
Modeling complex systems with VeriJ

Yan Zhang
Université Pierre & Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),

4 place Jussieu, F-75005 Paris, France
Yan.Zhang@lip6.fr

Béatrice Bérard
Université Pierre & Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),

4 place Jussieu, F-75005 Paris, France
Beatrice.Berard@lip6.fr

Lom Messan Hillah
CNRS-UMR 7606 (LIP6/MoVe) and

Université Paris Ouest Nanterre La Défense
200, avenue de la République, F-92001 Nanterre Cedex, France

Lom-Messan.Hillah@lip6.fr

Fabrice Kordon
Université Pierre & Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),

4 place Jussieu, F-75005 Paris, France
Fabrice.Kordon@lip6.fr

Yann Thierry-Mieg
Université Pierre & Marie Curie,
CNRS-UMR 7606 (LIP6/MoVe),

4 place Jussieu, F-75005 Paris, France
Yann.Thierry-Mieg@lip6.fr

This paper presents VeriJ, a language designed for modeling complex supervisory control problems. VeriJ is
based on a subset of the Java language with some supervisory control specific constructs added; this allows
to use industrial strength integrated development environments such as Eclipse to build VeriJ models and to
directly use a Java debugger to execute (simulate) these models. With the aim to perform controller synthesis
in a further step, VeriJ models are translated into hierarchical finite state machines (HFSM) representing the
control flow graph, using modern model transformation techniques and tools. The semantics of these HFSM
is then given as a pushdown system, leading to a concise and expressive representation of the underlying
discrete event system. We illustrate our modeling and transformation approach with a VeriJ model of the Nim
game, for which finding a winning strategy for a player can be seen as a control problem.

Keywords: VeriJ, Java, model transformation, verification, controller synthesis

1. INTRODUCTION

Context. Supervisory control1 of discrete event sys-
tems is a formal approach allowing to automatically
compute a controller given some control objective.
Given a discrete model M of a system and an
objective expressed as a formula ϕ, the control
problem asks if there exists a controller C such that
M controlled by C satisfies ϕ. This problem can also
be viewed as a game where the controller is looking
for a winning stategy against all possible actions of
the environment.

While algorithms solving the control problem
are well known (Ramadge and Wonham 1987),
two obstacles limit practical application of these
techniques in industry: like most state-space
exploration techniques the algorithms scale up with
difficulty to large and complex systems, and from an
1This work has been partially supported by a Ph. D. grant from the
Chinese Scholarship Council.

engineer’s point of view the investment needed to
learn to manipulate formal models such as automata
is often considered too costly.

Contribution. We propose to model complex
discrete event systems using VeriJ (Zhang 2010),
a language based on a subset of Java. Complex
systems may involve a large number of components
and handle for instance lists with dynamic size.
They would include automated transport systems
like the one partially studied in (Bérard et al. 2008).
Concurrency is an important feature of complex
systems but it is not yet implemented and is left
out in this paper. In addition to Java instructions,
VeriJ includes a small set of control specific elements
allowing to specify which actions are controllable,
and the control objective. Since this language is
based on Java, most engineers already feel very
comfortable expressing their system’s semantics as
programs. This also allows to directly benefit from
mature and powerful industrial strength development

1

Modeling complex systems with VeriJ
Yan Zhang et. al.

environments such as Eclipse (syntax checks,
code completion, etc.), including the facilities to
interactively run a VeriJ model thanks to the standard
Java debugger.

Discussion and related work. To perform formal
analysis of VeriJ specifications, we need to build
a transition system from the java-based source
code. Two main alternative solutions are possible for
this step: direct translation from source code to a
formal model, or using the Java compiler to obtain
bytecode, then analyze at bytecode level. We now
compare existing techniques used in related work
and present our proposal.

Direct translation to some variant of Control Flow
Graph (CFG) allows to preserve a high level of
abstraction in the resulting system model. However,
it may be difficult in general to capture all syntactic
elements from the language, and care must be taken
to avoid deviation from a compiler’s interpretation
of the source code. This approach was used for
instance in the Bandera project (Corbett et al.
2000) where the translation target was a so called
Bandera Intermediate Representation akin to a
finite state machine. It was also the case in early
versions of the Java Path Finder (JPF) (Havelund
1999), a software model-checker with Promela as
target: Promela is the input language of Spin
model-checker (Holzmann 1997), again based on
communicating finite automata.

The other option consists in using a standard
compiler to derive the semantics of the source
code, and handling the verification by working at
the bytecode (e.g. for Java) or assembly language
(e.g. for C) level. This approach solves issues related
to software artifacts, such as external libraries for
which no source code is available, hence is the
preferred option for full-fledged software model-
checkers. It also allows to consider less cases when
implementing the verification tool as the variety
of opcodes is rather limited. However, it forces to
work at a very low level of abstraction, on much
larger models in raw number of instructions, or
even to resort to executing the code to derive its
interpretation. This is the choice taken in recent
versions of JPF (Brat et al. 2000; Gvero et al. 2008)
which rely on a dedicated backtrackable Java Virtual
Machine (JVM) that provides non-deterministic
choices and control over thread scheduling.

