration protocol

2 the mobile class that describes the mobile agent
behaviour, which performs the second phase related to
the migration protocol.

Regarding the actions of agents defining their behaviours,
these last are described by action method of behaviours
class. Figure 10 shows the skeleton of the myAgent class
that can be a coordinator class, or a mobile class.

We create the different agents in the main container. All
the messages sent and received by the agents can be
captured and displayed on the interface ‘Introspector’.
Figure 11 presents an example of the agent Introspector
interface that shows the messages received by the
coordinator and the mobile agent.

In our architecture, we use cognitive agents that are able
to plan their behaviours and remember their actions, in
order to evaluate the offers that are available to them.

As a matter of fact, we distinguish two communication
modes: indirect communication that is done by transmitting
signals through the environment and direct communication,
which permits the exchange of messages among agents. We
focus on a multi-agent system in which the interaction is
direct. The communication among agents is done through
the ACL messages. We remind that the JADE platform uses
FIPA-ACL as a language of inter-agent communication.
The ACL messages exchanged are represented in Figure 12.

Figure 10 Extension of the agent and behaviours classes

We use the performatives given below, in order to
implement the two-phase migration protocol (activation and
migration)

1 Performatives used by the coordinator agent:

• Request: it corresponds to the request of the
company

• Request whenever: it is used by the coordinator
agent to require the discovery module to perform a
research about the requested services in the
registries. It corresponds to the message search
(service).

• Inform: it is used by the coordinator agent to
inform the mobile agent that it has been selected to
search data. It corresponds to the message activate
(API, requested data, MA).

2 Performatives used by the mobile agent:

• Confirm: it is used by the mobile agent to confirm
that it has received the request of the coordinator
agent.

• Propagate: it is used by the mobile agent to
generate other mobile agents. It corresponds to the
message generate (MA).

• Request: it describes a response containing all the
data searched by the mobile agent. It corresponds
to the message send (result, AA).

• Confirm: it is used by the adapter agent for the
acknowledgement of the result sent by the mobile
agent (Required data).

 An approach for developing an interoperability mechanism between cloud providers 97

Figure 11 Agent introspector (see online version for colours)

Figure 12 ACL message in JADE (see online version for colours)

98 M. Thabet et al.

7 Related work

Various studies have been made to improve the
interoperability of clouds. An important part of these works
has been investigated in cloud portability, focusing on the
use of mobile agent at infrastructure as a service (IaaS) level
(Zhang and Zhan, 2009). The mobile agent-based open
cloud computing federation (MABOCCF) introduces a
travelling bag mechanism in which user’s tasks are
encapsulated in a mobile agent, this latter carry user’s tasks
and move among sites in one cloud service provider, or
different clouds in order to execute them on the virtual
machines and to realise interoperability and portability
among suppliers.

Shirazi et al. (2012) present a new technique for
enabling portability by using the technology of design
patterns, which provides a solution for enabling portability
between column family databases and graph databases. The
design pattern of data portability can be achieved by
providing a way to transfer data from one cloud to another.

Loutas et al. (2011) have introduced the use of semantic
web technologies in cloud computing. They propose a
framework, which aims at resolving semantic
interoperability conflicts that may be raised during the
deployment or the migration of an application. This
framework defines a three-dimensional space: fundamental
platform as a service (PaaS) entities, types of semantics and
levels of conflicts.

Ejarque et al. (2011) provide an approach based on a
methodology in which the APIs of the suppliers are
automatically modelled in ontologies. These last describe
the provided functionality and the used data.

Takabi et al. (2012) propose a semantic-based policy
management framework that is designed to provide to users
a unified control point for managing policies. This control
accesses to their data no matter where the data is stored
using semantic web technologies.

Bessis et al. (2012) present the fundamental issues for
developing an effective interoperable meta-scheduler for
e-infrastructures in general and inter-cloud in particular,
which offers additional functionalities in the area of
interoperable resource management. This is because of its
great agility to handle sudden variations and dynamic
situations in user demands.

