
218 Int. J. Critical Computer-Based Systems, Vol. 5, Nos. 3/4, 2014

Controllability for discrete event systems
modelled in VeriJ

Yan Zhang* and Béatrice Bérard*
Université Pierre and Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),
4 Place Jussieu, F-75005 Paris, France
E-mail: Yan.Zhang@lip6.fr
E-mail: Beatrice.Berard@lip6.fr
*Corresponding authors

Lom Messan Hillah
Université Pierre and Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),
4 Place Jussieu, F-75005 Paris, France
and
Université Paris Ouest Nanterre La Défense,
200, Avenue de la République,
F-92001 Nanterre Cedex, France
E-mail: Lom-Messan.Hillah@lip6.fr

Fabrice Kordon and Yann Thierry-Mieg
Université Pierre and Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),
4 Place Jussieu, F-75005 Paris, France
E-mail: Fabrice.Kordon@lip6.fr
E-mail: Yann.Thierry-Mieg@lip6.fr

Abstract: Existing tools for controllability checking mostly apply to
abstract formalisms like finite automata or Petri nets. To avoid costly
building of low-level formal models for large complex systems, we propose
a programming language called VeriJ, a subset of Java with additional
constructs dedicated to supervisory control, to model these systems in a
familiar and friendly development environment. We provide a prototype
tool chain, based on model transformation and pushdown automata, to
automatically transform a system described in VeriJ into a labelled transition
system (LTS). A controllability engine for this LTS is then integrated to
the tool. To limit the state space explosion problem, we also add several
mechanisms including garbage collection, abstraction, state compression, and
partial exploration. Our approach, illustrated with a VeriJ model of the Nim
game, shows that it is possible to combine: 1) the benefits resulting from
using mature Java development environments; 2) performances comparable
to those of existing tools.

Copyright © 2014 Inderscience Enterprises Ltd.

Controllability for discrete event systems modelled in VeriJ 219

Keywords: VeriJ; Java; model transformation; verification; controllability;
discrete event systems; critical systems.

Reference to this paper should be made as follows: Zhang, Y., Bérard, B.,
Hillah, L.M., Kordon, F. and Thierry-Mieg, Y. (2014) ‘Controllability for
discrete event systems modelled in VeriJ’, Int. J. Critical Computer-Based
Systems, Vol. 5, Nos. 3/4, pp.218–240.

Biographical notes: Yan Zhang is a PhD student in Computer Science at the
University Pierre and Marie Curie (UPMC) and member of the LIP6 research
laboratory. Her areas of interest are formal verification techniques including
modelling complex systems and controller synthesis.

Béatrice Bérard is a Professor of Computer Science at UPMC and member
of LIP6 since 2008. Her main research interests are quantitative verification
and synthesis.

Lom Messan Hillah is an Associate Professor at University Paris Ouest
Nanterre and member of LIP6 since 2010. His main research interests lie
in the integration of formal methods in industrial software development
methodologies.

Fabrice Kordon is a Professor of Computer Science at UPMC and member
of LIP6 since 1996. His main research interests lie in distributed systems,
software engineering and formal methods.

Yann Thierry-Mieg is an Associate Professor at UPMC and member of LIP6
since 2005. His main research interests are efficient algorithms and data
structures for verification.

This paper is a revised and expanded version of a paper entitled ‘Modeling
complex systems with VeriJ’ presented at the 5th International Workshop
on Verification and Evaluation of Computer and Communication System
(VECOS), Tunis, Tunisia, 15 September 2011.

1 Introduction

1.1 Context

Given a discrete system model M and an objective expressed as a formula φ, the control
problem asks if there exists a controller C such that M controlled by C satisfies φ. This
problem can also be seen as a two-player game, environment versus controller, where
controllability corresponds to the existence of a winning strategy for the controller to
satisfy φ, against all possible behaviours of the environment. In case of a positive
answer, the final goal is to generate a controller or, equivalently, a winning strategy.
We consider here safety objectives, where formula φ expresses avoidance of undesirable
situations.

The control problem has been largely studied since the work of Ramadge and
Wonham (1987) and several tools have been developed (Behrmann et al., 2007; Moor
et al., 2010). Two main obstacles limit practical application of these techniques in
industry:

220 Y. Zhang et al.

a building low-level formal models (such as automata) is often considered too
costly, and

b due to the state space explosion occurring for large systems, scalability is usually
a major issue.

Aiming at solving problem (a), we previously defined a language called VeriJ
(Zhang, 2010) to model complex systems.

1.2 Contribution

In this paper, we propose an approach to perform controllability checking on a labelled
transition system (LTS) generated from a VeriJ program:

• our first contribution is the completed transformation chain, from VeriJ source
code to LTS (this contribution is an extension of Zhang et al., 2011)

• we further implement several mechanisms to address the state space explosion
problem: garbage collection, abstraction, state compression (SC) and bounded
exploration

• we also provide controllability checking for VeriJ programs, as a first step for
controller synthesis.

We use here the Nim game as a running (scalable) example. Experiments are provided
also on a larger example dealing with automated highway control.

1.3 Outline

Section 2 briefly recalls the controllability algorithm, introduces VeriJ and gives
an overview of the transformation chain from a VeriJ program to an LTS. In
Sections 3 and 4, we describe the details of this transformation. Techniques to reduce
the state space and the exploration are given in Section 5 and we compare our approach
with other verification tools in Section 6.

2 Overview of the VeriJ approach

Our target is to provide a tool consisting of a front-end where users can model a system
by programming it in VeriJ, together with a back-end that generates a LTS from the
VeriJ program, and answers whether the input system is controllable or not. The global
view is given in Figure 1 and described in more detail in the rest of the sections. We
first present the classical framework of controllability.

Controllability for discrete event systems modelled in VeriJ 221

Figure 1 From source code to formal model and controllability test

executionpreprocessing

Java model
VeriJ
model

Java
metamodel

VeriJ
metamodel

instance of instance of

HFSM
model

HFSM
metamodel

instance of

LTS
model

transformation
model

transformation
semantics

source
code extraction

controllability

Front-end Back-end

compilation

2.1 Controllability

A (non-deterministic) LTS over a set Act of actions is a triple M = (S, s0,→)
where S is a set of configurations (or states), s0 ∈ S is the initial configuration
and →⊆ S ×Act× S is the transition relation. The set of actions is partitioned into
environment and controller actions. The set Sreach ⊆ S of reachable states contains all
states s ∈ S for which there exists a path in the graph from s0 to s.

Let Sfail be a subset of Sreach containing states to be avoided. The controllability
problem is to check if there exists a strategy of the controller to avoid Sfail against all
environment behaviours. The classical algorithm (Ramadge and Wonham, 1987) consists
in a backward exploration starting from Sfail and adding new states to this set as follows:

1 any state from which the environment can reach a failure state in a single move is
added to Sfail

2 any state from which all controller moves lead to a failure state is added to Sfail.

When a fixpoint is reached, either the initial state is a failure state, indicating that the
system is not controllable, or there exists a winning strategy for the controller.

