
Have you found the error?
A Formal Framework for Learning Game Verification

A. Yessad, I. Mounier, J-M. Labat, F. Kordon, and T. Carron

LIP6, CNRS UMR 7606, Université P. & M. Curie – Paris 6
4, place Jussieu, F-75252 Paris Cedex 05, France

Amel.Yessad@lip6.fr, Isabelle.Mounier@lip6.fr,Jean-Marc.Labat@lip6.fr,
Fabrice.Kordon@lip6.fr, Thibault.Carron@lip6.fr

Abstract. Specifications of of Multi-Player Learning Games (MPLG) are ex-
pressed collaboratively by designers who don’t speak the same conceptual lan-
guage. Often, specifications contain design errors and inconsistencies that are
difficult to detect in playtests. In this paper, we present a formal framework to
assist designers in modeling and automatic verification of learning games at the
design stage of development process.

Keywords: Multi-Player Learning Game, Learning Game Verification, Instruc-
tional Design, Game Design, Model Checking, Symmetric Petri nets.

1 Introduction

Context Learning Games can be defined as “a virtual environment and a gaming ex-
perience in which the contents that we want to teach can be naturally embedded with
some contextual relevance in terms of the game-playing [...]” [1]. Multi-Player Learn-
ing Games (MPLG) are learning games involving multiple players who are competitors
or collaborators.

MPLGs are software applications resulting from costly and complex engineering
processes, involving multiple stakeholders (domain experts, game designers, learning
designers, programmers, testers, etc.) who often do not speak the same language. Usu-
ally, at the end of the development process of MPLGs, testing activities are conducted
by humans testers who explore the possible executions of the game to detect both de-
sign errors and programming bugs. However, the design errors are particularly hard to
find and so specifications and design properties become hard to verify. This observation
is more true for MPLGs implying multiple players which are concurrent and dynamic
systems implementing complex interactions between game universe and players.

Problem First, the difference between the language used by game designers and the
language of learning designers can lead to inconsistency and design errors in speci-
fications. In this context, the construction of a rigorous specification clarifies several
aspects of system behaviour that are not obvious in an informal specification. Then,
the complexity and dynamic nature of MPLGs makes more difficult the verification of
properties on specifications, only by playtests. Indeed, it is widely acknowledged that it
is cost-effective to spend more efforts at the specification stage, otherwise, many flaws

would go unnoticed only to be detected at the later stages of software development that
would lead to iterative changes to occur in the development life cycle [2]. In addition,
the exploration of all possible execution paths of MPLG scenarios is impossible man-
ually due to their huge number. For example, it is difficult for learning designers to
ensure, in game specifications, properties such as the winner of the game is always a
player that has acquired all domain skills or to ensure that it is proposed systematically
a reinforcement activity to a player who fails in a game level.

Contribution We advocate to check the properties of MPLGs (such as those mentioned
above) at the design stage before starting the programming stage in order to reduce cost
of testing activities and verify these properties automatically. We propose a framework
in order to formalize and verify game scenarios, at the design stage. Our objective is
to ensure that a MPLG satisfies properties which are extremely difficult to assess only
by means of playtests. Thus, once the verification is performed on an abstract design,
development starts from a validated design. After this formal verification, the test of
MPLGs would be less costly.

This paper presents a formal approach enabling automatic verification of MPLG
properties. Among the available techniques, we chose the Petri nets to formally specify
the MPLG and the model checking techniques to verify properties.

Petri nets are a mathematical notation suitable for the modeling of concurrent and
dynamic systems [3]. Due to the dynamic nature of learning games, we selected a par-
ticular Petri net model: Symmetric net with bags. Model checking is a powerful way to
verify systems; it provides automatically complete proof of correctness, or explains, via
a counter-example, why a system is not correct [4]. This counter-example can be used
to pinpoint the source of the error [5].

Content The following section draws a parallel with the related work. Section 3
presents classification of properties for MPLGs. Section 4 details our verification frame-
work. Then, we apply it to a case study in section 5. Section 6 presents a discussion of
our approach.

