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Abstract. Symbolic data structures such as Decision Diagrams have proved suc-
cessful for model-checking. For high-level specifications such a@setlused in
programming languages, especially when manipulating pointers osatrayd-

ing and evaluating the transition is a challenging problem that limits wider appli-
cability of symbolic methods.

We propose a new symbolic algorithBEguivSplit allowing an efficient and fully
symbolic manipulation of transition relations on Data Decision Diagrams. It al-
lows to work with equivalence classes of states rather than individuakstate
Experimental evidence on the concurrent software oriented bemkhBtzEM
shows that this approach is competitive.

1 Introduction

Model-checking of concurrent software faces state spagson. To address this is-
sue, many algorithms and data structures have been promsedf the most success-
ful being symbolic shared data structures such as BinarysioecDiagrams (BDD).

While BDD allow in many cases to cope with very large state epaexpressing
algorithms symbolically to take full advantage of the ddtacture is tricky. Symbolic
evaluation algorithms that are aware of the data structsedf such as saturation-style
algorithms [6, 10] can be orders of magnitude better thaveraraluation in a breadth-
first search manner.

The transition relation of a system kboolean variables, can be seen as a function
BK— 2B and is usually built and stored as a second decision diagfamith two
variables “before” and “after” for each variable of the ®mt A specific operation
between any subset of the state spaeacoded as a decision diagram and the transition
relationN yields a decision diagrai® = N(S) representing immediate successors.of

Let us define statements as (sequences of) assignmentsre$sixms to variables.
The support of a statement is the set of variables it readsritgsato. This notion of
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locality is heavily exploited, to limit the representatiohtransitions to the effect they
have on variables of their support. For each transition WiBoolean support variables,
worst case representation size fs IThe symbolic approach was successfully applied

to Boolean gate logic where encoding thake— 2B transition matrices is feasible.

But because classical approaches compute potential totpadtB” — 2]Bk/ tran-
sition matrices, a larger support for transitions meansegptial growth of the worst
case complexity in representation size. It also severgditdithe possibilities of satura-
tion-based techniques as their efficiency relies in clsdtessed on the support of tran-
sitions. Hence, a worst case for classical symbolic apprescs when the support of
transitions includes all variables.

Moreover, when the input specification includes array onfgsimanipulation, any
static analysis of statements will necessarily yield paisgic support assumptions. For
instance, a non-constant array access sudhj idls maydepend on the variablg 0] .

In classical approaches, pessimistic assumptions mustimall elements of the array
t in the support. Such expressions are commonly encountergmdeling languages
such as Promela or Divine [11, 2].

We propose in this paper to perform a dynamic analysis of statements as they
are being resolved, allowing to discover more locality mtémaining effects as expres-
sions are partially evaluated. This can avoid the problemsded by transitions with a
large syntactic support by only performing the computatitivat araeally necessary
Our algorithm exploits locality to optimize its evaluatias the support of expressions
may vary as the evaluation progresses.

In the dynamic case, when evaluatirig | , as soon as the value of the index expres-
sioni has been reduced to a constant, pessimistic assumptiobhg ¢argotten and the
support is reduced to the effective cell of the array thabéstarget of the assignment.

To have efficient symbolic computations of these statemerdgdefine an equiva-
lence relation over states with respect to the value of aresson; this induces equiv-
alence classes that can be built dynamically and manigb&tebolically. Intuitively,
if efficient manipulation of equivalence classes is possitiien the computation com-
plexity can be proportional to the number of such equivadesiasses rather than to the
number of actual states.

We define in this paper a new decision diagram based oper&tipivSplit that al-
lows to efficiently compute and manipulate such equivalatasses, in a way compat-
ible with the decision diagram encoding of states. Givenraasytreee for an arbitrary
expression, and a set of statésencoded as a decision diagram, we provide an incre-
mental and on the fly algorithm to efficiently compute a pantitof S= WS W...
where all states in & agree on the value @& and no two distinc§, S; agree on the
value ofe.

Outline. We first introduce notations for expressions and their {@utvaluation. We
then recall the definition of Data Decision Diagrams (DDD)gs the type of integer
valued decision diagrams we use in our implementation. \&e éxplain thé&quivSplit
algorithm and how it is used to evaluate and resolve exgressin sets of values stored
as DDD. To assess the applicability of our approach in practve study in section 5
the efficiency of our approach for Divine models taken fromtandard benchmark
(BEEM) and compare it to other symbolic approaches.



2 Expressions

We first define in 2.1 some concepts and introduce notatiaistiii be used through-
out the paper. The abstract level of these definitions gteearindependence from any
concrete syntax. We give flesh to these definitions with moreete examples in 2.2.

2.1 Definitions and notations

Let 2 be a signature, that is a set of symbols of finite arity. We atigialy define the set
Expr of Z-expressiongasg < Expr if and only if:
— @e 2 ofarity 0,
—or@=-s(@,...,¢) wherese X is of arityk and @, ..., @ € Expr (¢ is called a
sub-expression).
Let D be a domain for expressions. We assume Ehé embedded ik, so that
every element of the domain can be referred to syntactically

Definition 1. Aninterpretation is a function that associates to every symbeal 5 of
arity k > 0 a (possibly partial) function(s) : DX — D, and that maps each symbol of
arity 0 to its corresponding element of D.

