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SUMMARY

Safety-critical systems are used in many domains (military, avionics, aerospace, etc.) and handle critical
data in hostile environements. To prevent data access by unauthorized subjects, they must protect and isolate
information so that only allowed entities can read or write information.
However, due to their increased number of functionalities, safety-critical systems design becomes more
complex ; this increases difficulties in the design and the verification of security functions and potentially
error in their implementation.
The MILS approach introduces rules and guidelines for the design of secure systems. It isolates data
according to their security levels, reducing system complexity to ease development. However, there is no
approach addressing the whole development of MILS systems from high-level specification (application
components with their security levels) to the final implementation (code that execute application functions
and provide security mechanisms).
This paper presents a complete development approach for the design, verification and implementation of
MILS architectures. It aims at providing a complete framework to build secure applications based on MILS
guidelines. We describe security concerns using a modeling language, verify security requirements and
automatically implement the system code generation techniques and a MILS-compliant operating system
that provides security functions. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Context

Safety-critical systems are used in many domains such as military, avionics or medicine. They
perform critical functions and contain classified data so that they must be secure and reliable. As they
operate in hostile environment, they must prevent data theft and perform only authorized actions.

Usually, safety-critical systems that operate in hostile environments are carefully verified using
code analysis/review and/or formal verification. It ensures absence of data leakage and improves
confidence in systems functions. However, as requirements grow by the time, verification becomes
more complex, tedious and costly so that production costs increase significantly to maintain
confidence level.

Twenty years ago, the Multiple Independent Levels of Security (MILS) approach [1] was defined
to ease the design of secure systems and address this complexity issue. The main idea is to divide and
isolate system components according to their security levels to prevent unexpected interferences.
Thus, components are analyzed independently, easing their verification and reducing development
costs.
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MILS classifies components according to their isolation level and defines analysis rules to detect
potential data leakage (for example, deny communication between components that do not share
the same security levels). To enforce security at execution time, MILS relies on a secure operating
system that isolates components and their communications.

1.2. Problem statement

Over the years, the approach was refined [2] and several efforts were made to design MILS systems.
However, these improvements focus on specifications analysis [3, 4] and runtime standardization [5]
and do not address the development problem from specifications to the final implementation.

This is a major issue since security issues must be analyzed at each step of the development
process. Such a process would verify MILS requirements at a specification-level (as defined in [2])
and map them on a MILS operating system that provides isolation services.

1.3. Solution overview

We propose a unified development process for the modeling, verification and implementation
of MILS systems using a backbone modeling language. This process, illustrated in figure 1,
is supported by a common modeling framework and focuses on three main steps: modeling,
validation and implementation.

Specifications

Verification

Description of system architecture
with security concerns (step 1)

Verify MILS requirements and 
detect security issues (step2)

Implementation

Generate system code and
configure security policy (step 3)

System binary

Automatically produce system that
enforces specifications requirements

Figure 1. Development process for MILS systems development

System modeling (step 1) provides guidelines to specify system architectures with their security
properties and requirements (such as security levels, communication channels, etc.). To do so, we
need a modeling language with an appropriate abstraction level to specify security concerns as
well as a semantics suitable for system verification and models processing. Our approach uses
the Architecture Analysis and Design Language (AADL) [6] because this language fulfills our
requirements (our motivations are detailed in 3.1).

Verification (step 2) processes models and enforces MILS requirements and potential security
leakage. It inspects system architecture as a whole, analyzes each component, looks for security
issues and reports them to system designers so that errors can be found very early in the development
process. The National Institute of Standards and Technology (NIST) reports that 70% of errors are
introduced at design-level [7].

Implementation (step 3) automatically processes verified specifications to generate executable
code. It generates runtime code to execute application-level functions as well as security-related
code, such as cipher functions that encrypt/decrypt data.

Then, it integrates produced code with a MILS operating system that isolates components
according to their security levels. For that purpose, we design our own MILS operating system,
POK [8].
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1.4. Outline

Our paper is organized through 7 main sections. Section 2 gives an overview of the MILS approach.
Section 3 presents our modeling guidelines for MILS architectures specification while section 4
details their associated validation rules. Section 5 describes our code generation process and presents
our MILS runtime, POK. Finally, section 6 illustrates our approach through a case-study that defines
a distributed architecture with several nodes of different security levels.

2. MILS OVERVIEW

The MILS approach is composed of two main parts:

1. Several specification rules for the design of secure systems by isolating security levels. Then,
it describes security concerns in a specific formalism and details how security levels are
separated.

2. A dedicated operating system (also called MILS runtime) that provides security isolation
services to support the established design of specifications produced in the previous step.

Following sections introduce the MILS approach and details each part, explaining its design
guidelines as well as its runtime services. In addition, we highlight some security concerns related
to the MILS runtime (implementation of device drivers) and explain how they can be adressed.

2.1. Security isolation concepts

MILS isolates security levels as much as possible and limits security levels upgrade/downgrade
(writing a data at a given security level in a data classified at a different security level) to avoid
covert channels (operations that may break the security policy) and potential security leak.

Security levels isolation eases validation since we can consider each security level independently
to focus on critical components.

In the security terminology, an object is a data classified at a given security level (e.g. top-secret)
whereas a subject performs operations (read/write/execute) on objects.

A subject potentially manipulates several objects having various security levels. Such a subject
must be verified: they can downgrade information from high to lower security levels. A "safe"
subject means that it enforces data flows separation according to their security levels.

To distinguish components, MILS classifies them (subjects) into three categories according to the
isolation level they provide on objects:

1. Single Level of Security (SLS) components contain objects at one security levels.
2. Multiple Level of Security (MLS) components contain objects classified at multiple

security levels without isolation. For example, an MLS component can be a device driver
that downgrade a data from a high security-level (top-secret) to a lower security-level
(unclassified).

3. Multiple Single Level of Security (MSLS) components handle objects at different security
levels and enforce data flow isolation so that it does not downgrade/upgrade data.

Figure 2 presents an exemple of MILS architecture. It defines a data flow from two SLS
components (C1 and C2) at different security levels (top-secret and secret) to an SLS component at
the unclassified level (C5).