2 Related Work

Petri nets are widely used in both academia and industry to model concurrent systems
since they are well adapted to this class of problem. However, only a few studies address
the use of Petri nets and model checkers for Multi-Player Learning Games.

Moreover, in most cases, Petri nets are used to analyze game scenarios in order to
adapt them to the player. In [6], the authors discuss the applicability of Petri Nets to
model game systems and game flows compared with other languages such as UML.
The work presented in [7] uses place/transition Petri nets to assess the progression of
players in games once they are developed.

Other studies focus on the analysis of game scenarios at the design stage. For in-
stance, the “Zero game studio” group [8] uses causal graphs to model game scenar-
ios. The work presented in [9] defines a set of safety and liveness properties of games
that should be verified in the game scenarios before their implementation. In the do-
main of Technology-Enhanced Learning, Petri nets are used to capture characteristics

of learning process. In particular, Hierarchical Petri nets are used in [10] to model good
properties. The objective is to help designers to optimize e-learning processes.

We consider these research studies to be close to ours. The originality of our work
can be summarized in three points:

– our work aims to detect inconsistencies between learning designers and game de-
signers who do not speak the same conceptual language. Designers may have dif-
ficulties to describe consistent and non-ambiguous specifications of MPLG scenar-
ios;

– the formal framework that we propose addresses the learning and the game proper-
ties at the same time;

– the model of Petri Nets that we chose and its optimized model checking techniques
allow us to verify specifications automatically in a finite time.

3 Classification of properties for MPLGs

Our work aims at verifying automatically properties of MPLGs at the design stage. We
classify expected properties along two axes (see table 1). A MPLG is a system which
combines features relating to games and learning. Thus, the first classification axe deals
with the type of a property:

– Learning properties are related to the learning characteristics like the skills, the
business process or the quizzes .

– Gaming properties are related to the game universe like win a duel, avoid the mon-
ster or unlock the door.
The second axis defines the scope of a property (and therefore, the algorithms that

are used to verify it):
– Invariant properties are always verified in the learning game, i.e., in any state of

the game.
– Reachability properties are verified in at least one game state that can be reached

from the initial one. The occurrence or not of this state depends on the player’s
actions.

– Temporal properties are expressed using a temporal logic like CTL or LTL [5]
and define causal relations between several states in the game.
Table 1 provides examples of properties that show intersection between the two

axes. The problem is thus to be able to verify such types of properties. For this purpose,
we need (1) a formalization for expressing constraints and properties of a MPLG and
(2) an operational framework for automatic verification of these properties.

4 Verification Framework

Today, the MPLG companies and even the video game companies use human testers to
detect errors in games. Obviously, this method is costly and unreliable (most of games
receive several patches after their release date). In our approach, we assume that the
MPLG scenarios become more reliable and the development less costly if specifications

Learning-dependent Game-dependent
In

v.
“The learner can always improve his
skills or at least maintain them” "The
player can always call for help”

"It is always possible to perform an ac-
tion before the game ends”, "a player can
always replay an action"

R
ea

ch
.

“The player can acquire all skills", "The
player reaches a quiz"

“The player can reach the virtual lab”,
“ "The player can win (respectively lose)
the game", "’win a duel", "avoid the mon-
ster" or "unlock the door"

Te
m

p. “The player can not complete the level as
long as he does not have the competence
C”

“The player must perform at least one
game action before winning or loosing”

Table 1. Classification of properties (invariant, reachability and temporal)

are verified prior to programming stage. This early verification is particularly adapted
to verify properties such as the ones presented in section 3.

Before presenting our verification approach, we propose a generic pattern describ-
ing a wide range of MPLGs that fits our approach. The verification method is presented
in [11].