Intuitively, this formalism captures most programmingdaages, with pointers and
pointer arithmetic. From now on, we assume that there is g fiibseX in D, called
addressesThe set of addressesbeing finite, we noteX = {x,...,Xx }. We assume
> contains a special symbdl of arity 1, that allows to access a memory slot given
its address. Note that a variable is just a symbolic name rioaddress. Thud,(d)
represents the content of the memory that varies as thegmmogims. Since we focus
on the evolution of the content of the memory, all the intetations considered from
now on are equal for the other symbols (i.e. the operaticeralastics for the symbols
of the language is known and fixed). ljet= | (8) designate &aluation i.e. the state of
the memoryu is seen as a (partial, when not all memory contents are knfwmajion
from X into D. Since all other symbols have a fixed interpretation, arrpméationl
can be described by simply providipg Furthermore, all symbols interpretations must
be complete functions (only the valuation is allowed to beagial function). Partial
interpretations can be completed by adding a special eletodd and mapping the
undefined domain onto this special element. This speciahai corresponds to an
error or an undefined behavior. Note that the interpretatmfrall symbols must take
into account this new special element.

Definition 2. Given an interpretation |, an expressign= s(@1, ..., ¢) (k> 0) evalu-
atesor reducego another expression eVl ¢) as follows:
I(s)eD if s is a symbol of arity
if eval(l,@) € D for all i and
I (s) is defined at this point
s(eval(l,@),...,eval(l,q)) otherwise.
If eval(l, @) € D, the evaluation isomplete

eval(l,@) =< I(s)(eval(l,@),...,eval(l,q)) € D



Notation. We will now abusively denote the evaluatiemal(l, ) wherel (8) = p
by eval(u, @). If @ is a (possibly nested) sub-expressiongfp[y + 6] denotes the
expression obtained by substituting the expres8itmy in ¢. Given a valuationu and
a subset of address¥sC X, py denotes the restriction gfto Y. With these notations,
we have, for any variable, any valuatiorp wherex is defined, and any expressign
@[5(x) < H(X)] = eval(ly(x;, 9)

We now define an equivalence relation on valuations withaetsip the evaluation
of an expression. In Section 4 this equivalence relatiorkeyanotion, allowing efficient
evaluation of expressions on sets of valuations.

Definition 3. Given a subset Y of X and an expressigror all valuations ' we
define the equivalence relaticwt[, as follows:

K W < eval(iy, @) = eval(y, @)

A trivial case of this equivalence is valuatiops? [/, that are equal oM.

2.2 Examples of Expressions

To help in visualizing these definitions, let us use as an @@mlanguage supporting
a C-like syntax. We give concrete examples here for eacheglenefined abstractly
above. We consider a language supporting integers andrtiaiipulation operators
(arithmetic+, -, * ...as well as bitwise operatiors,>>,...). The set of considered
operators are part of the signat@eThe domairD is thus integers. ThE-expressions
are built by syntactic combinations of operators, and tieedls O or 1 are also (terminal)
expressions (ab is embedded ix).

Then, by definition 1, we must provide an interpretation fiorcl that gives the
semantics of all the operators which are used in expressitesinterpretation function
works with constants; for our example we should provide tfieger output value for
each of the binary operators given two integers.

Consider now variables of the program "a,b,c". They are ssesymbolic names
and mapped to integers (memory addresses), for instari¢c2.0rhe special operator
0 allows to read the value of such a variable, hence the expreass interpreted as
5(0). We add the notion of array of fixed siz&h, and access to a cell of an array using
tab[]. Againtabis a symbolic name for a variable mapped to an integer, f¢ams 3
that is the first memory slot occupied by the array. Ttegdie] wheree is an arbitrary
expression is a syntactic sugar fi3 + e).

All operators should have complete interpretaticaydt must also be defined when
b = 0. For this purpose, one or more special constants can lmeluted. For a given
language manipulating finite types, the definition of theliptetation of most symbols
is usually straightforward. We consider that the intergien of all symbols excepi
is fixed throughout the computations. In other words we wiigtish the code (all other
symbols from the signature) from the data, representel &y that may vary as the
computation progresses.

Definition 2 formalizes partial evaluation of expressiorgeg an interpretation
function. For instance, suppogenly gives the content of memory slot 0, 389) = 12.



Let ¢ = add(5(0),5(1)) (usually noteda+ b). Theneval(y, ¢) = add(eval(y, 5(0)),
eval(p, 6(1))). We haveeval(p, 6(0)) = 1(8)(0) = u(0) = 12 . However, becaugeis not
defined for address Eval(p,d(1)) = 6(1). Hence,eval(p, @) = add(12,6(1)) (noted
12+ b).

As an example for Definition 3, any twg | such thaeval(y, a+b) = eval(i/,a+
b) are equivalent. For instance, if badtandb are inY, p= (a<+ 0,b+« 1), = (a+
1,b <+ 0) are equivalent. If onlyis in Y, pandy are not equivalent, since one yields
expression & b while the other yields % b.

3 Data Decision Diagrams (DDD) [9]

Let us now briefly recall important concepts of decision diags. The algorithm pre-
sented in this paper is valid for any type of shared decisiagrdm, such as BDD.
However, to more closely match our definition of expressiovs will consider here
Data Decision Diagrams, where the domain of variabld3 iather thanB. This pro-
vides a natural representation for a set of valuations as@.DD

Shared Decision Diagrams (DD) are a data structure to cotlgp@present sets.
There are many variants of decision diagrams used for mauetking, but they all
rely on the same underlying principles: nodes of the decis®e are unique in memory
thanks to a canonical representation; the number of patbagh the diagram (states)
can be exponential in the representation size (nodes inEyeduality of two sets can
be tested in constant time; using caches most operationgputating a DD are poly-
nomial in the representation size; the effectiveness oétteeding strongly depends on
the chosen variable ordering [7].

In this paper we rely on Data Decision Diagrams (DDD, defined9i), which
extend classical BDD in two respectk} variables are considered to have an integer
domain instead of a Boolean one, a@yipperations over DDD are encoded using ho-
momorphisms instead of the usual fashion where anothesidaailiagram with two
variables per variable of the state signature is used.