Some studies address the problem of interoperability by
providing open standards. Bernstein et al. (2009) focus on
an inter-cloud communication by introducing several
problems and their solutions. The result of their work is a
set of protocols, which can be used to achieve an inter-cloud
communication. In their work, the use of open standards is
essential in order to achieve interoperability. However, this
approach focuses only on the communication part, but it
does not consider current trends or other important topics,
such as virtual appliance, storage and service level
agreement (SLA).

Demchenko et al. (2012) propose an extensible
simulation-based framework to evaluate cloud service
brokers deployed on an inter-cloud environment. The main
feature of the framework is the integration of several

technologies and standards, which makes it easy to deploy
on real production clouds.

Jrad et al. (2012) present an on-going research
at the University of Amsterdam to develop the inter-cloud
architecture (ICA). The ICA addresses the problem of
multi-domain heterogeneous cloud-based applications
integration. This architecture intends to provide a basis for
building multilayer cloud services integration framework
and to allow an optimised provisioning of computing,
storage and networking resources.

Another research work has been made to ensure
database migration to cloud computing, Belghati (2011)
shows in his work the software industry’s interest to this
kind of projects. This work has allowed exploring the
possibility of using an original hybrid model, which may be
used to consider the potential of a new data model on cloud
computing platforms.

Most of the research works cited have been made to
ensure interoperability at IaaS model, while few studies
have focused on other service models such as PaaS and
SaaS model, these models remain a big challenge to achieve
cloud interoperability.

In this work, we have treated the problem of data
portability between suppliers and we have based the
realisation of our case study at SaaS level. Moreover, there
is a research work (MABOCCF) somehow similar to our
approach but there are differences between them:

• MABOCCF uses the mobile agent to ensure portability
at IaaS level, while we are using it to ensure data
portability at SaaS level

• MABOCCF uses only one kind of agent to achieve
portability and interoperability, while we are using four
kinds of agents to achieve data portability and
interoperability

• MABOCCF uses the mobile agent on the client side,
while we are using it on the provider side

• Mobile agents used in MABOCCF migrate to run
user’s task on different virtual machines, while our
mobile agents are used to migrate among clouds in
order to transfer data.

We claim that the common point between our solution and
the MABOCCF solution is the use of the mobile agent
paradigm, in order to achieve the same objective, which is
interoperability but on two different levels for two kinds of
portability.

8 Conclusions

Today, there is no common standard for cloud computing.
Hence, the interoperability will be difficult to realise. We
proposed in this paper an agent-based architecture, which
aims to realise the data portability and the interoperability
among different cloud providers. The strength of our
contribution does not reside in the architecture complexity
of an agent, but in the interactions among different agents

 An approach for developing an interoperability mechanism between cloud providers 99

and their roles. Another important improvement of our
system with regards to other approaches is that we are not
bound to any data format, which enables our multi agent
system to support different interoperability scenarios. For
instance, the companies could choose any given cloud
service provider and our system will translate the data
format to the required format from the requestor. Currently,
our approach deals only with syntactic heterogeneity.
However, in the future it will be interesting to take into
consideration the semantic heterogeneity of the exchanged
data, in order to ensure a good understanding and a proper
interpretation of the data. To resolve this semantic
heterogeneity, new components must be added to the
proposed architecture for ensuring the semantic
interoperability and for improving the communication
among providers.

References
Belghati, F. (2011) Exploitation de la migration de la base de

donnée relationnelle du système de gestion de processus
d'affaire oryx vers la base de donnée No-SQL utilisée par la
plateforme de l'informatique de nuage Hadoop, Dissertation
presented at Software Engineering Department of Superior
Technical School, pp.1–96, Montreal , Canada.

Bellifemine, F., Poggi, A. and Rimassa, G. (1999) ‘Jade:
a fipa-compliant agent framework’, in Proc. PAAM ‘99,
pp.97–108, London.

Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S. and
Morrow, M. (2009) ‘Blueprint for the Intercloud – Protocols
and Formats for Cloud Computing Interoperability’,
in Proceedings of the 4th International Conference on
Internet and Web Applications and Services (ICIW),
pp.328–336, Venice, Italy.