Figure 2 illustrates this setting, with environment actions as dashed arrows. The
initial failure states are black (e.g., s5) and those added by the algorithm are striped
(e.g., s4 or s10). The system depicted in this figure is controllable since s0 does not
belong to Sfail when the algorithm terminates.

Figure 2 Illustration of the controllability algorithm (see online version for colours)

Sfail
Sreach

s0 s1 s2

s10

s12 s14

s7
s6

s3
s4 s5

s11

s15

s9

failcontroller
environment

initial fail

222 Y. Zhang et al.

2.2 VeriJ syntax

VeriJ is inspired by Java for the expressiveness and simplicity to model complex
systems. It contains a core subset of Java and includes in addition several constructs for
supervisory control (see Figure 3).

Figure 3 Relation between VeriJ and Java

•

•

•

•

•

•

• …

•

•

•

•

•

•

•

• …

• VeriJ.choice
• VeriJList

basic data types:int, boolean...

arithmetic operators: +, -, =,...

control flow statements : if, for …

variable declaration

method declaration

class instance creation I/O

native code

inheritance

libraries

threads

exception

castVeriJ Java

Created elements

• VeriJ.fail

2.2.1 Java subset

The syntax taken from the Java language includes basic data types, integer arithmetic,
object creation and instanciation, method invocation, assignments, and standard
conditional and control statements. However, VeriJ is simplified with respect to Java
since its purpose is to model systems, not to implement them. Currently, VeriJ does
not support features like exceptions, type casting, inheritance, libraries or native code.
Concurrency is an important feature of complex systems but it is not yet implemented
and it is left out in this paper.

VeriJList. Large systems may involve components and handle, for instance, dynamic
lists. In Java, even the simplest collection implementation (ArrayList) contains several
hundred lines. Due to this complexity, we create instead a single VeriJList type, to
handle basic collections with a small set of operations, hence providing a high level of
abstraction for collections.

2.2.2 Control elements

In VeriJ, two methods can be called to carry the necessary information:

• VeriJ.choice models an arbitrary choice among possible actions at a decision
point. More precisely, the user can call the method int VeriJ.choice(int min,
int max, int playerID, int actionID), where parameters min and max give
the bounds of an interval of integers representing action indices, playerID
identifies by whom the choice is made and actionID indicates which action type
is chosen.

• VeriJ.fail() can be called to designate a failure state.

Controllability for discrete event systems modelled in VeriJ 223

Example of modelling using VeriJ. We illustrate the syntax of VeriJ with the Nim game.
A set of matches are arranged on a board in several rows, with 2i+ 1 matches in row i
(rows are numbered from 0). The game is played as follows: in turn, each player selects
one of the non-empty rows and chooses a number of matches to remove from it. The
player who takes the last match (or matches) looses. This game was completely solved
by Bouton (1901). A winning strategy exists if the player can reach a safe position
where the exclusive or of the binary encoding of the number of matches in each row is
equal to zero. We can check the correctness of our controllability procedure with respect
to this solution.

The corresponding VeriJ program is described in Figure 4. Parameters of the system
are defined in class Constants (ℓ.2-6). The set of matches is initialised as a VeriJList
of integers (ℓ.11). Player choices of row and number of matches to take are defined by
the calls to VeriJ.choice (ℓ.16-19). The main function contains the simulation loop
(ℓ.27-33), where failure states are produced when the controller takes the last remaining
matches (ℓ.31-33). We can let the controller start the game by exchanging ℓ.28-30 and
ℓ.31-33 without changing failure states definition.

Figure 4 Nim source code (in separate .java classes) (see online version for colours)

1 pub l i c c l a s s Constants {
2 pub l i c s t a t i c f i n a l i n t ENV = 0 ; // ENVIRONMENT
3 pub l i c s t a t i c f i n a l i n t CONTR = 1 ; // CONTROLLER
4 pub l i c s t a t i c f i n a l i n t NBRow = 3 ; // number o f rows
5 pub l i c s t a t i c f i n a l i n t CHOOSEROW = 0; // ac t i on IDs
6 pub l i c s t a t i c f i n a l i n t CHOOSEMATCH = 1 ;
7 }
8 pub l i c c l a s s Board {
9 Ver iJLis t<Integer> matches ;

10 pub l i c Board () {
11 t h i s . matches = new Ver iJLi s t<Integer >() ;
12 for (i n t i = 0 ; i < Constants .NBRow; i = i + 1) {
13 i n t num = 2 ∗ i + 1 ;
14 matches . add (num) ; }}
15 pub l i c void playMove (i n t id) {
16 i n t row = VeriJ . cho i c e (0 , matches . s i z e ()−1 ,
17 id , Constants .CHOOSEROW) ;
18 i n t nb = VeriJ . cho i c e (1 , matches . get (row) ,
19 id , Constants .CHOOSEMATCH) ;
20 matches . s e t (row , matches . get (row)−nb) ;
21 i f (matches . get (row)==0){
22 matches . remove (row) ; }}
23 }
24 pub l i c c l a s s Nim {
25 pub l i c void main (St r ing [] a rgs){
26 Board board = new Board () ;
27 whi l e (t rue){
28 board . playMove (Constants .ENV) ; // environment p lays
29 i f (matches . s i z e ()==0)
30 return ;
31 board . playMove (Constants .CONTR) ; // c o n t r o l l e r p lays
32 i f (matches . s i z e ()==0) // c o n t r o l l e r l o s e s
33 VeriJ . f a i l () ; }}
34 }

224 Y. Zhang et al.

Preprocessing step. In this step (see Figure 1), we use MoDisco
(http://www.eclipse.org/MoDisco) to extract, from the Java/VeriJ source code, a model
of the application, conforming to the Java metamodel. This Java model is transformed
into a model conforming to the VeriJ metamodel, by pruning unnecessary information
from the Java model and building the VeriJ specific elements. This step is implemented
as a model to model transformation using the Atlas Transformation Language (ATL,
http://www.eclipse.org/atl), a state-of-the-art model transformation plugin within Eclipse.

Any programmer can quickly get started with the tool since the syntax is close to
Java. Although the model description is textual (a program), some tools provide multiple
forms of visualisations (UML class diagrams, browsers, ...) if a graphical representation
is desired. We also provide adapters that implement the additional features (ArrayList
for VeriJList, the standard Java random function for VeriJ.choice and a system
exit or error for VeriJ.fail()). Then, the user can simulate the system by executing
the program.

2.3 VeriJ semantics

Analysing a VeriJ specification requires to build an LTS representing all program
executions. Two alternative solutions have been proposed for such program
transformation.

2.3.1 Direct translation

This approach aims at translating input source code into the representations accepted
by existing verification tools. This approach was used for instance in early versions
of JPF (Havelund, 1999) which transform Java to Promela. The latter is the input
language of SPIN model checker (http://www.spinroot.com) based on communicating
finite automata. It was also the case for Corbett et al. (2000) which, using slicing and
abstraction, translates the input source code into input of some existing finite state
machine (FSM) verification tools (i.e.,, SPIN, SMV, etc.) through Bandera Intermediate
Representation.