A DDD is a data structure for representing a set of sequentassignments of
the formxy ;= vi; X 1= Vo, ... Xn := Vh, Wherex; are variables ang are values irD.
We assume a total order on variables such that all varialéealaays encountered in
the same order in an assignment sequence. The usual DDDtidefimakes weaker
assumptions on variable ordering, but these are out of thgesaf this paper (see [9]).

We define the terminal to represent the empty assignment sequence, that termi-
nates any valid sequence, abitb represent the empty set of assignment sequences.

Definition 4 (DDD). Let X be a set of variables ranging over domain D. Thelseff
DDD is defined inductively by:
e D if eitherd € {0,1} or 6= (x,a) with xe X, anda : D — D is a mapping where
only a finite subset of D maps to other DDD th@an

By convention, edges that map to the DD@re not represented.

For instance, consider the DDD shown in figure 1. Each pathénQDD corre-
sponds to a sequence of assignments. In this work, we use Ddptesent valuations
of the memory, thus each assignment sequence represents@yrsate.
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Fig. 1. This DDD with domainD = IN represents the set of sequences of assignmépis: =
2% :=3;x3:=1;),(x1 :=Lixo:=1;x3:=1;), (X1 :=1;%2 1= 2;X3 :=3;) }.

Operations and Homomorphisms. DDD support standard set operations:N, \.
The semantics of these operations are based on the setdgrfrasat sequences that
the DDD represent.

Basic and inductive homomorphisms are also introduced finelapplication spe-
cific operations. A detailed description of DDD homomorpiéscan be found in [9].

Since in this paper we define new symbolic operations that@trepecific to DDD,
we omit further details on homomorphisms. From the impletaigon point of view,
all operations we define are embedded in homomorphisms.alloiss the software
library to enable automatic rewritings that yield much éefierformances, such as the
saturation algorithm [10].

4 Evaluating expressions on DDD

In practice, a system’s state is a valuation of the statebbas, and the behavior of the
system is described with expressions. When treating sucktarsyusing DDD arises
the need to evaluate an expression oveetf valuations.

More precisely, given an expressigrand a set of valuatiorg, one needs to com-
pute all the evaluations af by the valuations ivV. To achieve this goal efficiently, we
rely on equivalence relatiorX of definition 3.

Recall that the size of a DDD is often logarithmic in the sizéhe represented set.
The naive approach considers each valuation separatelyygenp with a complexity
linear in the size of the input set. An efficient solution testhroblem should use func-
tions that manipulate the nodes of the data structure reptason, so that thanks to
caches, the complexity remains proportional to the engpsiire.

We propose an algorithniquivSplit that partitions a set of valuations (given as
a DDD) into equivalence classes with respecttp. It visits variables in the order
given by the DDD, and progressively evaluates the expressience it must work
with partial valuations and partially evaluated expressio

We first define in section 4.1 the notion of dependency on aneaddand how to
resolve such dependencies to ensure proper recursion. aifgptesent our algorithm
in a restricted case to help comprehension in section 4ig elttended to the general
case, by introducing another functi®olveSubn section 4.3. The correction and the
complexity of these functions are discussed in section 4.4.

4.1 Support of expressions

The support of an expression is the set of memory addressessay to completely
evaluate this expression. Conversely, an expression dutedepend on an address if



its content does not affect its evaluation. We formally definese notions, and then
explain how to partially evaluate an expression until dejeecies on a given address
are eliminated.

Definition 5. An expressiorp does not dependn an address x if and only if:

VLK € DX i g = My g = eval(i, @) = eval(y, )

Thesupportof an expressiois the set of addresses on whiglldepends.
An expression that depends on no variable is said todrestant

Lemma 1. If @ is an expression that depends on x, then there exist a subsmipn
o() of @and a valuation p such that ev@ g) = x.
Y is called an x-expression gf

Proof. We prove the contraposition. Lgtbe an expression such that for all its sub-
expressions of the form(y), there is no valuatiom such thateval(p, ) = x. Let
now 1 and ' be two valuations that agree o6\ {x}. By structural induction oy,
eval(, @) (resp.eval(lf, @)) does not depend on the valuedk) (resp.p (x)). Hence,
eval(y, @) = eval(l/, ) and we conclude thagdoes not depend on ad

Lemma 2. If @ contains no nested operator, then x is not in the support df =
eval(l 1, @) for all valuations p and addresses x. The converse is not true

Proof. We also prove this lemma by contraposition. Assume thergt®aj such that
Y has anx-expression)’. There exists ar-expressiony of gsuch thaeval(y @) =
Y. If Y/ were constant, then, according to definition)2would be inD, and since it
is anx-expressiony’ would necessarily be equal o Thus, according to definition 2,
3(¢') would be replaced by(W') = p(x) in g, so thaty’ would not be a sub-expression
of Y. This is contradictory, and proves thaltis not constant.
Y’ thus depends on at least an addngssX, and, according to lemma 1, contains an
occurrence oB. It implies that@ also contains an occurrence &f showing thatg
contains nested operators.

Let + denote any binary symbol & If ¢=8(d(X) +d(y)) andu(x) + H(y) = x, then
O(M(x) + 8(y)) still depends om. This counter-example to the converse implication can
be extended to a symbol of any arity> 2, in casex contains no binary symbol. O

When there are nest@bperators, Lemma 2 states that substituting the contemt of a
addresx in @, as section 4.2 naively does, may not completely removedpertience
onx. However, we can reduce this general case to the previousyorezursively solv-
ing nestedk-expressions. This procedure terminates since eachdestictly reduces
the number of nestedloperators. This is discussed in section 4.3 and the coregin
section 4.4.