4.1 Generic Pattern for MPLGs

We are interested in MPLGs where game scenarios are composed of independent activ-
ities, often presented to players as challenges. An activity can have inputs and outputs.
The inputs require that a player has some skills and is in a specific virtual state (a state
of the player in the game, ex. the player has the key or he finds the exit of the labyrinth,
etc.). Thus, only players with the required skills and virtual state may perform the ac-
tivity. At the end of the activity, players can acquire new skills and be in a new virtual
state, depending on their performances. The new skills and virtual state represent the
outputs of the activity.

Figure 1 shows an activity diagram of a MPLG scenario. Activities can be per-
formed in sequence (e.g. Act1, then Act2), in parallel (e.g. Act2 and Act3) or are collab-
orative (e.g. Act6 requires players 1 and 2 to be performed).

4.2 Symmetric Petri Nets with Bags (SNB)

Among the multiple variants of Petri Nets, we chose the Colored nets that are neces-
sary to get a reasonable sized specification, thanks to the use of colors to model data.
Next, within the large variety of colored Petri Nets, we selected Symmetric Nets with
Bags (SNB) [12] where tokens can hold bags of colors. They support optimized model
checking techniques [13] allowing to verify properties of MPLG. Moreover, the notion

Act1 Act2 Act4

Act3 Ac t5

Act6
s

1 s
2

s
2
s

4

s
2
s

3
,s

4

Player 1

skill1
skill1 ,skill2

skill
1
,skill2 ,skill3

skill1 ,skill2

Player 1 Player
1

Player 2 Player
2

Player
1

Player
2

Fig. 1. Scenario of a learning game

of bags is relevant to model some dynamic aspects (game objects can appear or dis-
appear, knowledge of players can increase or decrease) that are typical of MPLGs in a
much simpler way than with most other colored Petri nets.

We provide here a short and informal presentation of Symmetric Nets and use them
to model the generic pattern of MPLG we presented.

Informal Definition and Example A Petri net is a bipartite graph composed of places
(circles), that represent resources (e.g, the current state of a player in the game) and
transitions (rectangles) that represent actions and consume resources to produce new
ones. Some guards ([conditions] written near a rectangle) can be added to transitions.

The SNB of Figure 2 models activities of MPLG. Place beforeActivity holds
players and their context: skills and virtual state (stored in bags). The initial marking
M in place beforeActivity contains one token per player (identified by p) with his
initial skills and virtual state (sets S and V respectively). Place activityDesc holds
the required skills and virtual states for each activity. The initial marking M’ in place
activityDesc contains a token per activity (identified by a) with its prerequisite (S-In
and V-In) and the information needed to compute the consequence of the activity on
the player (in terms of S-Out and V-Out).

Each activity begins (firing of transition start) only when players’ skills and their
virtual states include the prerequisite of the activity. Then, the activity may end in fail-
ure (transition looseA) or successfully (transition winA). Functions fwin and floose
represent the evolution of skills and virtual states of players at the end of the activity
(dropped in place beforeActivity). A player wins when winCond is true, it expresses
conditions on skills or/and virtual state.

The SNB shown in figure 2 allows us to model with very abstract and concise man-
ner MPLG scenario. This powerful expressiveness allows us to have the whole scenario
on a “small” graph (useful for automatic execution) but for a better understanding, it is
possible to imagine it “deployed”: one SNB for each activity.

SNB preserve the use of symmetry-based techniques allowing efficient state space
analysis [13] that is of particular interest for the formal analysis of MPLGs. The model
in Figure 2 is exactly the one that is verified (once max values defined), it is not manda-
tory to instantiate it per activity and player. We have thus a powerful formalism and
some tools [13] to verify the expected properties of a MPLG.

5 Case Study: multi-players and concurrent scenarios

We have applied our automatic verification approach to multi-players, parallel, concur-
rent or collaborative scenarios of MPLGs in order to test the feasibility of our formal
framework. We present the results obtained when studying the "Wonderland" MPLG.