First, data are produced from two distinct SLS components (C1 and C2) at different security
levels. The receiver component (C3) sends received data through two different channels. As it
enforces data flow separation, this component is said to be MSLS. Then, component C4 merges
received data at different security levels in one communication channel with the unclassified security
level. This component does not enforces security levels isolation and so, is said to be MLS. Finally,
the last component (C5) receives data at only one security level (unclassified) and so, is considered
as SLS.
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Figure 2. Example of a MILS architecture

To be compliant with the MILS guidelines, component C3 must be verified to check data
flow isolation correctness. In addition, if the downgrade operation of C4 is legal (for example,
a component that encrypts classified data before sending them into an unclassified network), the
downgrade operation must be verified or certified (for example, using formal methods).

To maintain isolation across components, MILS architectures rely on a specific operating system
whose characteristics are presented in the next subsection.

2.2. MILS operating system

The main purpose of a MILS operating system is to provide security services to support the design
established using the MILS specification rules. To do so, it enforces resources partitioning between
components that share different security levels [9]. Each security level is isolated in a partition
and each partition is executed as if it runs on a single processor. This partitioning policy prevents
potential security leaks and covert channels.

2.2.1. MILS layers
A MILS operating system is divided in two main layers:

1. The kernel layer provides core security services. It enforces resources partitioning and
maintains isolation across components. This is the most critical part of a MILS architecture as
it is responsible to enforce isolation accross partitions (and so, the different security levels).

2. The partition layer contains non-critical functions and defines resources and services
(runtime library, third-party functions, etc.) required by application components. A partition
contains its own environment and is independent from the other partitions running on the same
processor.

The figure 3 shows the architecture of a MILS-compliant operating system. It depicts a MILS
system containing 3 partitions: two are labelled as top-secret while the last one is unclassified.
The MILS kernel, which runs on top of the hardware, enforces time isolation between partitions
and executes them in dedicated memory spaces. In the figure, the kernel enforces security levels
isolation by connecting only partitions that share the same security level (top-secret).

Kernel isolation services
The MILS kernel is composed of few services for partitions isolation. It should be small (in terms

of lines of code and complexity) to be amenable to verification/certification (using formal methods,
code reviews, etc.). The kernel isolates partitions in space and time:

• Space isolation means that each partition has a memory space to store its code and data.
So, partitions have an independent memory space other partitions cannot access and no other
channel than the one allowed can be established.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe



DESIGN, IMPLEMENTATION AND VERIFICATION OF MILS SYSTEMS 5
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Figure 3. MILS execution platform layers

• Time isolation means that each partition is executed during a fixed amount of time. A partition
cannot consume more or less time than allowed so that an attacker cannot infer information
based on partitions execution time.

In addition, the MILS kernel is responsible to ensure communication isolation across partitions
so that it grants only authorized communication channels and avoid creation of covert channels. To
do so, it monitors all inter-partitions communications and checks that only channels are established.

In the MILS terminology, these requirements are said to be NEAT [4]:

• Non-Bypassable: partitions cannot choose to use security functions (i.e: a covert channel).
• Evaluatable: security functions must be amenable for verification/certification.
• Always-Invoked: security functions are invoked everytime.
• Tamperproof: security functions as well as data cannot be modified.

2.2.2. Device sharing across partitions
The MILS approach does not define the way device drivers are implemented in a MILS-compliant

runtime. Drivers can be implemented either in the kernel or isolated in partitions. However, in
context of security separation, it raises two problems:

1. The implementation of drivers in the kernel layer increases its complexity by adding more
code. This could impact isolation functions and introduce covert channels as well as security
leaks. In addition, as the driver is collocated in the kernel, it gain access to and corrupt
partitions data.

2. The sharing of a device between several partitions must enforce data protection so that data at
different security levels are not mixed. For example, a network driver used by two partitions at
different security levels (e.g. secret and top-secret) must enforce data separation so that data
are not mixed.

Drivers should not be integrated within the kernel: it would add more code in this layer and require
more verification (introduction of driver code in the kernel would require to verify its potential
impacts on security services) to maintain its level of confidence. To avoid costs associated with such
verification activities, drivers must be integrated in independent partitions. It would also keep the
kernel as small as possible and amenable to verification/certification.

However, even if device drivers are integrated in partitions, they must enforce separation between
security levels. As each partition has its own address space, we cannot ensure this isolation unless
the code of the driver is formally verified, as for the kernel layer. For this reason, we cannot provide
security isolation within the driver so that partitions hadling classified data must protect them before
using the driver (using protection mechanisms such as cipher algorithms).
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6 J. DELANGE, L. PAUTET AND F. KORDON

To address this issue, we specify devices integration in the specification of the architecture
(step 1 in 1.3) and describe the security mechanisms invoked before using any shared device.
We also describe security mechanisms used by the partitions that share the device to protect data
before sending it to the driver. Then, isolation of security levels is validated (step 2 in 1.3, driver
implementation and inter-partitions security mechanisms are automatically generated (step 3 in 1.3).

2.3. Related Work

We distinguish two different kinds of existing work: one about components analysis and
classification and one about MILS operating systems. For this reason, we present these works
separately.

2.3.1. Architecture analysis
Several approaches were designed about MILS architectures analysis and refinement. Among

them, [10] proposes to reduce the amount of components that share different security levels. This
significantly reduces verification needs and associated development costs.

Several approaches for the design and verification of MILS architectures use the AADL
language [11, 12, 13]. AADL models are evaluated against MILS requirements, validating security
isolation enforcement. Other initiatives define modelling language profiles or extensions to specify
security requirements within architecture models [14, 15, 16]. Integration of security concerns
within models ease system designer work, avoiding use of different formalisms and provide the
capability to make system validation before starting implementation efforts.

However, the implementation is not verified against the specification so that there is no proof
system execution would enforce properties checked on the model. That is the reason why although
model validation is of particular interest, it is necessary to automatically produce the implementation
from these validated models.