4.2 Without nestedd operators

The algorithmEquivSplitis shown in Algo. 1. It builds equivalence classes
dynamically based on successive substitution, refinenmehtreerge steps on a partition
of the input set. At stefa



— the substitution step uses the partition according to abjibe contents of current
addressx; (directly provided by the DDD encoding of valuations), takate@
with each of these values;

— the refinement step refines the partition by recursivelyuatalg the reduced ex-
pressions over addressesy, . . ., Xx|;

— the merge step merges cells of the partition that lead tcathiegseduced expression
over addresses, ..., Xx|-

At each step, the goal becomes to remove any dependenciesfoom the expres-
sion@, allowing recursion ovVeX; 1, ..., Xx|-

This algorithm is mutually recursive witBolveSulinvoked on line 8. To help com-
prehension, we first consider the restricted case wherestedteoccur. In such a case,
SolveSufy,V, i) always returns the singletdrie,V)}. Hence, we study in this section
the Algo. 1 independently from the algorithm ®blveSulpresented in section 4.3.

From a programming language point of view, forbidding nésteperators means
that all addresses are known at compile time, and that nmaetic on pointers occurs.
By lemma 2, this restriction implies that @ is an expressionx an address and a
valuation, oncepis reduced withu(x), it no longer depends an

Algorithm 1: EquivSplit@,V i)
Input: @an expression that does not dependkgn. ., X1
Input: V a finite set of valuations
Input: i an integer between 1 an| + 1
Output: a set of paird(@1,¢1),..., (@, cn)} such thaty,...,cy are the equivalence

classes ofv({p’q‘”“x“} overV, and for each K j < n, ¢j = eval(pyx .}, 9) for
anyp e cj.

1 if @is constanthen

2 | retun {(V,@)}

3 else

4 map< Expr2¥ > res

5

6

letag ={peV|u(x)=d} forde D
foreachaq # 0 do

/1 Substitution
7 0= [d(x) « d

/] to remove nested O operators
8 for (Y,c) € SolveSub,ay,i) do

/'l Refinenent
9 for (W/,c’) € EquivSplifw,c,i + 1) do
/'l Merge

10 L resy’] =regy’juc

1 return res

[

The base case of the recursion is wigga constant, henoezé has a single equiva-
lence clas¥ (lines 1-2). Ifi = |X| 4+ 1, by the precondition on the inpgt @is constant.



The setqaq)dep partitionV into equivalence classes with respect to the valoé
xi (lines 5-6). Note that the symbolic encoding of valuatios®&®D naturally provides
this partition.

To each classiy, we associate a reduced expres$diy replacing ing variablex;
by its valued (line 7). Under our simplifying assumptiofl,no longer depends ox,
andSolveSuB,aq,i) = {(8,aq)}. Thus, the loop on line 8 is reduced to a single call
to line 9, that becomes{({/,c’) € EquivSpli{8,aq,i +1)".

The loop on line 9 refines the partition element (c in the general case) by re-
cursively evaluating (y in the general case) on subsequent addresses (-, X|x|)-
Since elements from differenty’s may yield the same final value fgr line 10 merges

them into the final partition into equivalence classes\fgl(‘
Invoking EquivSplit(p,V,0) returns the equivalence classes of elements in V with
respect tov;.

4.3 With nestedd operators

We now extend our algorithm to the general case. The prettonddn the inputg
for Algo. 1 is thatg does not depend oxy,...,X_1. Hence, recursion on line 9 re-
quires thaty does not depend ory,...,X. The algorithmSolveSubaddresses this
problem by reducing;-expressions ir® by looking ahead the values of subsequent
addresses;1,...,Xx|- Lemma 2 shows that with no nestddlooking zero addresses
ahead suffices to eliminate the dependencies, and fallstbale& case of 4.2. The algo-
rithm SolveSulperforms this reduction using the look-ahead, and retuset af pairs
{(q1,c1),...,(¢n,cn)} such thatc; are sets of valuations that agree on a look-ahead
reductiong; of 8 and that do not depend on

SolveSultomputes irresa partition ofV, and associates to each cell a simplified
expression obtained by partially resolvipguntil all dependencies axg are removed.
tmpis initialized as a single cell associatedd@dline 3). At each step of the while
loop (line 4-5), an elemer(tp,c) of tmpis treated. If the current expressigndoes
not depend orx;, the pair is moved toes (lines 11-12). Otherwise, we I€tbe anx;-
expression ofp (line 7). Recall, by lemma 1, that suchBaexists and has less nested
3 operators tham. Any x-expression can be chosen and will lead to a correct result,
hence the algorithm has some latitude at this point. Hecaist, to favor merging of
partially resolved expressions, it is desirable to firsitreexpressions with a small co-
domain (e.g. solve boolean sub-expressions first). Notethigis only possible with
some additional knowledge of the signature’s interpretati

Recursion by invokindg=quivSplitwith 6 (line 8) refines the celt according to the
value ofB. To each of these refined cells is associated the reductignafitained by
substituting® by its value (line 9). They are then addedtiop that merges the cells
according to the reduced expressign(line 11).

4.4 Correctness and complexity

Sketch of the proof of correctnesale give here some intuition about the correctness of
both algorithms.