Although reusing these tools is then possible, some features of the language can be
difficult to translate (like inheritance or object creation).

2.3.2 Compilation

The second option consists in compiling the source code, then generating a formal model
from the result. With this option, there are two main branches according to different
intermediate languages:

1 a standard intermediate language, for instance, Java bytecode for Java or assembly
language for C

2 a control flow graph (CFG) reflecting the program structure as the intermediate
language.

Controllability for discrete event systems modelled in VeriJ 225

1 Standard compilation. This approach uses a standard compiler to derive the
semantics of the source code, and handle the verification on transition systems by
executing the Java bytecode (or assembly language for C). It solves issues related
to software artifacts, such as external libraries for which no source code is
available, hence it is the preferred option for full-fledged software model-checkers.
It also produces less cases when implementing the verification tool as the variety
of opcodes is rather limited. This is the choice taken in recent versions of Java
Path Finder (JPF, http://babelfish.arc.nasa.gov/trac/jpf) a software model-checker
for Java which relies on a dedicated backtrackable Java Virtual Machine (JVM)
that provides non-deterministic choices and control over thread scheduling.
However, it forces to work at a very low level of abstraction, on much larger
models in raw number of instructions, or even to resort to executing the code to
derive its interpretation.

2 Compilation to CFGs. In this case, the program is transformed into a CFG that
describes all possible execution paths. This approach preserves a high level of
abstraction in the resulting system model. However, it may also be difficult in
general to capture all syntactic elements from the language.

The interpretation of the CFG produces the final transition system. At this step, a
straightforward approach consists in inlining all calls, resulting in a single FSM for the
whole input program. FSMs are the natural input language for many model-checkers,
which makes this solution attractive. For instance, both verification tools F-Soft (Ivančić
et al., 2008) and BLAST (Beyer et al., 2007) transform C program into CFG first.
However, the FSM obtained by inlining may contain redundant information due to
duplication of behaviours (corresponding to function calls). Moreover, it cannot be
applied when unbounded recursion is involved because the inlining could produce
infinite structures.

Another popular approach is to use pushdown semantics to interpret the CFG.
Pushdown automata, introduced in Oettinger (1961) and Chomsky (1962), are a natural
choice for modelling method calls and interprocedural program behaviours, by adding
a (possibly unbounded) stack to a finite set of control states. This produces a compact
and accurate representation of procedure calls and it is the choice taken in several recent
verification tools, for instance, jMoped (http://www7.in.tum.de/tools/jmoped), BLAST,
SLAM (Ball et al., 2011) and in our own approach as well.

2.3.3 Our selection

Since we are targeting supervisory control rather than full software model-checking,
we need an efficient expression of the system’s transition relation. For this reason,
JVM-based solutions (like in JPF) are not appropriate in our case. On the contrary, CFG
provides a graph notation to describe all possible paths that a program may traverse,
which is close to formal models representation.

Thus, we choose the compilation-execution approach with compilation to CFG. We
first transform a VeriJ program into hierarchical finite state machine (shortly HFSM),
a variant of CFG that preserves the structure of the source code at a high level of
abstraction. This corresponds to the compilation step in Figure 1 (details in Section 3).
We then define specific pushdown rules to generate the final LTS on which analysis can
be performed, in the execution step (details are provided in Section 4).

226 Y. Zhang et al.

3 Generating HFSM from VeriJ

3.1 Hierarchical finite state machines

A FSM is a finite transition system equipped with final states. For our purpose, we
define an FSM over a finite alphabet Σ as a tuple F = (Q, δ, q0, qf) where Q is a finite
non-empty set of states, δ is a partial mapping from Q× Σ to Q, q0 ∈ Q is the initial
state and qf is a unique final state.

Definition 1: Let R and Σ be two finite disjoint alphabets and write Σ̂ = Σ ⊎R. An
abstract HFSM is a finite set of FSMs F = {Fr, r ∈ R ∪ {0}} over the alphabet Σ̂,
where 0 is a symbol not in R. F0 is called the initial FSM of F .

For any r ∈ R ∪ {0}, we set Fr = (Qr, Σ̂, δr, q0,r, qf,r). The set Q = ⊎r∈R∪{0}Qr

(where ⊎ denotes the disjoint union) is called the set of states of F with q0,0 the
initial state and qf,0 the final state of F . The set ∆ = ⊎r∈R∪{0}δr is called the set of
transitions of F . A transition t = q

σ−→ q′ with σ ∈ Σ̂ from some F ∈ F is an internal
transition of F if σ ∈ Σ and a reference to FSM Fr if σ = r ∈ R.

With a VeriJ program we associate a program HFSM H = (F , C, λ) where F is an
abstract HFSM, C is a finite set of class names for the classes defined in the program,
and λ : F 7→ C is a (surjective but not necessarily injective) mapping associating a class
name λ(F) ∈ C with each FSM F in F . In such an HFSM, F0 corresponds to the main
method and other FSMs correspond to functions called by the program executed from
the main method. A transition within F corresponds to an instruction of the function
and when labelled by a reference r, it corresponds to a call to the function associated
with Fr.

When a VeriJ program contains game constructs, we consider two particular subsets
of Q. The set Qfail contains the states where fail is reached. The set Qchoice of choice
states is: Qchoice = {q ∈ Q | q choice−−−−→ q′ is a transition in some F ∈ F}.

A part of the HFSM corresponding to the Nim example of Figure 4 is depicted in
Figure 5. It represents the two FSMs associated respectively with the method playMove
of class Board and the main method of class Nim.

3.2 Transformation from VeriJ to HFSM

Our compilation of VeriJ (in Figure 1) is implemented by a model transformation into
an HFSM. For this, we define a HFSM metamodel.

3.2.1 HFSM metamodel

Figure 6 shows the core part of the HFSM metamodel (the complete metamodel contains
58 metaclasses against 126 in Java).

A model is composed of a set of FSMs, each one consists of:

• a set of States, including an initial state and a final state, each one having a single
attribute name

Controllability for discrete event systems modelled in VeriJ 227

• a set of Transitions, each of them has a source state, a destination state and a
TransitionExpression denoting a simple statement (e.g., variable declaration,
assignment, etc.) or an HfsmExpression (method invocation) referring to an FSM,
hence bringing in the hierarchy

• a set of local variables representing parameters of a method declaration.

Figure 5 Extracts of the Nim HFSM model (see online version for colours)

main()
main.0

Board board

main.3

main.3.while_body.0

[true]

main.S_fin

[!(true)]

main.3.while_body.1

playMove(board, Constants.ENV)

main.3.while_body.2

size = VeriJ_size(board.matches)

main.3.while_body.2.ifThen_body.0

[size==0]
main.3.while_body.3

[!(size==0)]

[!(size==0)]

return main.3.while_body.4
playMove(board, Constants.CONTR)

main.3.while_body.5

size = VeriJ_size(board.matches)

main.3.while_body.5.ifThen_body.0

[size==0]

...

playMove(this, id)

row = <0,maxIndex,
id, Constant.CHOOSE_ROW>

int row

...

playMove.0

playMove.4

playMove.5

...