2.3.2. MILS operating system
A MILS protection profile is currently being written [2] for the Common Criteria [17]. This

document describes the services of a MILS-compliant operating system. However, a protection
profile for separation kernel [5] exists but this is not specific to MILS.

In addition, several aspects of the MILS runtime is similar to ARINC653 ones. Both isolate
applications in partitions and maintain a time and space separation. However, there are two main
differences between these two approaches. First, ARINC653 is an established standard for avionics
architectures: its API and its services are precisely described, as the functions of MILS-compliant
are still described at a high-level (however, the definition of the protection profile [5] would
overcome this issue). Then, ARINC653 systems are focused on safety (error detection and recovery)
while MILS ones are security-oriented (data protection, security levels isolation).

Finally, all these approaches define services for application isolation, but do not allow easy
analysis at a high-level. In particular, we need to abstract security concepts and MILS services
for verification purposes. Next sections present our approach that proposes such an abstraction of
MILS services and automatically generates secure systems from architectural models.

3. MODELING MILS ARCHITECTURES WITH THE AADL

This section motivates the choice of AADL as a modeling language. It presents the core language
and describes our modeling guidelines to specify MILS requirements.

3.1. Motivations for choosing AADL

Several modeling languages exist to represent systems architectures. Popular ones are UML and its
associated MARTE profile [18] or its security-specific [19] extensions, SysML [20] or AADL [6].

Our reasons for using AADL are the following:
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• Components and their associated properties are strongly-typed which clarifies architecture
concerns.
• Its syntax and semantics are clear and avoid disambiguations. This characteristic is especially

important for model analysis support.
• Users can extend the language by adding properties or annexes to the core language.
Despite the advantages of other approaches, the main problem resides in the semantics: many

languages use several annexes to refine or extend their semantics. However, introduction of a
different notations for similar concepts can lead to inconsistencies so that tools process models
using different assumptions, depending on the notation they rely on.

3.2. AADL overview

AADL is a component-centric language for the modeling of software and hardware concerns. It
focuses on the definition of block interfaces and separates implementations from their interfaces.
The standard proposes both graphical and textual representations.

The AADL standard defines software components (data, thread, thread group, subprogram,
process), execution platform components (memory, bus, processor, device, virtual
processor, virtual bus) and hybrid components (system).

Components describe elements of the architecture. Subprograms model application code. Since it
is not an architectural element, it is reduced to a reference to another external piece of code. Threads
model the active part of an application (such as POSIX threads). Processes model address spaces
containing threads.

Processors model micro-processors and a minimal operating system. Virtual processors model a
part of a processor. It could be understood in different ways: part of a physical processor, virtual
machine, etc.

Memories model hard disks, RAMs. Buses model networks, wires. Virtual buses are not formally
a hardware component, they are bounded to connections in order to describe their requirements.
They can be used for several purposes (modeling protocol stacks, security layers, etc.) Devices
model sensors or actuators.

Systems represent composite components that are made up of hardware components or software
components or a combination of the two. For example, a system may represent a board with multiple
processors and memory chips.

Components hierarchy of an AADL model is composed of several components and sub-
components. The topmost component is an AADL system that contains processes, processors and
other architecture components.

The interface specification of a component is called its type and provides communication
functions through features. Components communicate by connecting their features (the connections
section). Each component describes their internals: sub-components, connections between these
sub-components, etc.

AADL allows properties to be associated with AADL model elements. Properties are typed and
represent name/value pairs that represent characteristics and constraints. Examples are the period
and execution time of threads, the implementation language of a subprograms, etc. The standard
includes a predeclared set of properties, users can introduce additional properties through property
definition declarations. For interested readers, an introduction to the AADL can be found in [21].

3.2.1. Example of an AADL model
A sample AADL model is depicted in figure 4. It represents a producer/consumer architecture: one

process (prs_sender) executes a thread (thr_sender) that produces data (communication ports
are represented by arrows). Data is sent to another process (prs_receive) and received by a thread
(thr_receiver) which then consumes the data by executing application-level code (not illustrated
on the figure).

Deployment concerns are shown explicitly on this model: connections are bound to buses, process
to processors and memories. In this example, readers can notice that both processes are bound the
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8 J. DELANGE, L. PAUTET AND F. KORDON

same memory component, meaning that they share a common memory address space. This could be
potentially a problem from a security point of view if these processes share different security levels.

thr_sender thr_receiver

prs_sender prs_receiver

linux.rt memory.ram

producer_consumer.example

ethernet bus

Figure 4. AADL producer/consumer

3.3. Modeling MILS requirements

We define an additional AADL property set as well as predefined AADL components (with the
namespace POK and poklib) for MILS modeling. Both are available in the Ocarina [22] toolset.
subprogram implementation blowf ish_send . i
properties

Source_Name => " pok_pro toco ls_b lowf ish_marsha l l " ;
end blowf ish_send . i ;

subprogram implementation b lowf i sh_ rece ive . i
properties

Source_Name => " pok_pro toco ls_b lowf ish_unmarsha l l " ;
end b lowf i sh_ rece ive . i ;

data implementation b lowf ish_data . i
properties

Type_Source_Name => " pok_pro toco ls_b lowf ish_data_ t " ;
end b lowf ish_data . i ;

abs t r ac t implementation vbus_blowfish_wrapper . i
subcomponents

send : subprogram blowf ish_send . i ;
rece ive : subprogram b lowf i sh_ rece ive . i ;
marsha l l ing_ type : data b lowf ish_data . i ;

end vbus_blowfish_wrapper . i ;

v i r t u a l bus implementation t opsec re t . i
properties

POK: : Secur i t y_Leve l => 3;
POK: : Blowfish_Key => " c ipher key " ;
Implemented_As => c l a s s i f i e r ( vbus_blowfish_wrapper . i ) ;

end t opsec re t . i ;

Listing 1: Top-secret layer modeling with the AADL

3.3.1. Security levels modeling
A MILS security level is described with a virtual bus component. It represents both the security-

level (using the POK::Security_Level property) and its associated mechanisms (for example,
cipher algorithms).