Algorithm 2: SolveSubg,\V ,i)

Input: @an expression that does not dependkgn. ., X1

Input: V a set of valuations that all agree on the vadugf x;

Input: i an integer between 1 an¥|

Output: a set of pair (¢1,¢1),..., (M, cn)} such thaty,...,c, is a partition oV, and
for each 1< j <n, @j is a reduced expression obtained by removing all
dependencies ax from ¢, and all valuations icj agree on this reductiop;

map< Expr,2¥ > res

map< Expr.2¥ > tmp

tmpg =V

while tmp is not emptgo

(W,c) =tmppop()

if Y has an x-expressiorthen

0 = anx;-expression ofp

for (8/,c") € EquivSplit6,c,i) do

L W =y[e @]

© 00 N O g B~ W N

[
o

W =W/[B(x) + d
tmpiy/] = tmpy] U

[
[

Ise
/1 does not depend on X;
13 | resy] =regyluc

4 return res

-
N
0]

[

The recursive call on line 9 iEquivSplitat stepi uses parametért 1; sincei is
bounded byX|+ 1 (height of the decision diagram), this recursion ternéa&olveSub
recursively solves strict sub-expressionsgohence the recursion is bounded by the
height of the syntactic tree. Since callsEquivSplitfrom SolveSulalways concern
strictly smaller expressions, the mutual recursion is bsanded.

Both algorithms work by successively refining and coarsgrirpartition of the
input set. Any time a paify, c) is inserted into the outpud) is obtained by evaluating
o (or a derivative) on elements of Since the output is stored in a map, merging cells
(y,c) and(y',c’) respects the constraint that= |/, hencec andc’ belong to the same
equivalence class.

The full proof is presented as an appendix.

Complexity of EquivSplit. In Algorithm 1, theay'’s for the loop on line 6 are already
provided by the DDD representation of valuations, so thiatlthop is a just a walk of
already computed sets. The main source of complexity infthstion lies in the call
to SolveSubln the case whep has no nested operators, then the loop on line 8 has
a single pass. The recursion on line 9 explores the subsepgaerof the DDD, so that,
using a cache, the total complexityBfjuivSplitis related to the size of the input DDD,
rather than to the size df.

Complexity of SolveSub. The look-ahead oSolveSupperformed on line 8 of func-
tion 2, refines th@y in input. This refinement (that builds new decision diagraocas
be arbitrarily fine, and depends on the input expression la@éhput set of valuations.



The overall complexity oSolveSulis thus hard to predict and depends on the number
of equivalence classes built.

A worst case for our technique would be an expression comguihash value
based on the values in all the memory slots. A perfect hasttitmwould yield equiv-
alence classes limited to singletons, hence encountexipgnential worst case com-
plexity (linear over states contained). Conversely, essimns with a small codomain
(such as boolean expressions) give a small bound on the maaximumber of equiv-
alence classes manipulated by the algorithm. A peak eftacsymbolic techniques
occurs when an intermediate DDD size is proportional toetssize. This may occur
anytime a partition element is built, hence finer partitians more likely to induce a
peak effect.

Caches.A cache forEquivSplitis built by associating to eactDDD, expressioh
pair the set {DDD, expression valyé that partitions the input DDD into equivalence
classes for the input expression. The full evaluation ofouer statements may thus
share the cache allowing computation of common sub-expresBecause it contains
partial evaluations results, and no specific attempt is ntladeconcile combined re-
sults, the structure of this cache differs from a decisi@aghm representing the full
effects of transitions, although it allows to reconstrinet same transition information.
Variable Order. Much of the complexity for both of these algorithms depenadshe
variable ordering used in the DDD encoding. The equivalasiasses depend on the
order in whichx;'s are visited. The representation size of the equivaletasses also
strongly depends on this order. Heuristically, orderirfgg tminimize invocations to
SolveSulveduce the complexity. Limiting the depth of the look-ahezethanism also
helps to build DDD that share existing suffixes.

In our experiments, we adapted the FORCE algorithm [1]. Gigedirected hy-
pergraph where weighted edges represent constraints iablesr (nodes of the hyper-
graph), FORCE heuristically computes an ordering on véesathat minimizes the total
weight. Expressions induce constraints on the variabléisaim support. By assigning
a strong weight to constraints implying invocationsSolveSupand small weight to
constraints enforcing locality, we obtained satisfactasults.

4.5 Evaluating assignments

We now informally present how to use our new algorithms todtamssignments of
expressions to memory slots. We consider a semantic of @aeftsystem is described
as sequences of assignments. An assignment is a pair ofssiqgrg(@, ), where@
denotes the address of the affected memory slotyatite new value to assign to it.
Allowing ¢ to depend on current memory state allows to model assigrsnseich as
t[i] :=0.

In our DDD implementation, an assignment is encoded as a mmhismbD > D.
It evaluates botlp andy by walking the input DDD. As variables are encountergd,
andy are partially evaluated. If dependencies on current vheriabe not eliminated
(nested), SolveSulis invoked. At some pointpis reduced to a constant, which is the
target of the assignment. When this target is reaclpechust then be evaluated to a
constant which may involve a look ahead usBwgjveSub



Since our assignments are encoded as homomorphisms, thefitlieom the au-
tomatic rewriting rules of [10]. These rules use the suppbthe expressions to skip
don't-care variables and build clusters of transition &§eOur algorithm can also be
implemented within other DD libraries. However, using DDiddhomomorphisms al-
lowed us to immediately benefit from these features.

5 Assessment

We compare our approach to related work and assess its efffcammpared to other
symbolic techniques.

5.1 Related work

To encode a transition, the original symbolic approach s on a second set of
variables that associates to each variable its new statethé transition, for all poten-
tial states. The global transition relation is then the niitimo union (logical or of be-
haviours) of all possible transitions. This monolithic eggch matches the synchronous
semantics of hardware systems, but yields intractablesentations in many cases.

This forced to introduce new strategies [13], where an ekplimanaged set of
DD store conjuncts of the transition relation. This pro¢esdied transition clustering,
allows to overcome some of the limits of the monolithic aFuto

For Globally Asynchronous Locally Synchronous (GALS) syss, [6], proposes
to design the clustering according to the top-most varigbteansition supports. The
semantics of such systems is given as an asynchronouseatiery) of locally syn-
chronous actions (e.g. Petri nets). Such a clustering aléaturationto optimize the
evaluation of the least fixpoint of a set of conjuncts: bagethe interleaving semantics
of the conjuncts, the fixpoint is first computed on lower paftthe DD.