<p,
{S}

,{V
}>

<p,
{S}

,{V
}> <p,

{S}
,{V

}>
<p,

{S}
,{V

}>

<p
, {f

win
s(a

, S,
 S-

In,
 S-

Ou
t)}

,

 {fw
inv

(V,
 V-

In,
V-O

ut)
}>

<p,
 {S

}, {
V}

>

<a,
 p,

{S}
,{V

},
{S-

In}
,{V

-In
},

{S-
Ou

t},
{V

-O
ut}

>

<a,
 p,

{S}
,{V

},{
S-I

n},
{V

-In
},{

S-O
ut}

, {V
-Ou

t}>

<p
, {f

loo
ses

(a,
S, S

-In
, S-

Ou
t)}

,

 {fl
oos

ev(
a, V

, V
-In

, V
-Ou

t)}
>

<a,
 p,

{S}
,{V

},
{S-

In}
,{V

-In
},

{S-
Ou

t},
{V

-O
ut}

>

<a,
{S-

In}
,{S

-In
},{

S-O
ut}

,{V
-O

ut}
>

<a,
{S-

In}
,{S

-In
},{

S-O
ut}

,{V
-O

ut}
> wi
nn
er

[no
t w

inC
ond

(S,
V)]

con
tin
ueG

am
e

[wn
iCo

nd(
S,V

)]

win
Ga
me

cla
ss

 A
ctiv

itie
s is

 1..
ma

xA
ct;

 P
lay

ers
 is

1..m
axP

lay
ers

;
 S

kil
ls i

s 1
..m

axS
kil

ls;
 V

irtu
alO

bje
cts

 is
1..m

axO
bje

cts
;

Do
ma

in
 B

agS
kil

ls i
s b

ag(
Sk

ills
);

 B
agV

irtu
alO

bje
cts

 is
bag

 (V
irtu

alO
bje

cts
);

 P
CV

 is
<P

lay
ers

,Ba
gSk

ills
,Ba

gV
irtu

alO
bje

cts
>;

 A
CV

CV
 is

<A
ctiv

itie
s,B

agS
kill

s,B
agV

irtu
alO

bje
cts

,

 Ba
gSk

ills
, B

agV
irtu

alO
bje

cts
>;

 A
PC

VC
V i

s <
Ac

tivi
ties

,Pla
yer

s,B
agS

kill
s,

 Ba

gV
irtu

alO
bje

cts
, B

agS
kill

s,B
agV

irtu
alO

bje
cts

>;
Va

r
 a

 in
Ac

tivi
ties

;
 p

 in
Pla

yer
s;

 B
S,

BS
1, B

Sp
 in

uni
que

 Ba
gS

kil
ls;

 B
V,

BV
1, B

Vp
 in

Ba
gV

irtu
alO

bje
cts

;

M
bef
ore
Ac
tiv
ity

inA
cti
vit
y

[V-
In

inc
lud

ed
in V

 an
d

S-I
n in

clu
ded

 in
S]

sta
rt

loo
seA

wi
nA

aft
erA

cti
vit
y

M'
act
ivi
tyD

esc

Fig. 2. Modeling game activities with SNB.

5.1 Brief Presentation of the Wonderland Scenario

The “Wonderland” MPLG aims to train pupils of the primary school to solve arithmetic
problems. Knights (the players) have to find and liberate a princess kidnapped by a
dragon. To succeed, the knights have to resolve arithmetic problems. In term of skills, a
player wins when he holds all the skills, therefore winCond is card(S) = maxSkills.

Designers have described activities that allow players to progress in the scenario.
The activity specifications were as always described by text which makes them ambigu-
ous and non-exhaustive. In this context, the use of Petri net models allows designers to
describe the MPLG behaviour formally and to verify it automatically in order to detect
design errors.

First, the textual specifications of Wonderland scenario are analyzed manually in
order to identify for each activity (1) its prerequisite skills and input virtual states and
(2) the acquired skills and the output virtual states, at the end of the activity. Then, de-
signers gave a list of properties that the scenario has to verify. Thanks to our properties
classification (cf. section 3), we had classified these properties. For clarity reasons, we
present only subset of activities in table 2 and subset of properties in the table 3, useful
for explaining our approach. In the following, we will verify automatically if properties
of the table 3 are satisfied given the specifications of the table 2. Design errors and
inconsistencies were detected, have you found these errors?