Security mechanism implementations are specified in a "component box" (an abstract
component) that contains its required components (data, subprograms, etc.). This abstract
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DESIGN, IMPLEMENTATION AND VERIFICATION OF MILS SYSTEMS 9

component is associated with the virtual bus component using the Implemented_As property
and contains all resources required for the implementation (data, subprograms, etc.)

Listing 1 illustrates the modeling of a security layer (called topsecret). Property
POK::Blowfish_Key represents the key used by the cipher algorithm (assuming the use of blowfish)
and Implemented_As property points to a component that contains all subprograms and data
required to implement this cipher mechanism.

Components inheritance and extension allow users to design a hierarchy of security layers. For
example, they can define a basic virtual bus associated at a given security level with several
implementations, each of them providing different security mechanisms to protect the data (different
cipher algorithms or cipher keys).

3.3.2. Kernel modeling
A MILS kernel is specified using the processor component. It models both hardware and the

associated software to isolate partitions. Additional properties (described in later sections) are
associated to the component to specify isolation requirements.

v i r t u a l processor implementation topsecre t_ run t ime . i
properties

Provided_Vir tual_Bus_Class => ( c l a s s i f i e r ( topsec re t . i ) ,
c l a s s i f i e r ( sec re t . i ) ) ;

end topsecre t_ run t ime . i ;

process t o p s e c r e t _ p a r t i t i o n
features

t hepo r t : in data port the type
{ Al lowed_Connect ion_Binding_Class =>( c l a s s i f i e r ( topsec re t . i ) ) ; } ;
end t o p s e c r e t _ p a r t i t i o n ;

process implementation t o p s e c r e t _ p a r t i t i o n . i
subcomponents

athread : thread th r_producer . i ;
end t o p s e c r e t _ p a r t i t i o n . i ;

processor implementation mi ls_kerne l . i
subcomponents

r t 1 : v i r t u a l processor topsecre t_ run t ime . i ;
r t 2 : v i r t u a l processor topsecre t_ run t ime . i ;

properties
POK: : S lo ts => (500ms, 1000ms ) ;
POK: : S l o t s _ A l l o c a t i o n => ( reference ( t o p s e c r e t _ r t 1 ) ,

reference ( t o p s e c r e t _ r t 2 ) ) ;
end mi ls_kerne l . i ;

memory implementation ram_mapping . i
subcomponents

seg1 : memory segment . i ;
seg2 : memory segment . i ;

end ram_mapping . i ;

system implementation mils_system . i
subcomponents

kerne l : processor mi ls_kerne l . i ;
p1 : process t o p s e c r e t _ p a r t i t i o n . i ;
p2 : process t o p s e c r e t _ p a r t i t i o n . i ;
ram : memory ram_mapping . i ;

properties
Actual_Memory_Binding =>( reference ( ram . seg1 ) ) applies to p1 ;
Actual_Memory_Binding =>( reference ( ram . seg2 ) ) applies to p2 ;
Actual_Processor_Binding =>( reference ( ke rne l . r t 1 ) ) applies to p1 ;
Actual_Processor_Binding =>( reference ( ke rne l . r t 2 ) ) applies to p2 ;
end mils_system . i ;

Listing 2: Modeling a MILS kernel with two topsecret partitions
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10 J. DELANGE, L. PAUTET AND F. KORDON

3.3.3. Partitions modeling
A MILS partition is specified using virtual processor and process components. A virtual
processor models a partition runtime and its properties (such as the scheduling protocol used to
schedule partition tasks). The process component models partition contents (threads, data, etc.)
and communication interfaces.

3.3.4. Devices modeling
A device is specified using device and virtual processor components. As for partitions, the
virtual processor component models the environment that executes the driver, associated with
its resources (functions, libraries, etc.).

Because our approach assumes that devices and their associated drivers are executed as a
partition, the device component represents a partition that executes the software driver. To model
its resources, it is associated with an abstract component that contains required resources. These
additional components model tasks and data involved in the control of the underlying hardware. Like
the regular ones, device partition can communicate with the others using inter-partitions channels.
They also rely on this mechanism to transmit to and receive from application components.

This modelling pattern is illustrated in listing 3, which shows the representation of a network
device. It defines a device (rtl8029) that provides several inter-partitions ports (incoming_secret,
incoming_topsecret, etc.)to interact with other partitions at different security levels. The tasks
and resources required by the driver are specified by associating the driver_container component
to the partition using the Device_Driver property. In this implementation, the driver is supported
by two tasks (thread components) : one (data_handler)sends data from the other partitions while
another periodically watches for incoming data from the network connection.

subprogram i n i t
end i n i t ;

process implementation d r i v e r . i
subcomponents

data_handler : thread t h r_hand le r . i ;
p o l l e r : thread t h r _ p o l l e r . i ;

properties
Required_Memory_Size => 160 Kbyte ;

end d r i v e r . i ;

abs t r ac t implementation d r i v e r _ c o n t a i n e r . i
subcomponents

p : process d r i v e r . i ;
end d r i v e r _ c o n t a i n e r . i ;

device r t l 8 0 2 9
features

incoming_topsecret : in data port types : : i n t e g e r ;
incoming_secret : in data port types : : i n t e g e r ;
i ncoming_unc lass i f i ed : in data port types : : i n t e g e r ;
ou tgo ing_topsecre t : out data port types : : i n t e g e r ;
ou tgo ing_secre t : out data port types : : i n t e g e r ;
ou tgo ing_unc lass i f i ed : out data port types : : i n t e g e r ;
ethernet_access : requires bus access runt ime : : e therne t . unsecure ;

properties
I n i t i a l i z e _ E n t r y p o i n t => c l a s s i f i e r ( r t l 8 0 2 9 : : i n i t ) ;
Device_Name => " r t l 8 0 2 9 " ;

end r t l 8 0 2 9 ;

device implementation r t l 8 0 2 9 . i
properties

Device_Dr iver => c l a s s i f i e r ( r t l 8 0 2 9 : : d r i v e r _ c o n t a i n e r . i ) ;
end r t l 8 0 2 9 . i ;

Listing 3: Modeling a device driver
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3.3.5. Time isolation modeling
Time isolation of the MILS kernel is described with the POK::Slots (time slots allocated

for partitions execution) and the POK::Slots_Allocation property (allocation of slots across
partitions).