Figure 6 Core part of the HFSM metamodel

mainFSM1 allFSM0..*

hfsm
1

parameters0..*

finalState
1

initialState
1

1..* states transitions0..*

1transExpr

destination 1
source 1

Transition

HfsmExpression TransitionExpression

Model

FSM

StateVariable

In the HFSM metamodel, both the types of parameters of a method declaration and the
fields of a class belong to the variable metaclass. This element has three subclasses:
IntVar, BoolVar and ObjectVar which represent respectively the three types integer,

228 Y. Zhang et al.

Boolean and reference to an object. A Boolean tag is associated with variables to
indicate if they are global or local.

There are eight kinds of basic transition types in HFSM:

1 Variable declaration restricted to int, Boolean, object reference and list variables.

2 Object allocation allocating memory in the heap for newly created objects.

3 Assignment of an expression, including arithmetic, VeriJList operations
(for instance, size, get, equals), VeriJ.choice, etc., to a variable.

4 Drop variables to remove variables that fall out of scope.

5 Return to pop a context and possibly return a value.

6 FSM method call includes constructor and method calls. Member methods are
handled as static methods, with this as additional parameter.

7 VeriJ method call mainly used to carry the VeriJList operations without return
value: set, add, remove, insert.

8 Boolean guard for conditions in control flow statements.

3.2.2 Transformation

Using VeriJ and HFSM metamodels, we coded a set of ATL rules to create states and
transitions for each FSM in this HFSM model. Each method in the source code is
transformed into an FSM with the same name.

States are created according to the positions of atomic statements in the program.
Each FSM F has initial and final states called respectively F.0 and F.S fin. The unique
final state can be the destination state for several transitions (for instance, return). To
avoid duplication, states are named as follows: Given the source and destination states
of the transition obtained from a Block statement, the states in the list of transitions are
named by adding the ordered number or strings that indicate the structure of a control
statement. For instance, in Figure 5, main.3.whilebody.3 represents the source state of
the method call at line 31.

Each transition is obtained from a statement of the VeriJ model. It takes the name of
the atomic statement as the label transExpr, with created source and destination states.
If a transition is a method call, its label refers to the FSM of the method. For instance,
the method invocation of playMove(board, Constants.ENV) references the FSM on
the left of Figure 5.

For the VeriJ.choice method, an assignment of the form x =
VeriJ.choice(min, max, playerID, actionID) is transformed into x=⟨min, max,
playerID, actionID⟩. Finally, any state involving a call to VeriJ.fail() is labelled as a
failure state. Note that such a state has no successor. It is depicted in grey background,
like for instance state main.3.while body.5.ifThen body.0.

Since some VeriJ statements have richer semantics than a single atomic HFSM
transition, we need to split them into several atomic transitions. We give two examples
below:

Controllability for discrete event systems modelled in VeriJ 229

• Instantiate a class of the form: ClassObj obj = new ClassObj();

Three steps are needed for this statement:

1 declare a variable obj as a reference variable δ1 : ClassObj obj;
2 allocate memory for the new object in the heap and return a reference to that

memory cell δ2 : obj = new ClassObj;
3 method invocation of the constructor call δ3 : obj.ClassObj();.

For instance, Nim nim = new Nim(); is transformed into: δ1 : Nim nim;, δ2 : nim
= new Nim; and δ3 : nim.Nim();.

• Method call returning a value of the form var = m(arg1,arg2 ...);

For this statement, we need an additional variable returnVar typed varType
(the same as var). The statement is split into four atomic updates: declaration of
returnVar δ1 : varType returnVar; method call δ2 : m(arg1, arg2 ...); where the
value to return will be assigned to returnVar, assignment of the result to the
caller variable δ3 : var = returnVar; and dropping the temporary variable δ4 :
drop returnVar;.

4 Generating LTS from HFSM

In this section, we show how to execute the HFSM as a pushdown system (step called
execution in Figure 1) and add special labels for controllability. We first recall the
classical model of pushdown automata (Oettinger, 1961; Chomsky, 1962).

4.1 Pushdown automata

Definition 2: A pushdown automaton (PDA) is a tuple P = (P,Γ,∆, c0), where P is
the set of states or control locations, Γ is the alphabet of stack symbols, ∆ is the set
of transition rules, a partial mapping from P × Γ to P × Γ∗, and s0 ∈ P × Γ is the
initial configuration. A transition rule δ ∈ ∆ is written as (p, z) ↩→ (p′, α) with p, p′ ∈
P , z ∈ Γ and α ∈ Γ∗.

The semantics of P is given as an LTS with S = P × Γ∗, the set of configurations. For
a rule δ : (p, z) ↩→ (p′, α) in ∆ and a non-empty γ = zβ ∈ Γ+ with z ∈ Γ and β ∈ Γ∗,
there is a transition (p, γ)

δ−→ (p′, αβ). In other words, z is the topmost stack symbol,
each transition pops z and pushes the word α.

Figure 7 shows an example of a PDA with its semantics. In Figure 7(a),
P = {p, q}, Γ = {A,B}, ∆ contains the three rules (p,A) ↩→ (p,AB), (p,A) ↩→ (q, ε)
and (q,B) ↩→ (q, ε), and the initial configuration is s0 = (p,A). The PDA has an
infinite set of configurations depicted in Figure 7(b).

230 Y. Zhang et al.

Figure 7 A PDA example, (a) a PDA P (b) transition system of P

..p

.q

.A/ε

.A/AB

.B/ε

(a)

..p,A.

.q, ε

.p,AB .p,ABB

.q,B .q,BB

.p,ABn

.q,BBn

.· · ·

.· · ·

(b)

4.2 Variables in VeriJ programs

Let X be a set of variables, including this. For each x ∈ X , let Dx be the range of x.
The set Dx can either be the set of values of a primitive type (restricted to int and
Boolean here) or the set of references Ref = {$0, $1, $2, . . .} containing heap addresses.
In particular, Dthis = Ref. The default value (0 for int, false for Boolean or $0 for
Ref) is noted ⊥ for all ranges.

A valuation is a partial mapping v : X → ∪x∈XDx such that for each x ∈ X ,
v(x) ∈ Dx. For a valuation v, we define Dom(v) = {x ∈ X | v(x) is defined} and we
denote by [−] the valuation such that Dom(v) = ∅.

For a valuation v, y ∈ X and d ∈ Dy , we define v′ by: Dom(v′) = Dom(v) ∪
{y}, v′(y) = d and v′(x) = v(x) for x ̸= y. If y /∈ Dom(v), we write v′ = v ∪ [y 7→
d] and if y ∈ Dom(v), we write v′ = v[y 7→ d]. For a subset {x1, . . . , xn} of X and
values d1, . . . , dn, we denote by [x1 7→ d1, . . . , xn 7→ dn] the valuation v such that
Dom(v) = {x1, . . . , xn} and v(xi) = di for i = 1, . . . , n.