Bessis, N., Sotiriadis, S., Xhafa, F., Pop, F. and Cristea, V. (2012)
‘Meta-scheduling issues in interoperable HPCs, grids and
clouds’, Int. J. of Web and Grid Services, Vol. 8, No. 2,
pp.153–172.

Demchenko, Y., Ngo, C., Makkes, M.X., Strijkers, R. and
Cees, D.L. (2012) ‘Defining inter-cloud architecture for
interoperability and integration’, The Third International
Conference on Cloud Computing, Grids, and Virtualization,
pp.174–180, IARIA, Nice, France.

Ejarque, J., lvarez, J.A., Sirvent, R. and Badia, R.M. (2011)
‘A rule-based approach for infrastructure providers
interoperability’, Third IEEE International Conference on
Coud Computing Technology and Science, pp.272–279,
Athens, Greece.

Fabio, B., Giovanni, C., Tizianna, T. and Giovanni, R. (2003) Jade
Programmers Guide, University of Parma, Italy.

Ishak, I., Philippe, C. and Bernard, A. (2010) Architecture
distribuée interopérable pour la gestion des projets
multi-sites. Application à la planification des activités de
production, PhD thesis, National Polytechnic Institute of
Toulouse, France.

Joe, M. (2010) ‘Does platform as a service have interoperability
issues?’ [online] http://www.zdnet.com/blog/service-
oriented/doesplatform-as-a-service-have-interoperability-
issues/4890.

Jrad, F., Tao, J. and Streit, A. (2012) ‘Simulation-based evaluation
of an intercloud service broker’, Third International
Conference on Cloud Computing, Grids, and Virtualization,
pp.140–145, IARIA, Nice, France.

Kim, W. (2009) ‘Cloud computing: today and tomorrow’,
Journal of Object Technology, Vol. 8, No. 1, pp.65–72.

Loutas, N., Kamateri, E. and Tarabanis, K. (2011) ‘A semantic
interoperability framework for cloud platform as a service’,
Cloudcom, IEEE Third International Conference on Cloud
Computing Technology and Science, pp.280–287, Athens,
Greece.

Rabia, K. and Amjad, M. (2012) ‘Realization of interoperability &
portability among open clouds by using agent’s mobility &
intelligence’, International Journal of Multidisciplinary
Sciences and Engineering, Vol. 3, No. 7, pp.7–11.

Shahab, A. (2010) Data Portability: Key to Cloud Interoperability
[online] SSRN: http://ssrn.com/ abstract=1712565 or
http://dx.doi.org/10.2139/ ssrn.1712565, pp.1–12.

Sheth, A. and Ranabahu, A. and (2010a) ‘Semantics centric
solutions for application and data portability in cloud
computing’, 2nd IEEE International Conference on Cloud
Computing Technology and Science, pp.234–241,
Indianapolis, Indiana.

Sheth, A. and Ranabahu, A. (2010b) ‘Semantic modeling for cloud
computing, Part I & II’, IEEE Internet Computing Magazine,
Vol. 14, pp.81–83.

Shirazi, M.N., Kuan, H.Ch. and Dolatabadi, H. (2012) ‘Design
patterns to enable data portability between clouds’ databases’,
12th IEEE International Conference on Computational
Science and its Applications, pp.117–120, Salvador.

Takabi, H., James, B.D. and Joshi, J.B.D. (2012) ‘Semantic-based
policy management for cloud computing environments’,
Int. J. of Cloud Computing, Vol. 1, Nos. 2/3, pp.119–144.

Thabet, M. and Boufaida, M. (2013) ‘An agent-based
architecture and a two-phase protocol for the data portability
in clouds’, 27th IEEE International Conference on Advanced
Information Networking and Applications Workshop,
pp.785–790, Barcelona, Spain.

Zhang, Z. and Zhang, X. (2009) ‘Realization of open
cloud computing federation based on mobile agent’,
IEEE International Conference on Intelligent Computing and
Intelligent Systems, ICIS, pp.642–646, Shanghai, China.