Both properties are defined on the processor component (the MILS kernel) and reference
its partitions. For this reason, we specify a virtual processor (partitions runtime) as a
subcomponent of the processor (MILS kernel).

The kernel, depicted in listing 2, contains two partitions: the first one fires at 500 ms while the
second one fires at 1s. By default, we assume the runtime executes partitions with a cyclic round-
robin scheduling protocol.

3.3.6. Communication channels modeling
MILS security levels (virtual bus) are bound to partitions (virtual processor) with the
Provided_Virtual_Bus_Class property. The security level of each communication interface
(port) is specified with the Allowed_Connection_Binding_Class property. That associates a
port with a security level (virtual bus).

Listing 2 shows the binding of security levels and partitions. It defines partitions that provide top-
secret and secret security levels with one incoming data port that communicates at the topsecret
security level.

3.3.7. Memory isolation
MILS memory isolation is specified by binding each partition to one dedicated memory

segment. To do so, process components are associated to a memory component (using the
Actual_Memory_Binding property).

Listing 2 defines a main memory (ram_mapping) divided in two memory segments. Each one is
associated with one partition. This one-to-one binding ensures space isolation between partitions.

4. VERIFICATION OF MILS REQUIREMENTS USING AADL MODELS

The AADL model allows the validation of MILS requirements from its specification prior to
implementation efforts. To do so, we rely on REAL [23], an AADL-dedicated constraint language.
Requirements are expressed through theorems that are validated thanks to a dedicated tool.

4.1. Security layers conformity

First, we verify that security layers that having different security levels use distinct protection
mechanisms. For that purpose, our theorems browse security layers (virtual bus components)
and check that they use distinct cipher algorithms and configurations.

4.2. Security levels usage

Validation theorems check that two communicating partitions share the same security level
(virtual bus). This ensures security consistency by checking that sending and receiving interfaces
are using the same security mechanisms (same cipher key, etc.). In addition, theorems also enforce
that security levels used by these interfaces are provided by partitions.

4.3. Space isolation

Theorems check space isolation, ensuring that each AADL process (MILS partition) is associated
to a single memory component. If two processes share the same memory component, they must be
of the same security levels.

4.4. Time isolation

Theorems check that MILS partitions (virtual processor) are executed by the kernel at least one
time during a scheduling cycle. This ensures that partitions will have time to execute their task. In
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addition, this execution time must be fixed to avoid security threats (some attacks could rely on an
analysis of partitions or tasks execution time).

To do so, our validation theorem inspects processor components and verify that, for each
partition contained in that processor, a scheduling slot is allocated. As a result, it ensures that each
partition is executed at least one time in each scheduling cycle.

4.5. Other validation related to AADL models

Verification of AADL architectures is a wide topic and several verifications were issued for different
purposes. By using AADL as modeling language, regular validation tools (such as task scheduling
[24] or flow latency [25]) can be issued on MILS systems, checking various system requirements
and increasing the reliability of the development process.

4.6. Benefits of AADL models validation

Contrary to the initial MILS formalism which uses its own abstract representation of the system (as
in figure 2), AADL models also specify configuration and deployment informations.

In our context, this deployment information indicates the security levels used by each partition,
describing which level is isolated from the others. Thanks to this precise description of security
levels and information sharing, we are able to make a finer analysis and isolate security concerns
according to partitions isolation.

Finally, the use of a standardized modeling language as AADL for the description of MILS
architectures provides the ability to use them with a wide-range of tools, from model validation
(as described in section 4.5) to code generation (described in next sections).

5. AUTOMATIC IMPLEMENTATION

The implementation process is divided in two main parts, illustrated in figure 5:

1. The code generation process (supported by Ocarina [22]) creates partitions and kernel code
(illustrated with dashed boxes in figure 5) from validated AADL models.

2. The MILS operating system (POK [8]) contains runtime services (solid boxes in figure
5). These services are adapted using the generated code and provide isolation support for
partitions execution.

AADL models

Code generator

execution & configuration

Partition services

Partition 1

Isolation configuration Isolation services

Pa
rt
it
io
n

la
y
e
r

K
e
rn
e
l

la
y
e
r

execution & configuration

Partition services

Partition 1

Figure 5. Detail of our implementation process
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5.1. Code generation

5.1.1. Code generation patterns for partitions
The code generator creates code that instantiates/configures partition resources and services. This

code is created from AADL components that model partitions (process, threads, data), devices
(components associated to the device component using the Device_Driver property) and their
communication ports (features).

For partition or driver resources, generation patterns create tasks, shared data and communication
channels. It also generates tasks from AADL threads that receive data, execute application function
(such as Ada/C code) and send outputs.

From a security-side, the code generator configures cipher algorithms and automatically
encrypt/decrypt data before/after sending/receiving it. It ensures that security layers bound to each
inter-partition channel (AADL port) are used correctly. In addition, it ensure that a classified
partition that share a device with another at a lower security level protects its data, ensuring its
isolation and avoiding security levels mix.

Finally, this automatic configuration of cipher algorithms ensures data encryption according to
the specification. It avoids security threats potentially introduced by developers who can introduce
errors in the usage of these security mechanisms. As a result, the automatic configuration ensures
that data will be crypted before sharing them over an unsecured bus (such as an ethernet network).

5.1.2. Code generation patterns for kernels
The code generator automatically configures kernel isolation services. This is the most critical

part of the code since an error can break the security policy. This is a particular interest since the
automatic code generation avoids errors generally introduced by traditional development methods.

Generation patterns analyze AADL components that model isolation requirements (processors,
memories and partitions features) and create code that:
• Configure space isolation, ensuring that each memory segment is isolated and allocated to a

partition.
• Configure communication channels by connecting partitions interfaces so that the kernel

precisely knows which partitions can communicate together.
• Allocate partitions resources (tasks, channels, etc).
Generated code is then integrated to our MILS operating system in order to create the final

implementation. Next subsection presents our MILS O/S implementation, POK.