4.3 LTS of a VeriJ program

Given a program HFSM H = (F , C, λ) with initial FSM F0 and set of states Q, we
denote by V the set of all valuations for the program variables. We define the stack
alphabet by Γ = Q× V .

The set of configurations of the LTS is defined by: S = (C × V)∗ × V × Γ∗.
Hence, a configuration s = (h, g, γ) ∈ S, consists of:

• h ∈ (C × V)∗ the heap state. Hence, an empty heap is described by ε (also
represented in the Figure 8 by $0 :⊥). The letters are of the form (c, w) ∈ C × V ,
where c is a class name and w ∈ V is a valuation for the attributes of an object in
this class, so a non-empty heap is written as h = (c1, w1) . . . (cn, wn) for some
n ≥ 1. Adding a new object to h is written h.(c, w) for some (c, w).

• g ∈ V the global variable state is the valuation of static variables and the values
of return statements; For a variable in g, the Boolean tag global in Variable has
value true.

• γ ∈ Γ∗ the stack state where each element (q, v) ∈ Γ is composed of an FSM
state and a variable valuation.

The initial configuration is s0 = (ε, [−], (main0, [−]), 0), where main0 denotes the
initial state of F0.

Controllability for discrete event systems modelled in VeriJ 231

Figure 8 Part of the LTS generated for the Nim game after abstraction (see online version
for colours)

�������
�

���
��	
��
������

�

�������
�������������	
��������������

���������������������
�

���
�� !
"#$%�
&���	
'(�)�'����� (*�����+$,�����������������

�	
��
�
,��!�-�$)"
�����$
+)��������
�

.$
+)��$
+)��(*����

�������
�������������	
��������������

���������������������
�

���
�� !
"#$%�
/���	
'(�)�'��������������0$,����� (*�����+$,�����������������

�	
��
�
,��!�-�$)"
�����$
+)��������
�

+$,����(*����1$���
���
12��34-0�5

�������
�������������	
��������������

���������������������
�

���
�� !
"#$%�
/���	
'(�)�'��������������0$,����� (*�����+$,�����������������

�	
��
�
,��!�-�$)"
�����$
+)��������
�

+$,����(*����1$���
���
12��34-0�5

We now define the transition relation → of the LTS. A transition from configuration
s = (h, g, γ) to configuration s′ = (h′, g′, γ′) is written s

t−→ s′, where t : q
δ−→ q′ is a

transition from some FSM F with δ ∈ Σ̂. The stack state evolves from γ = zβ to
γ′ = αβ, where α ∈ Γ∗ is a word of length |α| ≤ 2. In this context, it is sufficient to
consider rules with maximal length 2, which correspond to method invocation: stacking
the initial state of the method called and the return address after popping the topmost
stack symbol. If q ∈ Qfail in the HFSM, then the configuration is also a failure.

Below are presented several examples of transitions corresponding to the eight types
of HFSM transitions (t : q δ−→ q′) described in the previous section. In configuration
s = (h, g, γ), we assume that the heap size is |h| = n and the stack is γ = zβ, with
z = (q, v) the topmost symbol.

1 Variable declaration of the form δ : type x = initialiser;

If x is local, this transition adds to v a valuation for x, assigning the result d of
the evaluation of initialiser. The successor configuration is s′ = (h, g, γ′), where
γ′ = αβ with α = (q′, v ∪ [x 7→ d]). If x is global, g is changed into
g′ = g ∪ [x 7→ d] and α = (q′, v).

2 Object allocation of the form δ : x = new Class;

For a variable x declared as a reference variable, this operation allocates memory
for the new object in the heap and returns a reference to that memory cell. The
successor configuration is s′ = (h′, g, γ′) where γ′ = αβ with
α = (q′, v ∪ [x 7→ $(n+ 1)]). If Class is not VeriJList, the new heap state is
h′ = h.(c, w), where c = Class and w assigns default values to all fields.
Instantaneously, another rule (Method call) will be applied for the constructor call.
For VeriJList, h′ = h.(t, (−)), where t is the type of the list elements and (−) is
an empty valuation.

232 Y. Zhang et al.

3 Assignment of the form δ : x = expression;

According to different types of x (field or local variable), and of expression types,
the configuration updates the variable valuation in different parts in a natural way.
For example, assume a local variable is assigned by a VeriJList operation of the
form σ : x = li.m(arg1, arg2...);. Then x takes the value m(arg1, arg2...) of the
object li. If this value is d, the successor state is s′ = (h, g, γ′) with γ′ = αβ and
α = (q′, v[x 7→ d]).

If a non-deterministic choice is assigned to a local variable by x =
⟨min,max,playerID,actionID⟩, this transition has a successor s′i = (h, g, γ′

i) for
each i ∈ [min,max], with γ′

i = αiβ and αi = (q′, v[x 7→ i]).

4 Drop variable of the form δ : drop x;

Let d be the value of x. If x is a local variable, let z = (q, v1 ∪ [x 7→ d]) be the
topmost stack symbol, the successor state is s′ = (h, g, γ′) with γ′ = αβ and
α = (q′, v1). If x is a global variable, with g = v1 ∪ [x 7→ d], the successor is
s′ = (h, g′, γ) with g′ = v1.

5 Return of the form δ : return expression;

With this HFSM transition, leading to the the final state of an FSM, the topmost
symbol is popped from the stack. The successor state is s′ = (h, g, β) when
expression is empty. Otherwise, let d be the value of expression, then
s′ = (h, g′, β) with g′ = g[returnVar 7→ d]. Notice that, reaching the final state
without a return statement also pops the topmost symbol hence producing
s′ = (h, g, β).

6 FSM method call of the form σ : m(ob, arg1, arg2 ...);

Let m0 be the initial state of the FSM associated with method m(), and let
ob, x1, x2... be the parameters. The successor state is s′ = (h, g, γ′) with γ′ = αβ
and α = ((m0, v0)(q

′, v)), where v0 is the valuation defined by v0(xi) = argi for
i = 1, 2, . . . and v0(this) = $j, where $j is the reference of object ob.

7 VeriJ method call of the form δ : m(li, arg1, arg2 ...);

This HFSM transition is an operation of the elements of VeriJList li. For a heap
state h = (c1, w1)...(cn, wn), if li 7→ $i, for some i (1 ≤ i ≤ n), the valuation is
written as wi = [li(0) 7→ d0, ..., li(m) 7→ dm], where m is the index of the last
element. The successor state is s′ = (h′, g, γ′) with γ′ = αβ and α = (q′, v). The
heap state h′ depends on the operation. For instance, for li.add(d),
h′ = (c1, w1)...(ci, w

′
i)...(cn, wn), where w′

i = wi ∪ [li(m+ 1) 7→ d].

8 Boolean guard of the form δ : [expression]

This HFSM transition label, as well as [!expression], are the conditions of two
branches in a control flow statement. If expression is evaluated to true, the
successor state is s′ = (h, g, γ′) with γ′ = αβ and α = (q′, v). Otherwise, the
other branch is taken.