Activities Inputs Outputs

level on hard addi-
tions and hard sub-
tractions (a8)

“simple additions" (sk2),
“simple subtractions" (sk3),
“player meets a wizard" (s7)

“complicated additions" (sk4),
“complicated subtractions" (sk5),
“player wins telescopic ladders"
(s8), “the player fights against the
dragon" (s14)

level on simple multi-
plications (a9)

“simple additions" (sk2),
“simple subtractions" (sk3),
“player on one side of the
gorges" (s9)

“simple multiplications" (sk6),
“player on the other side of the
gorges" (s10)

level on simple multi-
plications (a10)

“simple additions" (sk2),
“simple subtractions"
(sk3),“player wins tele-
scopic ladders"(s8)

“simple multiplications" (sk6),
“player on one side of the gorges"
(s9)

level on multiplica-
tion tables (a11)

“simple additions" (sk2),
“simple subtractions"
(sk3),“player on the other
side of the gorges"(s10)

“multiplication tables" (sk7),
“player reaches the dragon tower"
(s11)

level about finding
errors on simple mul-
tiplications (a12)

“simple additions" (sk2),
“simple subtractions"
(sk3), “player helps the
tower guard to finish his
homework " (s12)

“simple multiplications" (sk6),
“tower guard opens the tower
door for rewarding the player"
(s13), “the player fights against the
dragon"(s14)

reinforcement level
on simple multiplica-
tions (a13)

“player on one side of the
gorges" (s9)

“simple multiplications" (sk6),
“player on the other side of the
gorges"(s10)

reinforcement level
on simple multiplica-
tions (a14)

“player reaches the dragon
tower" (s11)

“simple multiplications" (sk6),
“player helps the tower guard to
finish his homework " (s12)

level on complicated
multiplications (a15)

“the player fights against
the dragon"(s14)

“complicated multiplications"
(sk8), “player kills the dragon and
frees Princess" (s15)

reinforcement level
on complicated
multiplications (a16)

“simple multiplications"
(sk6), “the player fights
against the dragon"(s14)

“complicated multiplications"
(sk8), “player captures the dragon"
(s16)

Table 2. Inputs and outputs of a subset of Wonderland activities (levels)

Learning-dependent Game-dependent
In

v.
“A player who acquires all skills wins
the game", “No player may liberate the
princess without all the skills"

“Only one player can win the game and
all others lose it”, “The player wins
only when he liberates the princess"

R
ea

ch
.

“Each skill can be acquired", “A player
can win the game"

“A player can win telescopic lad-
ders”, “At least one player can kill the
dragon”

Te
m

p. “The learner can always improve his skills
or at least maintain them”, “The player
can not acquire the skill “complicated
multiplication" (sk8) as long as he does
not have the skill “simple multiplication"
(sk6)”

“The player has to meet the wizard be-
fore winning the telescopic ladders”

Table 3. Classification of Wonderland properties (invariant, reachability and temporal)

Modeling the Wonderland scenario We instantiated the generic pattern of figure 2
into the model of figure 3 where Activities = {a8, ...,a16}, Skills = {sk2, ...,sk8} and
PlayerStates = {s7, ...,s16} in order to verify the part of Wonderland scenario corre-
sponding to the activities of the table 2,. The initial marking M’ of place activityDesc
contains tokens corresponding to the different activities and their inputs and outputs. For
example we have for the activity a8 the token 〈a8,{sk2,sk3},{s7},{sk4,sk5},{s8}〉 and
for the activity a16 the token 〈a16,{sk6}, {s14},{sk8},{s16}〉.