5.2. POK, a libre MILS Operating System

POK is a MILS-compliant operating system functions released under the BSD licence. We detail its
architecture (shown in figure 6) through the next paragraphs.

5.2.1. Kernel layer
Our design guidelines lead us to keep it as small as possible for it to be amenable to

certification/verification. At this time, its size is less than 3000 Source Line Of Code (SLOC),
including the architecture-dependent code (which handles low-level concerns).

It provides time and space isolation services:
• Space isolation: it stores partitions code, data and resources in separate address spaces.
• Time isolation: it schedules partitions according to a cyclic scheduling protocol with fixed time

slices.
The kernel also provides inter-partitions communication service, which is responsible to enable

data sharing across partitions according to the system configuration defined by the system designer.
This functionality ensures that only allowed partitions can communicate, avoiding covert channels.
However, even if POK services avoid the use of undeterministic and non-secure functions, these
services would be verified/certified to be used in an industrial context.

5.2.2. Partition runtime and device drivers functions
Due to its lower criticality, this layer contains more services than the kernel. The core
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Figure 6. POK architecture

layer (services depicted at the bottom in figure 6) provides tasking management, intra-partition
communication functions and data locking mechanisms (semaphore, mutex, etc.). This set of core
functions are then reused by several compatibility layers that support API of well-known standards.
The partition layer of POK supports POSIX or ARINC653 so that developers can directly reused
existing code and link it with the partition runtime librairy.

This layer also includes protection mechanisms used for data encryption. It is based on a port
of OpenSSL [26], a reference implementation of several cipher algorithms. These functions are
also automatically configured by the generated code to crypt/decrypt data transmitted through inter-
partitions ports.

Finally, this layer provides device drivers functionalities to interact with the underlying hardware.
These functions are used to perform input/output or to access hardware buses (PCI, USB, etc.)
within a partition. These functions are designed so that only one partition can have an access to a
specific device, avoiding its use by several partitions.

6. CASE STUDY

6.1. Case study overview

Our case study, illustrated in figure 7, defines a system that share data at top-secret, secret and
unclassified security levels. Data classified at these levels are transferred through an unclassified
channel, which is typical study when we share data over a network such as ethernet that does not
provide any isolation mechanism.

SLS components in S1, S2 and S3 are subprograms that produce integers at a given rate (for
example, their associated tasks have a period of 100 ms). SLS components in R1 and R2 print
received data.

SLS components S4 and R3 represent software that manages network hardware (device and their
associated driver). It is responsible for sending/receiving packets on the network. They are not
verified and so, they transport data only at an unclassified security level.

To send classified data at an unclassified security level, we downgrade/upgrade data security-
level. It means that classified entities (top-secret, secret) send/receive data to/from unclassified
ones. To prevent security leaks, cipher algorithms are used: before sending a classified data to an
unclassified entity, encryption is performed, ensuring that receiving task cannot read it. This is also
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Figure 7. Overview of our case study

done on the other side : when a classified entity receives data from an unclassified one, it decrypts
it automatically, recovering the value sent by the original classified entity.

This case-study illustrates the relevance of our model-based approach for the validation and the
implementation of security concerns, ensuring security levels configuration consistency and absence
of security leaks within a distributed architecture. Nevertheless, the following considerations must
be taken into account:

1. Actual implementations of security policies is more complex and often rely on several
cipher keys and/or algorithms. However, no matter the implementation, same concepts as
our approach apply, ensuring configuration consistency and security leakage avoidance.

2. The code generation step transforms specification into a configuration and runtime code
for partitions and their associated isolation kernel (POK). In the context of safety-critical
systems, such a code has to be certified. This concerns would typically be addressed either by
validating/certifying the (a) generated code or the (b) code generator. However, despite their
importance, such topics are out of the scope of this article.

6.2. AADL model

We map this abstract architecture in AADL using our modeling rules (cf. figure 8). The resulting
model is a distributed system deployed on two nodes, sharing classified information over an
untrusted network:

1. The sender node isolates components S1, S2, S3 and S4 in partitions that runs on the same
processor

2. The receiver node isolates components R1, R2 and R3 in partitions on another processor.

This model defines the security layers by means of virtual bus components. It associates
appropriate security layers to partitions and communication interfaces: the top-secret security layer
is associated to partitions S1 and R1, secret layer to S2 and R1 and the unclassified layer to S3 and
R2. When a partition or a communication port is not associated to a security layer, it is bound to the
unclassified security layer by default (no encryption mechanism is used).

As S1, S2, S3, R1 and R2 partitions contain application code, we model them using processes
that contain their resources (thread, data, etc.). On the other hand, S4 and R3 represent
devices that send/receive data through the network. Thus, we model them using a device
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component.Nonetheless, these components also model a partition, except that they have an access
to the hardware they control (the network device).
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Figure 8. AADL architecture

6.3. System validation from AADL models

We first validate our architecture against our REAL theorems (cf. section 4). The following theorems
were experienced:

1. Structural analysis: the division of the system into partitions, the use of appropriate
components and properties (virtual processor and process components for partitions
modelling, processor components for the specification of partitioned kernels, etc.). As
illustrated in figure 8, our AADL model meets our modelling pattern so that this theorem
is validated.

2. Space isolation: memory of each node is divided into memory subcomponents that represent
memory segments of each partition. Then, theorems verify that each partition is bound to a
memory segment for the storage of its data and code, ensuring their isolation from one to
another. In our case study, the memory of the sender node is divided into four segments and
the one of the receiver is composed of three of them. Then, each partition is associated with a
distinct segment.

3. Time isolation: each partitioned kernel (processor component) must ensure partitions
execution. This is achieved by inspecting its properties and verifying that each partition
is referenced in the scheduling table. In our example (textual representation, available in
POKexamples), each partition is referenced exactly one time in the scheduling table so that
this theorem is validated.