Controllability for discrete event systems modelled in VeriJ 233

Figure 8 depicts a (small) part of the LTS obtained for the Nim program and illustrates
transition rule (3) assigning a non-deterministic choice to a local variable at playMove.4.
Application of the rules above yields a much larger LTS [see (Zhang et al., 2011)
for an example]. This figure is obtained after performing the abstraction presented in
Section 5). In this figure, each configuration (depicted as a large rounded box) has a
heap state (leftmost inner box, h), a global variable state (middle inner box, g) and a
stack state (rightmost inner box, γ). The Nim game has no static variable except the
five constants which are transformed into literal values during the procedure from VeriJ
to HFSM. Hence the global variable state g is reduced to [−] in this case. The first box
presents the initial configuration s0. The second box is the source state of the choice,
where the heap h shows the instantiation of the Board: an object matches refers to
a list at address $2 with integer values. The transition produces two successors with
different values of local variable row in the topmost symbol of the stack state. The
relevant information of the transition is extracted in the transition label.

5 LTS state space reductions

To cope with the very large LTSs generated from VeriJ programs, we need to reduce
the state space size. Many related works are dedicated to such reduction: symbolic
verification (Burch et al., 1992), predicate abstraction (Flanagan and Qadeer, 2002),
partial order reduction (Bogdoll et al., 2011), symmetry reduction (Sistla and Godefroid,
2004), on-the-fly verification (Lime et al., 2009), state compression (Laarman et al.,
2011), etc. To have better performances, these techniques can be combined.

5.1 Reductions

Our prototype implements garbage collection, abstraction of irrelevant states (with
respect to a given criterion), SC and partial exploration. Instead of using the Nim
game, which is a toy example, we experimented these techniques on an industrial
case, consisting of a section of an automated highway system (Bérard et al., 2008)
(see Table 1). In this system, the controller’s goal is to avoid collisions, while the
environment can introduce new cars and control at most one car.

5.1.1 Garbage collection

Since VeriJ has no explicit destruction of objects allocated in the heap, unreferenced
objects are kept in the heap state. Moreover, since there is no predefined bound on the
state evolution loop, any object creation in the loop produces an infinite structure. This
loop appears for instance at line 27 in Figure 4, although it contains no object creation
in the case of the Nim game.

Garbage collection (GC) discards unreferenced objects in the heap and then
compacts the heap to avoid the resulting fragmentation. We use a mark-and-sweep
algorithm on every relevant configuration (which consists in marking unreferenced
objects and remove them).

234 Y. Zhang et al.

5.1.2 Abstraction of the state space (Abs)

Due to explicit interpretation of program instructions, even small examples may yield
intractable LTSs. We propose to use an abstraction criterion to avoid representing parts
of the LTS. This criterion is defined as a Boolean predicate over configurations. During
the generation of the LTS, from the current configuration s, any successor s′ marked
as abstract is inductively replaced by its set of successors. An abstraction criterion
producing cycles of abstract states is considered ill-formed (the procedure would not
terminate). This can be handled by bounding the successor’s distance to some fixed k.

We define a criterion to abstract any state that

1 does not proceed a call to VeriJ.choice

2 is not initial or final or failure state. This produces an aggregation of deterministic
paths in the LTS, leaving mainly the decision points.

5.1.3 State compression

To limit the memory requirements of the controllability analysis, we use a dedicated
compression scheme inspired by Holzmann (1997) aiming at reducing the memory
amount used per state. It consists in using several unique tables for state elements
like variable valuations, to share the representation of common parts among states.
We use a multilevel variant in which heap object states, global variable states and
stack symbols share their memory representation, heap and stack are themselves unique
in memory. This type of compression is also used in JPF, Spin and MoonWalker
(http://fmt.cs.utwente.nl/tools/moonwalker).

5.1.4 Partial exploration

When the system parameters scale up, the combinatorial explosion problem may prevent
full LTS generation. In such a case, we revert to bounded depth generation, with a
breadth-first search algorithm. In other words, we partially explore the state space and
check controllability on it.

If the subsystem is uncontrollable for some depth k, the environment can win in less
than k moves, which allows to conclude that the system is not controllable. Conversely,
a controllable subsystem does not guarantee that the whole system is controllable. This
technique can be useful for further study in controller synthesis and is not experimented
here.

5.2 Experiments

They are conducted on the highway example mentioned above, with n lanes, total length
L, and minimum safety distance dmin. The source code contains 14 classes, 62 methods
and more than 500 lines. More details (including partial exploration) can be found at
http://pagesperso-systeme.lip6.fr/Yan.Zhang/example14.html.

All experiments in this paper were made on a 2.66 GHz Core2 Quad PC running
Linux with 1 GB of memory. In Tables 1 and 2, the number of lanes is n = 2. And for

Controllability for discrete event systems modelled in VeriJ 235

Table 1, the safe distance is dmin = 3. We use − in the cell for any execution that does
not meet the constraints (for instance, when more than 1 GB of memory is used).

Table 1 presents the memory and time used without optimisation and after
implementing the first three techniques above. The unbounded evolution loop causes out
of memory when no garbage collection is applied (first columns). Although GC permits
to produce a finite state space (columns GC), it runs out of memory much earlier than
in combination with the other techniques. Our specific abstraction (columns GC+Abs)
decreases both the memory and time consumption. Generally speaking, the SC (columns
GC+Abs+SC) takes slightly more time, but compacts the memory up to 51%.

Table 1 Memory (MB) and time (s) usage in the automated highway

L
No optimisation GC GC + Abs GC + Abs + SC

Mem Time Mem Time Mem Time Mem Time

6 - - 167 2.9 126 1.6 125 1.7
7 - - 638 25.2 360 5.7 324 6.2
8 - - - - 371 8.6 331 9.3
10 - - - - 440 20.3 350 20.8
11 - - - - 997 168.3 504 165.9

6 Related work

Since VeriJ contains a core subset of Java and is dedicated to controllability, we compare
our approach both with Java model checkers and supervisory control tools.

6.1 Comparison with software verification tools

Java model checking belongs to a class of approaches called Software model checking,
which aims at analysing full programs for defects (deadlocks, overflows, coverability,
etc.). For Java, the most common approach is to instrument an existing virtual machine,
running the compiled bytecode, as done by JPF and jMoped for Java and MoonWalker
for .NET. This avoids having to implement the semantics of the over 200 bytecodes
of Java, some of them being quite complex. Even then, this solution is partial due in
particular to I/O and Java’s native interface allowing to call arbitrary binary code. It
also precludes a complete reuse of existing model checking technologies (SAT-solvers,
decision diagrams, etc.), although a few efforts are made (Pǎsǎreanu et al., 2008), since
symbolic interpretation of the complete transition relation is impossible.

In contrast, our approach targets models expressed in a Java-like syntax. Compared
to JPF, VeriJ lacks I/O or any interoperability with existing code, as well as dynamic
method resolution since there is no inheritance. However the HFSM model with only
eight basic instruction types is enough to formally capture the semantics as an LTS.
Moreover, we provide with VeriJ an adapter to use JPF ChoiceGenerator with
semantics consistent with the VeriJ.choice function. Hence, this allows a user familiar
with JPF to run additional controls on the VeriJ model. Since JPF, like the other software
model checkers, does not have the engine to label the state space in a game structure,
we only compare with JPF for the LTS generation. This comparison was also a mean
to check the correctness of our transformations with respect to Java semantics.