The Wonderland SNB models how players acquire skills and virtual states. For
instance, the activity description 〈a8,{sk2,sk3},{s7},{sk4,sk5},{s8}〉 means that the
player who is in the state {s7} can perform the activity a8 if he has already acquired
the skills {sk2,sk3} . If he performs this activity successfully he acquires the skills
{sk4,sk5} and reaches the new state {s8}. On the other hand, when a player loses an
activity, we assume, in the case of Wonderland, that its skills and virtual state are not
changed. But other strategies are possible (change his virtual state, call into question
his skills , etc.) The Wonderland scenario allowed us to simplify the generic model by
merging places beforeActivity, afterActivity and winner. In this SNB, the game
scenario continues as long as at least one player has not acquired all the skills. This
property is guaranteed by the guard card(S) < 7, associated to the transition start and
means that the player has not yet all skills (in our case 7). We consider that a player
wins when he has all the skills.

Verification Once the properties are specified for a MPLG scenario, we formalize them
for the automatic verification. In our case, we use (1) the temporal logic to formalize the
properties and (2) both the CPN-AMI [14] and the Crocodile tool [13] as model check-
ers, able to process efficiently Symmetric Nets. These model checkers terminate (if we

<a,{S-In},{V-In},
 {S-Out}, {V-Out}>

<a,{S-In},{V-In},
 {S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

<a, p, {S},{V},
{S-In},{V-In},
{S-Out}, {V-Out}>

<p, {S}, {V}>

<p, {S}, {V}> <p, {S U S-Out},
{V} U {V-Out} \ {V-In} >

M'activityDesc

winActivity

looseActivity

[V-In included in V and
S-In included in S and
not winCond(S,V)]

start

inActivity

M

beforeActivity

Fig. 3. Part of the Wonderland game model

have sufficient memory resources and consider finite systems) with a positive answer
or a negative one. If one property is not verified (negative answer), the model checker
provides a counter-example. This counter-example is useful to pinpoint the source of
the error and to correct the specifications. Since the formal representation of the MPLG
allows the construction of the reachability/quotient graph, we can verify automatically
invariant, reachability or temporal properties. The properties presented in the table 3 are
informally specified but they were described by temporal logic formulas [4] and model-
checked automatically with Crocodile tool. It provided us either a complete proof of
correctness of properties or a counter-example.

Ending and winning properties Let us first define the property winner(p) stating that
a player won the game. The learning-dependent associated property provided by the
learning designer is “The player who acquires all skills wins the game" (cf. the table
3). Therefore, winner(p) is true if: ∃〈p,{S},{V}〉 ∈ be f oreActivity such that card(S) =
maxSkills. In other words, there is a player token in place beforeActivity such that
the set of the player’s skills contains all the possible skills (in our case 7).

We call WinningProperty the property that ensures that a player can win the game:
WinningProperty⇔∃p∈ Players,winner(p) (corresponding to the property “A player
who acquires all skills wins the game"). We call EndingProperty the property identi-
fying the end of the game. The game designer specified it as “Only one player can win
the game and all others lose it” (cf. the table 3), it was formalized as follows: ∃!p ∈
Players,winner(p).

The Crocodile tool has proved the first property and gave us counter-examples for
the second one. It allowed us to detect an inconsistency in specifications between the
game designers and the learning designers. Once the inconsistency detected, the de-
signers must agree on the solution to implement. If they want to model a game where
only one player can win (i.e. once a player wins, the others cannot begin a new activity)
they must change the guard of transition start. This transition can be fired only if the

marking of place beforeActivity does not contain a token 〈p,{S},{V}〉 such that
winner(p).

The learning-dependent property “No player may liberate princess without all the
skills" and the game-dependent one “The player wins only when he liberates the princess"
associate the winning condition to the liberation of the princess. Crocodile tool allows
us to detect inconsistencies between the two winning views (acquisition of all the skills
and liberation of the princess) and the specification of the game given in table 2.

A player could liberate the princess without acquiring the skills {sk6,sk7}. The
counter-example is the activity sequence: 〈a8,a15〉. The inputs of action a15 have to be
modified. The skills simple multiplications {sk6} and multiplication tables {sk7} seem
to be necessary to perfom the action a15 that gives the skill complicated multiplications.