4. Security mechanisms usage: inter-partitions ports use security mechanisms provided by
their containing partitions. In our case-study, each inter-partitions ports specify the security
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mechanisms they use through an association with a virtual bus component. In addition,
as ports use the same virtual bus as their containing partition (a port associated with the
secret virtual bus is contained in a partition labelled with the secret virtual bus) so
that this theorem is validated.

5. Security mechanisms configuration : each security layer (virtual bus component) must
be configured with appropriate properties. In our model, the topsecret and secret
security layers specify dedicated properties to define the cipher algorithm they use with
its configuration requirements (shared key, initialization data, etc.) so that this theorem is
validated.

This first validation step, established at a model-level, ensures that MILS requirements are met in
the design. Then, the automatic code generation transforms validated design into executable code.
Next sections detail these aspects and explain how we verify the use of security mechanisms.

6.4. Code generation and performance assessment

Ocarina [22] automatically generates code for nodes from this architecture model. This code is then
integrated with our MILS-compliant operating system, POK [8], to produce a final implementation.
As memory footprint is a major concern for safety-critical applications, we measure the size of each
partition to assess the compliance of our approach against this requirements.

Table I reports the size of each component. To get these results, we compile each component
separately and remove debugging and useless symbols in the binaries (using the strip program).
We separate the size of the application (the functional part of the application) from the size of the
architecture-related code (functions related to non-functional aspects such as resources creation,
tasks management, etc.).

Size of both kernel is similar (19 KB) and can also be considered as low. Readers can notice
that partitions classified at secret or topsecret layers have higher memory foorprint than unclassified
ones. This memory overhead comes from the inclusion of cipher algorithms that add code in the
architecture layer. Indeed, application layer size is almost equal in all partitions.

Component Size (total) Architecture code Application code

Se
nd

er

Kernel 19 KBytes N/A N/A
Network driver 53 KBytes N/A N/A
Partition top-secret 22 KBytes 21 KBytes 888 Bytes
Partition secret 26 KBytes 25 KBytes 888 Bytes
Partition unclassified 14 KBytes 13 KBytes 888 Bytes

R
ec

ei
ve

r Kernel 19 KBytes N/A N/A
Network driver 53 KBytes N/A N/A
Partition top-secret & secret 35 KBytes 34 KBytes 800 Bytes
Partition unclassified 14 KBytes 13 KBytes 800 Bytes

Table I. Memory footprint of kernels and partitions

6.5. Verification of security mechanisms

We check the correctness of the security mechanisms in the produced system. To do so, a virtual
machine (QEMU [27]) executes generated applications and connects them through a virtual ethernet
bus. This network can be monitored so that we can see the data that it transports by capturing
the traffic between these virtual machines. Figure 9 depicts this deployment strategy, showing two
instances of the virtual machine (one for the sender node, another for the receiving node) as well as
the virtual network layer.

We capture the network traffic produced by each partition using the wireshark [28] tool (also
shown in figure 9). It reports data exchanged across the nodes of the distributed system, showing
their content and so, the potential use of cipher algorithms. Our experiments show that three kinds
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Figure 9. Deployment of our case-study over two virtual machines

of data are being transported: one that is readable in clear, one that needs the configuration of the
topsecret layer cipher algorithm and another that requires the protection mechanisms of the secret
layer. Also, we were able to read protected data using the cipher algorithms of each security layer
with their appropriate configuration, showing that security requirements are well configured and
used.

7. CONCLUSION

This article presented a framework for the design, validation and implementation of
MILS architectures. As far as we know, this is the first rapid prototyping approach of MILS systems.

Our modeling patterns dedicated to MILS and their associated validation rules detect security
issues at a specification level. This is of particular interest because it ensures security levels isolation
in a distributed architecture and check for their implementation correctness. Specification and
validation steps report errors before implementation, thus increasing reliability of produced systems.

In addition, automatic code generation (with the Ocarina code generator and the POK MILS O/S)
ensures a conformant implementation. This avoids errors related to hand-made code.

7.1. Further work

This work could also be improved in several ways. In particular, if we want to extend our validation
framework and validate architecture models using other security policies.

In addition, we plan to evaluate encryption mechanisms with other security mechanisms. During
our current experiments, we only use symmetric cipher algorithms but it can be extended with
asymmetric ones.

ACKNOWLEDGMENTS

POK is an open-source partitioned kernel developped by many actors from different schools and
companies. We would like to thank every contributor of POK.

REFERENCES

1. John Rushby. The Design and Verification of Secure Systems. Eighth ACM Symposium on Operating System
Principles (SOSP), Asilomar, 1981; 12–21. (ACM Operating Systems Review, Vol. 15, No. 5).

2. John Rushby. Separation and Integration in MILS (The MILS Constitution). Technical Report, SRI International
2008.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe



DESIGN, IMPLEMENTATION AND VERIFICATION OF MILS SYSTEMS 19

3. WW Technology Group. EDICT Tool Suite - http://www.wwtechnology.com/.
4. Uchenick G, Vanfleet M. Multiple Independent Levels of Safety and Security: High Assurance Architecture for

MSLS/MLS. Military Communications Conference, 2005. MILCOM, IEEE (ed.), 2005.
5. Information Assurance Directorate. U.S. Government Protection Profile for Separation Kernels in Environments

Requiring High Robustness 2007.
6. SAE. Architecture Analysis & Design Language v2.0 (AS5506) September 2008.
7. National Institute of Standards and Technology (NIST). The Economic Impacts of Inadequate Infrastructure for

Software Testing - http://www.nist.gov/director/prog-ofc/report02-3.pdf. Technical Report 2002.
8. Delange J. POK user guide - http://pok.gunnm.org.
9. Vanfleet WM, Luke JA, Beckwith RW, Taylor C, Calloni B, Uchenick G. MILS:Architecture for High-Assurance

Embedded Computing - http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.html.
Crosstalk 2005; .

10. Zhou J, Alves-Foss J. Architecture-based refinements for secure computer systems design. PST ’06: Proceedings
of the 2006 International Conference on Privacy, Security and Trust, ACM: New York, NY, USA, 2006; 1–11,
doi:http://doi.acm.org/10.1145/1501434.1501453.