236 Y. Zhang et al.

Table 2 provides this comparison on the automated highway (in addition to dmin = 3
like in Table 1, we included a case with n = 10 and dmin = 4). Experiments show
that JPF consumes less memory but is not as fast as VeriJ. JPF is a tool originally
developed by NASA and enhanced over the last decade, but a large quantity of bytecode
instructions and space reduction techniques slow it down. This also motivates us to
explore more techniques to reduce the memory use.

Table 2 Memory (MB) and time (s) usage in the automated highway

L dmin
Number of states Mem Time

VeriJ JPF VeriJ JPF VeriJ JPF

8 3 14,845 67,170 331 76.8 9.1 76.9
10 4 16,489 56,310 321 76.0 9.9 52.6
10 3 32,212 265,506 350 76.7 20.8 685.6

jMoped, a test environment for Java programs, uses pushdown semantics like we do. To
be able to perform symbolic execution, the authors had to reimplement the bytecodes
semantics. jMoped can deal with multi-threaded unbounded systems. However, due to
an incomplete implementation of the Java specification (in particular the Java random
function is missing), we could not run the tool on our examples.

6.2 Comparison with supervisory control tools

In the domain of controller design, transition systems like FSMs are a natural
choice. For instance, Stateflow (http://www.mathworks.fr/products/stateflow) developed
by MathWorks provides state charts and flow diagrams. But these tools do not provide
controllability check.

Tools applying formal methods for supervisory control usually describe systems
with low-level models, for example, FSM (Moor et al., 2010; Miremadi et al., 2008;
Behrmann et al., 2007), Petri nets (Zareiee et al., 2012), etc. They share two important
common features:

• a graphical interface makes small and simple systems easy to model, but it can be
difficult to describe the relationship between complex system elements

• they have efficient techniques to tackle the state space explosion problem.

Among them, the widely used tool Uppaal TIGA (called here Tiga for short,
http://www.cs.aau.dk/ adavid/tiga) integrates supervisory control in the expressive
Uppaal environment where users can model systems by (possibly timed) automata with
additional C-like functions. Tiga supports game automata, with transitions labelled by
controller or environment. It has been used for controller design of industrial systems
(David et al., 2012; Jessen et al., 2007) with good performances. There even exists a tool
SARTS (Bogholm et al., 2008) that performs a fully automatic translation of real-time
Java applications into Uppaal models.

We first compare VeriJ with Tiga on the Nim game. A Tiga model consists of
automata templates, text declarations and an extra system definition to compose the
templates. The model of the Nim game is depicted in Figure 9 with a single automaton,

Controllability for discrete event systems modelled in VeriJ 237

where all states are urgent (labelled by ∪), because the Nim game does not handle time.
Dashed arrows are environment transitions, and plain arrows belong to the controller.
For instance, the controller transition from s2 to s1 is performed in three steps:

1 choose r and n

2 check the guard a[r]>0 && n <=a[r]

3 take the matches.

To check the controllability, the query is expressed by a logic formula prefixed by the
keyword control. For this example, we use the formula control: A[] not (nim.s1
and isEmpty()), to express that state s1 is not reached with no matches left, where
operator A means for all execution paths and [] stands for always.

Figure 9 Modelling Nim game with Uppaal-TIGA (see online version for colours)

�������
�

���
��	
��
������

�

�������
�������������	
��������������

���������������������
�

���
�� !
"#$%�
&���	
'(�)�'����� (*�����+$,�����������������

�	
��
�
,��!�-�$)"
�����$
+)��������
�

.$
+)��$
+)��(*����

�������
�������������	
��������������

���������������������
�

���
�� !
"#$%�
/���	
'(�)�'��������������0$,����� (*�����+$,�����������������

�	
��
�
,��!�-�$)"
�����$
+)��������
�

+$,����(*����1$���
���
12��34-0�5

�������
�������������	
��������������

���������������������
�

���
�� !
"#$%�
/���	
'(�)�'��������������0$,����� (*�����+$,�����������������

�	
��
�
,��!�-�$)"
�����$
+)��������
�

+$,����(*����1$���
���
12��34-0�5

Table 3 Comparison with JPF and Uppaal TIGA on the Nim game

r
Reachability Controllability

Number of states Mem (MB) Time (s) C Mem (MB) Time (s)
VeriJ JPF VeriJ JPF VeriJ JPF VeriJ TIGA VeriJ TIGA

2 22 9 5 11 0.04 0.3 N 5 2 0.05 0.1
3 204 133 17 17 0.3 0.5 N 17 2 0.4 0.1
4 2.1× 103 1.5× 103 46 34 1.1 1.7 Y 47 57 2.0 0.2
5 2.3× 104 1.8× 104 132 64 4.9 13.6 N 133 116 12.1 3.6
6 3.1× 105 2.5× 105 639 65 61.6 193.3 N 641 - 289.7 -
7 - 3.8× 106 - 124 - 3,058.5 N - - - -
8 - 3.9× 107 - 895 - 31,800 Y - - - -
9 - - - - - - N - - - -

Table 3 compares the performances of VeriJ and JPF for reachability, and also compares
VeriJ and Tiga for controllability checking (columns on the right), for increasing number
of rows (r). For r = 6, Tiga runs out of memory, and so do both VeriJ and Tiga when
r > 6. JPF shows good performance in handling state space (mem); while Tiga shows

238 Y. Zhang et al.

faster controllability checking. Controllability (C) can be calculated using the solution
in Section 2, which permits to check the correctness of the results obtained from the
two tools.

Modelling the highway example with Tiga is much more difficult (and not done
here) for the following reasons:

• Non-deterministic choice can only be done with a static scope.

• Handling a dynamic number of instances (like a list of cars in the highway) would
require some modelling tricks. In particular, the maximum number of instances
must be pre-defined.

To sum up, we obtain reasonable performances compared to some of the most mature
tools in both areas of Java model checking and controllability.

7 Conclusions

We presented an approach to check controllability of a system described with a
high-level programming language. This provides a practical way towards controller
design for software engineers, with comfortable modelling environments thanks to Java
IDEs.

Users can model systems as VeriJ programs, written in a Java-like syntax. We
provide a tool chain to transform such a program into a HFSM, modelling the CFG,
and then generate an LTS with pushdown semantics, on which the controllability check
can be performed. Several techniques are integrated to increase scalability: garbage
collection, abstraction, SC and partial exploration.

Experiments show that our approach is comparable with mature tools from both
software model checking and supervisory control. From the perspective of software
engineers, VeriJ bridges the gap between a widely-used industrial-strength programming
language (Java) and formal methods to deal with the controllability problem.

As future work, we plan to further develop full controller synthesis. We also intend
to improve scalability by adapting the techniques from Zhang et al. (2010) to take
HFSM as input. Finally, a possible extension would be to support concurrency in VeriJ
specifications.