A player could acquire all the skills without liberating the princess. It occurs with
the following activities sequence : 〈a8,a10,a13,a11,a14,a12,a16〉. The players has all the
skills, therefore he wins, he has captured the dragon but he didn’t liberate the princess.
Thus, the model checker allowed us to detect this problem and to correct it in the learn-
ing game specifications by modifying the output of the activity a16 by specifying the
state s16 as “players captures the dragon and frees the Princess”.

Scheduling properties Among the temporal properties we have verified, the Crocodile
tools allowed us to detect a problem in specifications about the property “The player
can not acquire the skill “complicated multiplication" (sk8) as long as he does not
have the skill “simple multiplication" (sk6)”. Indeed, the Wonderland SNB allows a
sequence〈a8,a15〉 where a player performs the activity a15 that allows to acquire the
skill sk8 before performing one of the activities a9, a10, a12, a13 or a14 that allow to
acquire the skill sk6. Thus, it is possible for a player to acquire the skill sk8 before the
skill sk6. We corrected this error by adding the skill sk6 as input for the activity a15.

Learning process property We want to verify that a player always has the possibility
to increase his skills (until he wins the game). Such a property is a temporal logic
property since it is necessary to compare the states along each execution. We call
increaseSkillsProperty the associated property.

We define first the increaseStrictly(s,s′, p) property where s and s′ are two states
and p a player. increaseStrictly(s,s′, p) is true if the set of skills of player p at state s is
strictly included in the set of skills of player p at state s′.

Then, increaseSkillsProperty = ∀p ∈ Players, ∀s, a reachable state, the set of
skills is equal to Skills or there is a path leading to s′ such that increaseStrictly(s,s′, p).

This important learning-dependent property would have been very difficult to be
verified manually. The use of Crocodile tool allowed us to validate it in the Wonderland
scenario.

6 Discussion

We had the opportunity to use our framework with learning game designers. We got
some interesting feedback that we have structured in four sections.

Petri net construction and abstraction level The construction of Petri net models
by designers was the most big obstacle in their appropriation of the formal framework.
We proposed the generic pattern of learning games in order to resolve even partially
this problem. Indeed, it is less complicated to ask designers to describe a set of game
activities in terms of inputs and outputs than to construct by themselves the Petri net.
After that, transformation of the designer’s description towards a SNB is obtained auto-
matically. The most frequent feedback of designers were the issue of granularity of the
activities. It was so difficult for designers to find the good abstraction level to describe
the activities. Some designers considered that an activity is a game level and they were
not focusing inside levels whereas others had more detailed abstraction and considered
that an activity is a puzzle inside the level.

Complete and formal specifications In the video game industry, development teams
use agile methods where the specifications are rarely described completly and formally
at the beginning of the development. One reason to this is that playtest is the only
method to detect bugs and so it is important to start production very fastly. Our approach
is different because it requires complete description of the specifications before starting
the production stage. In this sens, our approach seems constraining but in the context of
MPLGs, it allows to discover errors and inconsistencies that playtests can not discover
or discover too late. Other research have to be conducted to adapt or propose platforms
that offer designers of MPLGs a high level of abstraction for their specification work,
which is independent of any programming language, while rich enough to express their
needs.

Property-oriented specifications In the property-oriented approach, the system’s be-
haviour is defined indirectly by stating its properties. These properties are verified on
SNB models automatically. During our experiences with designers, we observed that
the property-oriented approach is not natural for designers. Currently, we are work-
ing on some property patterns for helping designers to express properties about their
MPLG. These patterns are extracted from most frequent properties expressed on speci-
fications of some MPLG. Ultimately, it would be interesting to build a base of reusable
property patterns that designers can query according to their abstract needs.

Common language The proposed framework offers a common language to design-
ers in order to describe their learning game activities and properties of MPLG. This
language can be constraining but designers explained us that it is a good mean to give
learning designers and game designers common and consensual language. The use of
the model checking tool as third component at design stage made more easier the com-
munication and had reduced conflict between designers.