11. Hansson J, Feiler PH, Morley J. Building Secure Systems Using Model-Based Engineering and Architectural
Models - http://www.stsc.hill.af.mil/crosstalk/2008/09/0809HanssonFeilerMorley.html. Crosstalk
September 2008; .

12. Hansson J, Greenhouse A. Modeling and Validating Security and Confidentiality in System Architectures. Technical
Report, CMU/SEI 2008.

13. Hansson J, Wrage L, Feiler PH, Morley J, Lewis B, Hugues J. Architectural modeling to verify security and
nonfunctional behavior. IEEE Security and Privacy 2010; 8:43–49, doi:http://doi.ieeecomputersociety.org/10.1109/
MSP.2009.143.

14. Lodderstedt T, Basin D, Doser J. Secureuml: A uml-based modeling language for model-driven security. "UML»
2002 - The Unified Modeling Language, Lecture Notes in Computer Science, vol. 2460, Jézéquel JM, Hussmann H,
Cook S (eds.). Springer Berlin / Heidelberg, 2002; 426–441.

15. Jürjens J. Umlsec: Extending uml for secure systems development. «UML» 2002 - The Unified Modeling Language,
Lecture Notes in Computer Science, vol. 2460, Jézéquel JM, Hussmann H, Cook S (eds.). Springer Berlin /
Heidelberg, 2002; 1–9.

16. Rodríguez A, Fernández-Medina E, Piattini M. Towards a uml 2.0 extension for the modeling of security
requirements in business processes. Trust and Privacy in Digital Business, Lecture Notes in Computer Science,
vol. 4083, Fischer-Hübner S, Furnell S, Lambrinoudakis C (eds.). Springer Berlin / Heidelberg, 2006; 51–61.

17. Common Criteria for Security Evaluation – http://www.commoncriteriaportal.org.
18. OMG. A UML Profile for MARTE, Beta 1. OMG Document Number: ptc/07-08-04, 2007.
19. Rodriguez A, Fernandez-Medina E, Piattini M. Security requirement with a uml 2.0 profile. ARES ’06: Proceedings

of the First International Conference on Availability, Reliability and Security, IEEE Computer Society: Washington,
DC, USA, 2006; 670–677, doi:http://dx.doi.org/10.1109/ARES.2006.125.

20. Object Management Group (OMG). Systems Modeling Language (SysML) 2007.
21. Peter H Feiler, David P Gluch, John J Hudak. The Architecture Analysis and Design Language (AADL): An

Introduction. Technical Report 02 2006.
22. Zalila B, Hugues J, Pautet L. Ocarina user guide. TELECOM ParisTech.
23. Olivier Gilles, Jérôme Hugues. Validating Requirements at Model-Level. Ingénierie Dirigée par les modèles

(IDM’08), Mulhouse, France, 2008; 35–49.
24. Julien Delange, Laurent Pautet, Alain Plantec, Mickael Kerboeuf, Frank Singhoff, Fabrice Kordon. Validate,

simulate, and implement ARINC653 systems using the AADL. Ada Letter 2009; 29(3):31–44, doi:http://doi.acm.
org/10.1145/1653616.1647435.

25. Peter H Feiler, Jorgen Hansson. Flow Latency Analysis with the Architecture Analysis and Design
Language (AADL) – http://www.sei.cmu.edu/publications/documents/07.reports/07tn010.html.
Technical Report, SEI 2007.

26. The OpenSSL Project. OpenSSL - http://www.openssl.org. Programa de computador December 1998. URL
http://www.openssl.org/.

27. Bellard F. Qemu, a fast and portable dynamic translator. ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference, USENIX Association: Berkeley, CA, USA, 2005; 41–41.

28. Angela Orebaugh, Gilbert Ramirez, Josh Burke, Larry Pesce. Wireshark & Ethereal Network Protocol Analyzer
Toolkit (Jay Beale’s Open Source Security). Syngress Publishing, 2006.

Copyright c© 2010 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2010)
Prepared using speauth.cls DOI: 10.1002/spe

http://www.wwtechnology.com/
http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.stsc.hill.af.mil/crosstalk/2005/08/0508Vanfleet_etal.html
http://www.stsc.hill.af.mil/crosstalk/2008/09/0809HanssonFeilerMorley.html
http://www.commoncriteriaportal.org
http://www.sei.cmu.edu/publications/documents/07.reports/07tn010.html
http://www.openssl.org
http://www.openssl.org/

	1 Introduction
	1.1 Context
	1.2 Problem statement
	1.3 Solution overview
	1.4 Outline

	2 MILS overview
	2.1 Security isolation concepts
	2.2 MILS operating system
	2.2.1 MILS layers
	2.2.2 Device sharing across partitions

	2.3 Related Work
	2.3.1 Architecture analysis
	2.3.2 MILS operating system


	3 Modeling MILS architectures with the AADL
	3.1 Motivations for choosing AADL
	3.2 AADL overview
	3.2.1 Example of an AADL model

	3.3 Modeling MILS requirements
	3.3.1 Security levels modeling
	3.3.2 Kernel modeling
	3.3.3 Partitions modeling
	3.3.4 Devices modeling
	3.3.5 Time isolation modeling
	3.3.6 Communication channels modeling
	3.3.7 Memory isolation


	4 Verification of MILS requirements using AADL models
	4.1 Security layers conformity
	4.2 Security levels usage
	4.3 Space isolation
	4.4 Time isolation
	4.5 Other validation related to AADL models
	4.6 Benefits of AADL models validation

	5 Automatic Implementation
	5.1 Code generation
	5.1.1 Code generation patterns for partitions
	5.1.2 Code generation patterns for kernels

	5.2 POK, a libre MILS Operating System
	5.2.1 Kernel layer
	5.2.2 Partition runtime and device drivers functions


	6 Case Study
	6.1 Case study overview
	6.2 AADL model
	6.3 System validation from AADL models
	6.4 Code generation and performance assessment
	6.5 Verification of security mechanisms

	7 Conclusion
	7.1 Further work