A similar formalism is proposed by LTSmin [4]. A system is defil as consisting
of k state variables with a discrete dom&rand of transitions described primarily by
their support composed &f < k variables. To compute the state space, LTSmin relies
on third-party existing explicit model-checkers that pdeva computation procedure
called for each encountered value of the support in the glstate space. Thanks to
this projection, the number of these calls is boundedjbyand in practice is lim-
ited to actually encountered states. This tool also imptemstate-of-the-art symbolic
techniques, such as saturation, using classical encodihgwo "before" and "after"
variables per system state variable.

This approach is however severely challenged when the sugrmws. If the high-
level model features array manipulation, pessimistic mggions on the supports end
up with supports including most (if not all) state variables such an extreme case,
the explicit engine is invoked at least once for each stagating any possible gain
from the use of DD. Additionally, such individual insertiof paths in a DD is liable
to produce exponential memory peak effects. Large suppdsts severely limit the
possibilities of saturation as clusters are based on theostpf transitions.

The algorithms we present in this paper partly overcomeetléfficulties. Large
supports are often the result of array manipulation or casitipm of local effects in-
duced by sequences of assignments. As we have seen, thetsofppo expression is



dynamically reduced. Large potential supports due to arragipulations are correctly
resolved on-the-fly biequivSplit Compositions of effects are managed as explicit com-
position of homomorphisms, each of which has a support difinyeits underlying
expressions. Our fully symbolic encoding of the expressiavoids any explicit step
where states are individually considered in the modelkingcalgorithm.

5.2 Implementation

To assess our algorithms, we chose to use benchmark modaisttie BEEM data-
base [12], that are written in the Divine language [2]. Ta tand, we defined an inter-
mediate formalism called Guarded-Action Language (GAthat can be manipulated
symbolically with the algorithms described in this papérisiformalism defines a sys-
tem’s memony using integer variables and fixed size arrays of integesgransitions
are composed of a guard that is a boolean expression ovablesiand a sequence of
statements that are assignments of expressions to varig@léo cells of an array). A
state of a GAL system is defined as the valuation of all vagisbA transition is enabled
in any state where the guard is true. Firing an enabled tiangiields in a single step
the successor state obtained by executing the assignnfeéhestoansition in an atomic
sequence. The semantics are thus globally asynchronduseduences of statements
are locally synchronous, reflecting the semantics of carotisystems.

This small formalism offers a rich signatude consisting of all C operators for
manipulation of the nt data type and of arrays (including nested array expressions
There is no explicit support for pointers, though they carsipeulated with an array
heapand indexes into it. It also supports full C-like booleanmgsions.

With these features, translation of Divine models into GAdswelatively straight-
forward. This technical work was done by adapting the coder&min’s wrapper for
Divine models, where the semantic bridge to a system basedteger variables al-
ready existed. Divine is a language for describing proces® communicate through
bounded channels, shared variables and/or synchromz&tmannels are modeled us-
ing arrays. Synchronizations use a conjunction of localdd@n as a guard, and a
sequence of local effects on each process as action. Rsofdteriving from the "com-
mit" semantics of Divine) are enforced by adding the negaditthe disjunction of the
guards of higher priority to guards of transitions with lavpeiority.

5.3 Performance Assessment

To assess our new technique we built an extension td ithet s tool*, and com-
pared its performance to classical state-of-the-art ampres, represented by the tools
LTSmin [4], super _prove [3]. The performance comparison is based on the full set
of models from the BEEM database [12]. Here we only reporteathability proper-
ties that were also provided in the context of a recent harelweodel checking con-
test (HWMCC'12) as SAT instances. Our implementation supports full CTL ERd

Shttp://move.|ip6.fr/software/ DDD gal . php
4http://ddd.lip6.fr
Shttp://fmv.jku. at/hwtcl2
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Fig.2.11i bits vs LTSmin, same variable ordering

model-checking of Divine models. All experiments were rumaoXeon 64 bits at 2.6
GHz processor.

LTSmin is a tool suite for model-checking, that implements stdttie-art symbolic
techniques (see 5.1). It can use several third-party Duibs, but we configured it
to use DDD to allow easier algorithmic comparison. Indeexldtate encoding being
provided by the same DDD library as ours, the main differdmetsveen this tool and
ours is the use dEquivSplit

super _prove is a SAT based model-checker. It was the winner of the “siagfety/
bad-state property” track of the HWMCC’12, that containsBis=M models. It is thus,
to our knowledge, the best SAT-solver for this particulandienark. SAT techniques
are very different from those discussed in this paper, wipaformance comparisons
on this benchmark are still possible.

I'i bits isaDD-based verification library that uses both hieralset decision di-
agrams and DDD to support model-checking (CTL, LTL) of cosifion of labeled
transition systems described symbolically. Transitiosteyns can be described using
several input formalisms, such as labeled discrete time iRets. The GAL formalism
was embedded in this framework but only uses DDD.