References
Bérard, B., Haddad, S., Hillah, L., Kordon, F. and Thierry-Mieg, Y. (2008) ‘Collision avoidance

in intelligent transport systems: towards an application of control theory’, in Proc. of the
9th Int. Workshop on Discrete Event Systems (WODES ‘08), pp.346–351, IEEE Press.

Ball, T., Levin, V. and Rajamani, S. (2011) ‘A decade of software model checking with SLAM’,
Communications of the ACM, Vol. 54, No. 7, pp.68–76.

Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K. and Lime, D. (2007)
‘UPPAAL-TIGA: time for playing games!’, in Proc. of the 19th International Conference
on Computer Aided Verification (CAV ‘07), Lecture Notes in Computer Science, Vol. 4590,
pp.121–125, Springer.

Beyer, D., Henzinger, T.A., Jhala, R. and Majumdar, R. (2007) ‘The software model checker
blast’, International Journal on Software Tools for Technology Transfer (STTT), Vol. 9,
No. 5, pp.505–525.

Controllability for discrete event systems modelled in VeriJ 239

Bogdoll, J., Fioriti, L.F., Hartmanns, A. and Hermanns, H. (2011) ‘Partial order methods for
statistical model checking and simulation’, in Proc. of Joint 13th IFIP WG 6.1 International
Conference on Formal Methods for Open Object-based Distributed Systems and 31st IFIP
WG 6.1 International Conference on Formal Techniques for Networked and Distributed
Systems (FMOODS/FORTE), Lecture Notes in Computer Science, Vol. 6722, pp.59–74,
Springer.

Bogholm, T., Kragh-Hansen, H., Olsen, P., Thomsen, B. and Larsen, K. (2008) ‘Model-based
schedulability analysis of safety critical hard real-time Java programs’, in Proc. of the 6th
Int. Workshop on Java Technologies for Real-time and Embedded Systems, pp.106–114,
ACM Press.

Bouton, C.L. (1901) ‘Nim, a game with a complete mathematical theory’, The Annals of
Mathematics, Vol. 3, Nos. 1/4, pp.35–39.

Burch, J., Clarke, E., McMillan, K., Dill, D. and Hwang, L. (1992) ‘Symbolic model checking:
1020 states and beyond’, Information and Computation, Vol. 98, No. 2, pp.142–170.

Chomsky, N. (1962) Context-free Grammars and Pushdown Storage, in Quarterly Progress
Report No. 65, pp.187–194, MIT Research Lab. Elect.

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Zheng, H. et al. (2000)
‘Bandera: extracting finite-state models from Java source code’, in Software Engineering,
Proceedings of the International Conference on, pp.439–448, IEEE.

David, A., Grunnet, J., Jessen, J., Larsen, K. and Rasmussen, J. (2012) ‘Application of
model-checking technology to controller synthesis’, in Formal Methods for Components and
Objects, Vol. 6957 of LNCS, pp.336–351, Springer.

Flanagan, C. and Qadeer, S. (2002) ‘Predicate abstraction for software verification’, SIGPLAN
Notices, Vol. 37, No. 1, pp.191–202.

Havelund, K. (1999) ‘Java PathFinder, a translator from Java to Promela’, in Proceedings of the
5th and 6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN
Model Checking, Lecture Notes in Computer Science, p.152, Springer.

Holzmann, G.J. (1997) ‘State compression in SPIN: recursive indexing and compression training
runs’, in Proc. of the 3nd International SPIN Workshop.

Ivančić, F., Yang, Z., Ganai, M., Gupta, A. and Ashar, P. (2008) ‘Efficient SAT-based bounded
model checking for software verification’, Theoretical Computer Science, Vol. 404, No. 3,
pp.256–274.

Jessen, J., Rasmussen, J., Larsen, K. and David, A. (2007) ‘Guided controller synthesis for
climate controller using UPPAAL TIGA’, in Proc. of the 5th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS ‘07), Lecture Notes in
Computer Science, Vol. 4763, pp.227–240, Springer.

Laarman, A., Pol, J. and Weber, M. (2011) ‘Parallel recursive state compression for free’, in Proc.
of the 18th International SPIN Workshop, Lecture Notes in Computer Science, Vol. 6823,
pp.38–56, Springer.

Lime, D., Roux, O., Seidner, C. and Traonouez, L. (2009) ‘Romeo: a parametric model-checker
for Petri nets with stopwatches’, in Tools and Algorithms for the Construction and Analysis
of Systems, 15th Int. Conference, TACAS, Vol. 5505 of LNCS, pp.54–57, Springer.

Miremadi, S., Akesson, K., Fabian, M., Vahidi, A. and Lennartson, B. (2008) ‘Solving two
supervisory control benchmark problems using supremica’, in the 9th Int. Workshop on
Discrete Event Systems (WODES ‘08), pp.131–136, IEEE.

Moor, T., Schmidt, K. and Perk, S. (2010) ‘Applied supervisory control for a flexible
manufacturing system’, in 11th Int. Workshop on Discrete Event Systems (WODES ‘10),
pp.253–258, IFAC/Elsevier.

240 Y. Zhang et al.

Oettinger, A.G. (1961) ‘Automatic syntactic analysis and the pushdown store’, in Structure of
Language and its Mathematical Aspects, Vol. 12 of Symposia on Applied Mathematics,
pp.104–129, American Mathematical Society.

Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Person, S. and
Pape, M. (2008) ‘Combining unit-level symbolic execution and system-level concrete
execution for testing NASA software’, in Proc. of the Int. Symposium on Software Testing
and Analysis, ISSTA, pp.15–26, ACM Press.

Ramadge, P.J. and Wonham, W.M. (1987) ‘Supervisory control of a class of discrete event
processes’, SIAM Journal on Control and Optimization, Vol. 25, No. 1, pp.206–230.

Sistla, A. and Godefroid, P. (2004) ‘Symmetry and reduced symmetry in model checking’,
ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 26, No. 4,
pp.702–734.

Zareiee, M., Dideban, A., Orouji, A. and Alla, H. (2012) ‘A simple Petri net controller in
discrete event systems’, in 14th IFAC Symposium on Information Control Problems in
Manufacturing, Vol. 14, pp.188–193.

Zhang, Y., Bérard, B., Kordon, F. and Thierry-Mieg, Y. (2010) ‘Automated controllability and
synthesis with hierarchical set decision diagrams’, in Proc. of the 11th Int. Workshop on
Discrete Event Systems (WODES), pp.291–296, IFAC/Elsevier.

Zhang, Y., Bérard, B., Hillah, L.M., Kordon, F. and Thierry-Mieg, Y. (2011) ‘Modeling complex
systems with VeriJ’, in Proc. of the 5th Int. Workshop on Verification and Evaluation of
Computer and Communication System (VECOS), pp.34–45, British Computer Society.

Zhang, Y. (2010) ‘Modeling automated highway systems with VeriJ’, in Modelling and Verifying
Parallel Processes (MOVEP ‘10), pp.138–143.