Other experiments are underway and would allow us to assess more the framework.

7 Conclusion

We presented a verification framework allowing the formal modeling and the automatic
verification of MPLG scenarios. Our objective is to reduce cost of MPLGs development
by enabling detection of specification errors and inconsistencies at the design stage.

One interesting point of our approach is to provide tools helping both learning de-
signers and game designers to verify the MPLG specifications. In particular, we propose
a classification of properties that designers may need to verify in scenario. The class of
a property determines the most efficient algorithm for verifying the property.

Another important point is the use of Symmetric Petri net with bags that better
tackle the combinatorial explosion problem intrinsic to the model checking of MPLG
specifications. We have focused this paper on the verification of the learning-dependent
properties but our model checkers verify also the game-dependent properties.

We applied our approach to specifications of a MPLG “Wonderland” and we were
able to detect inconsistencies and errors in the properties specified by learning and game
designers.

Future Work Other research are conducted to extend the framework in order to support
the verification of properties related to collaboration and to concurrency in MPLGs. We
are also working on an editor to assist designers in building SNB models. We have con-
sidered MPLGs composed of independent activities, we now have to put our framework
to the test of other types of MPLGs and adapt it if necessary.

References

1. C Fabricatore. Learning and Videogames: an Unexploited Synergy. In 2000 AECT National
Convention. Secaucus, NJ : Springer Science + Business Media, 2000.

2. Rajib Mall. Fundamentals of Software Engineering. Prentice-Hall of India Private Limited.
Rajkamal Electric of India Private Limited.

3. K. Jensen and L. Kristensen. Coloured Petri Nets : Modelling and Validation of Concurrent
Systems. Springer Verlag - ISBN: ISBN 978-3-642-00283-0, 2009.

4. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Schnoebelen.
Systems and Software Verification. Model-Checking Techniques and Tools. Springer, 2001.

5. E.M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
6. Manuel Araújo and Licínio Roque. Modeling Games with Petri Nets. In 2009 Digital Games

Research Association Conference. Brunel Univ., September 2009.
7. Amel Yessad, Pradeepa Thomas, Bruno Capdevila Ibáñez, and Jean-Marc Labat. Using the

petri nets for the learner assessment in serious games. In ICWL, pages 339–348, 2010.
8. Craig A. Lindley. The gameplay gestalt, narrative, and interactive storytelling. In Proceed-

ings of the Computer Games and Digital Cultures Conference, pages 6–8, 2002.
9. R. Champagnat, A. Prigent, and P. Estraillier. Scenario building based on formal methods

and adaptative execution. In International Simulation and gaming association, Georgia Tech,
USA, 2005.

10. Feng He and J. Le. Hierarchical Petri-nets model for the design of e-learning system. In 2nd
international conference on Technologies for e-learning and digital entertainment, pages
283–292. Springer, 2007.

11. Amel Yessad, Isabelle Mounier, Thibault Carron, Fabrice Kordon, and Jean-Marc Labat.
Formal Framework to improve the reliability of concurrent and collaborative learning games.
EAI Endorsed Transactions on Serious Games Journal, page to appear, 2014.

12. S. Haddad, F. Kordon, L. Petrucci, J-F. Pradat-Peyre, and N. Trèves. Efficient State-Based
Analysis by Introducing Bags in Petri Net Color Domains. In 28th American Control Con-
ference (ACC), pages 5018–5025. Omnipress IEEE, 2009.

13. M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. Crocodile: a Symbolic/Symbolic
tool for the analysis of Symmetric Nets with Bag. In 32nd International Conference on Petri
Nets and Other Models of Concurrency, volume 6709 of LNCS, pages 338–347. Springer,
June 2011.

14. A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault, and Y. Thierry-Mieg.
New features in CPN-AMI 3 : focusing on the analysis of complex distributed systems. In 6th

International Conference on Application of Concurrency to System Design (ACSD), pages
273–275, Turku, Finland, June 2006. IEEE Computer Society.