Detailed results of experiments are presented as scatter gomparing two tools
over the whole benchmark. Each point represents a (modualfa) pair that was tested
for reachability with both tools. A point below the diagomadans thatti bi t s is more
efficient than the other tool. Our plots use a logarithmiceschines parallel to the
diagonal represent performance ratios of 10, 100 ... (@&p0.01 ...).

models teste[dteated by libitstreated by LTSmirtreated by botfireated by none
293 [ 264 212 197 22
Table 1.11 bi ts vs LTSmin




I'ibits vs. LTSmin. We compare the performance for the generation of the state
space of the models, with 1 hour and 10Gb containment. S¢atisf the results are
shown in Fig. 1, and more detailed results are shown on Fibh&results confirm that
our EquivSplitalgorithm performs better than the classical symbolic apph. With the
same implementation of DDD and the same variable orderungneplementation is up
to 1000 times faster and 100 times less memory consumingLfi@min. For a dozen
models, LTSmin is slightly more memory efficient than libitsit this can be attributed
to side-effects of the garbage collection policy.
| i bits vs.super_prove. We compare the performance of bdthbi t s andsu-
per _prove, with a containment of 1Gb in memory and 900 seconds wallkctooe
(super _prove uses 4 cores whilki bi t s is mono-threaded). These are the contain-
ment settings used in the HWMCC competition. Summary of tkeltg are shown in
Fig 4, and detailed results are presented on Fig. 3. We omhpeaced the time usage,
since the memory consumption for SAT techniques is usua8lighificant. Note that
all ['i bits’s fails are due to a memory overflow, whereassalper _prove’s fails are
due to a time overflow.

['i bits treats about 35% more models thearper _prove. Also,l i bi ts is quicker
thansuper _pr ove for 80% of the models treated by both tools, with a speed-offa
up to 1000. On the other modetgiper _pr ove’s speed-up factor ranges up to 100.

1000 ¢

# unsafmean timé# safmean timé

# unsat unsat (s)|# sat sat (s)
libits 184 146 [192| 8.6

super _prove| 112 140.6 |170| 451

100

10

its time (s)

models treated | treated by |treated treated
tested|by | i bi t s|super _prove|by bothby none
456 376 282 258 56

0.1 r

‘ . suptime (s).",
0.1 1 10 100 1000

Fig. 3. Time comparison betwedri bits Fig.4.1ibits vssuper_prove (top: mean runtime
andsuper _prove and bottom: number of instances solved)

The top table in Fig. 4 shows thiaitbi t s runs on average 5 times faster on satisfied
properties and 10 times faster on unsatisfied propertiesstyger prove that stops
as soon as it finds a solution for satisfied instances. Ourragpllarly interrupts the
computation to check whether a solution exists in the sted@sputed so far. When
these checks are deactivatédbit s is 4 times faster on satisfied properties and 14
times faster on unsatisfied properties. Unsatisfied instrequire both tools to explore
the whole reachability graph: these are the hardest prablem

On this benchmark, we show that state-of-the-art symbdadigipulation of decision
diagrams can still outperform the best SAT-based techsique



6 Conclusion

This paper proposes a new algorithBquivSplit that allows more efficient symbolic
manipulation of software-like models. It uses equivaleralations to avoid explicit
manipulation of states. Assessment on a large third-patchimark shows that this
approach improves existing decision diagram-based tqaksj and can outperform
SAT-based ones.

Our algorithm supports arbitrary signatures (language®),can be used with any
type of decision diagrams. It uses information provided sy high-level expressions
of the transition relation to dynamically optimize comgidas.

Using theEquivSplitalgorithm, we are currently investigating the combinatodn
symmetries with decision diagrams as an extension of puewi@rk performed without
this contribution [8].
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A Proofs of correctness

To prove the correctness of our algorithms, we need somdiauiali definitions and
notations.

Definitions and notationsFor 1< i < [X[+1,Y = {X;,...,Xx| }-
We define an order over the expressions for induction on ssfes in the proof.

Definition 6. Let @ and Y be two expressiong < Y if and only if@ has less symbols
thany.

Definition 7. Let xe X. We define the equivalence relatigrover valuations as:
HixH < B(X) = K (X)

Definition 8. Let u be a valuation, x be an addregsand ¢f two expressions.
We defingp~-x, ¢ if and only if one of the following conditions holds:

— @ = @Y + eval(y, W)], wherey is an x-expression afwhose support is not empty;
— @contains at least one constant x-expression @nd eval(l ., ).

~xu denotes the reflexive and transitive closure-efy. It is easy to see that if
@~y @, then the number of occurrencesddh ¢ is strictly less than imp. Therefore,
there is no infinite sequen@@~-x, @1 ~xy - .., and thus, for any expressign there
exists an expressiog that does not depend orsuch thatp~5, @.
We now choose a deterministic criterion for choosingtexpressionp in the first case
of definition 8. For example} is the firstx-expression encountered during a depth-first
walk of the syntactic tree ap. This ensures the uniqueness of the abgvdor any
expressionp, there exists a unique expression, denotechdnym(p, X, @) that does not
depend orx and such thap~~% , norm(i, X, @).
norm(i, X, @) is computable by repeatedly evaluating #aexpressions of chosen ac-
cording to this criterion.

Definition 9. Given an expressio, we define the equivalence relatierf over valu-

ations as follows:
/

H=y I < norm(@,x, 1) = norm(e,x, )
Note that the choice of the criterion to pick &expression ofpinfluences the struc-

ture of the equivalence classes=f. This does not affect correctness of the algorithms,
but may impact their complexities, as already mentioned3n 4

Lemma 3. Let@be an expression, pu be a valuation and x be an address.

eval(u, norm(, x, @) = eval(y, ¢)

Proof. Let us consider the relatior = Uyex ~yu. If @~ @, then the number of
occurrences od in ¢ is strictly less than imp. Therefore, there is no infinite sequence
@~y @1~ ..., and there exists an expressigrthat depends on no variable and such
thatg -~ ¢. It is easy to see thaf = eval(y, ¢). Therefore, sinceval(, ¢) is well-
defined @ is unique, and does not depend on the path leading fréony .

Similarly, ¢’ = eval(p, norm(i, x, @)) depends on no variable andrm(L, X, ) ol
@'. Since~y uC~y, we havep~ norm(y, x, @) ~, ¢. By unicity of ¢/, we conclude
thatg = @', hencesval(p, norm(y, x, @)) = eval(y, ¢).



Correctness of the algorithm§\Ve prove the correctness of bdquivSplitandSolveSup
using a double induction on parameteend.

EquivSplife,V,i) returns a set of couplgg@, c1), - - ., (¢, Ca) } such thaty, ..., ¢,
are the equivalence classesﬂoi onV, and@; = eval(p, @) for any p € c;j, provided
that@does not depend on, ..., X_1.

SolveSufp,V,i) returns a set of coupleg@, 1), ..., (G, Cn)} such thaty, ..., c,
are the equivalence classesaﬁ onV, andg; = norm(l, x;, ) for anyu € ¢;, provided
that ¢ does not depend ox,....%_1. Note that all elements i must agree on the
value ofx: V must be contained in an equivalence clasg,of

Induction on i. If i = [X| 41, then any expressiapthat does not depend o, . .., Xx|
is constant. Then bothg andzg are trivial. Furthermoregval(p, @) = @andnorm(j, x, @) =
o for all valuationsy. EquivSplite,V,i) andSolveSufyp,V, i) both return the singleton
{(@,V)}, ensuring their correctness.

Let 1<i <|X]. Letus assume that bolquivSplify,V,i+1) andSolveSuby, V, i+
1) are correct for any s&f and expressioy. We prove, by structural induction ap
thatEquivSplite,V,i) andSolveSufp, V, i) are correct.

Induction on@. Let @ be an expression. Ip is a single symbol, it is a constant ex-
pression, and the conclusion is the same as above for thehss®f the induction on
i

Let us now suppose thgtis not reduced to a single symbol, and that (induction
hypothesisEquivSplity,V,i) is correct for allvV andy < ¢, andSolveSuf,V,i) is
correct for allvV andy < @. We first prove thaSolveSulp,V,i) is correct, then that
EquivSplite,V,i) is correct.

SolveSuls based on a while loop, that has three invariants, that weepr

V(W,c) etmp VU e C,o~y Y 1)
V(LU,C) eresvpec,y= nom‘(%ﬁ@) (2)
all the sets stored itmpandresform a partition ofv 3)

These conditions are obviously true when entering the looghe first time (ini-
tializations of lines 1- 3).
When entering the loop, a couple, c) is first removed frontmp (line 5). By (1),
@~y uWlorallpec.
If Y has nax-expression, thew is in normal form andp = norm(l, x;, @) for all p € c.
Thus, addindy, c) to respreserves all three invariants (lines-123).
Otherwise, the algorithm picks ag-expressiord in Y (line 7). 8 is a proper sub-
expression ofp, and, sincap does not depend oxy, ..., X1, neither doed. Thus,
by induction hypothesisEquivSpli{0,c,i) is correct. Therefore, on line & is an
equivalence class fopg‘ oncand®’ = eval(ly,8) for anyu € ¢. Thus,y/’ = [0
eval(ly;,0)] for pe ¢ is well-defined ort’ (line 9). Furthermore, since all valuations in
V agree ory;, theny/ = eval(lyx, W[6 < eval(y, 8)]) is also well-defined or’ (line
10). Furthermorey ~-y , Y’ or Y W>2<a,u W', and thugp~5 ' for all pe c'. Since the
equivalence classes efg< partition ¢, adding such pairél/,c’) to tmp preserves the



three invariants.
Sincey ~3 , W', ' is strictly closer to any of its normal forms than This ensures
termination of the loop.
Finally, the loop ends whetmpis empty. Thus, by (3), the sets storegés partition
V, and using (2), we conclude thags contains exactly the equivalence classeséf
onV.

We now prove thaEquivSpli{@,v,i) is correct. It is based on three nested loops.
The innermost loop has two invariants, that we prove below:

Y(y,c) e resVpe c,@=eval(y, ) 4)

V(W1,C1), (W2,C2) €TESPr = @2 = CL = C2 (5)

These invariants are obviously true before entering the loo line 6. Theagy's
defined on line 5 are the equivalence classag anV. Thus8 = eval(u,, 9) (line 7)
is well-defined orog. Furthermoregp~ |, 8 for anyp € aq. 6 is either an expression
smaller tharp, or @. In both cases, by induction hypothesis or by the proof ofeziness
of SolveSufy,V, i) above,SolveSub,V, i) is correct.

On line 8,cis an equivalence class fa"i onag andy = norm(l, X, 0) = norm(p

,%i, @) (sincep~5 , 6) foranyp e c. Thuqu does not depend on, and, by induction
hypothe3|sEqU|vSpI|(L|J c,i+1) is correct. Therefore, on line €, is an equivalence

class for~ Y'“ onc, andy’ = eval(py,,, ) foranype ¢ Letpec.

= eval(u‘ml, W)

feval(u Y. 1 NOrM(K, X, @)

= eval(ly;, norm(i, X, @) becausaorm(l, i, @) does not depend of
= eval(iy;, ) by lemma 3

When inserted imes (line 10),c’ is merged to 4y”,c”) € resif, and only if, " = y/'.
By invariant 4,y = eval(py:, @) for pe ¢”, so that this insertion inespreserves both
invariants.

Recall thatog (line 6) is an equivalence class fary, . ¢ being an equivalence class
for = —e onayg, itis an equivalence class fgyN = onV Slmllarly, ¢ is an equivalence
class for~y™* onc, hence an equivalence cIasszpﬁ =% N~y onV. The algorithm
reaches line 11 when all these equivalence classgg oty N Niﬂ“ onV have been
treated and inserted inte@s Thus, the union of the sets storedris is exactlyV.
By invariant 4, they are pairwise disjoint, hence form aifiart of V. By invariants 4
and 5, we conclude that they are exactly the equivalencseﬂasfrvg, proving the
correct result oEquivSpli{@,V,i).