In this work, we choose to directly translate the
VeriJ input into a variant of control flow graphs
called Hierarchical Finite State Machines (HFSM),
that preserve the structure of the source code
and a high level of abstraction. Parsing of the
input is partially handled by existing Java analysis

tools: MoDisco2 is able to raise the source code
to a model instance of a standard Java meta-
model. Subsequent transformation to HFSM relies
on model to model (M2M) transformation techniques
using the Atlas Transformation Language (ATL3), a
state-of-the-art model transformation plugin within
Eclipse. Since we are targeting supervisory control
rather than full software model-checking, we need
an efficient expression of the system’s transition
relation. For this reason, JVM-based solutions (like
in JPF) are not appropriate in our case.

Once a control flow graph has been obtained,
there remains the question of how to provide its
semantics. A straightforward approach in simple
cases consists in inlining all calls, resulting in a
single finite state machine (FSM) for the whole input
program. FSMs are the natural input language for
many model-checkers, which makes this solution
attractive. However, a plain FSM may become very
large due to duplication of behaviors. Moreover,
it is inapplicable when recursion is involved,
since the inlining would produce infinite structures.
Another popular approach is to use pushdown
semantics to interpret the CFG: using PushDown
Systems (PDS) produces a compact and accurate
representation of procedure calls thanks to the use
of a stack in the system states. This is the choice
taken in jMoped (Suwimonteerabuth et al. 2007),
Magic (Chaki et al. 2006) or MOPS (Chen and
Wagner 2002) for instance, and in our own approach
as well.

Outline. The overall scheme of our approach is
depicted in Figure 1. The transformation is split
into two steps: preprocessing and compilation, both
using model transformation techniques involving
metamodels.

Instead of a really complex system, we use in this
paper as a running example a simple two-player
game, Nim, where the control problem consists in
finding a winning strategy for one of the players.

The paper is structured as follows. Section 2
presents VeriJ and its metamodel. Section 3 is
devoted to VeriJ compilation into Hierarchical Finite
State Machines then Section 4 shows the pushdown
semantics.

2. VERIJ

VeriJ is meant to bridge the gap between a
programming language and the input of a controller
synthesis tool.
2www.eclipse.org/MoDisco/
3www.eclipse.org/atl

2

Modeling complex systems with VeriJ
Yan Zhang et. al.

compilationpreprocessing

Java model
VeriJ

model

Java

metamodel

VeriJ

metamodel

HFSM

model

HFSM

metamodel

PDS

analysis

instance

of

model

transformation

model

transformation

instance

of

instance

of

semantics

Figure 1: From source code to formal model.

2.1. VeriJ definition

Designed as a Domain Specific Language (DSL) for
verification and control synthesis, VeriJ consists of
a subset of the Java language, including elements
such as: basic data types, arithmetic operators,
assignments, decision and control statements,
construction of classes with instantiation, with the
addition of specific classes described below. VeriJ
does not support features such as cast, exceptions,
visibility, inheritance, libraries or native code (see
Figure 2(a)).

We now present VeriJ specific features, shown in
Figure 2(b).

• Due to the complexity of dealing with low-
level Java collections such as sets, lists and
so on, we create the VeriJList type instead,
to handle basic collections with a small set
of operations. For example, in Java, even the
basic collection ArrayList involves hundreds of
lines of complex source code. The VeriJList

provides a high level of abstraction for the
collections.

• Additionally, VeriJ introduces concepts useful
for the verification process, such as random
and non-deterministic choice (NDChoice). In
VeriJ, random is a random integer generator
built on the standard Math.random(), which
randomly produces an integer between a min

and a max. The NDChoice method is a random
boolean generator. Both random and NDChoice

are used to specify free choice semantics of a
system and will be used to build the transition
relation of the target model. The playerID

parameter given in these two methods is
needed to identify by whom each choice is
made. In other words, each move is labeled
by its player, which will be an essential part
in the procedures of verification and controller
synthesis.

These concepts are also implemented as Java
classes, hence allowing us to run and debug
VeriJ models using standard Java tools. In our
implementation of the random methods, user input,
trace record and replay or standard simulation are
possible.

2.2. Example of a VeriJ model: the Nim game

We now present the Nim game, used as a running
example throughout the paper. In this case, we would
like to solve a control problem: finding a winning
strategy for one of the player. In the final transition
system, each action must be assigned to a player
and a set of failure states have to be defined. Then a
standard algorithm involving a backward fixpoint will
be applied as in (Zhang et al. 2010).

Given a set of matches arranged in several rows,
with 2i − 1 matches in the ith row, the Nim game
consists of two players alternately picking a random
number of matches from a randomly selected row
of matches. The player who takes the last match
loses. This game was completely solved in 1901
by Charles Bouton (Bouton 1901). We use here the
variant presented in (Ziller 2002). Such a game can
be seen as an instance of a controller synthesis
problem: the game is modeled as a transition system
where each player takes a turn and the goal is
to determine if there exists a winning strategy for
one of the two players. In other words, one of the
players, the controller, tries to find a winning strategy
against all the possible moves of the other player,
who represents the environment.

The Nim game source code being large, we only
present a subset in Figure 3, to show how modeling
and simulation are done in VeriJ.

• The class Board only uses a variable Matches,
whose type is VeriJList. Its constructor (lines
36 to 42) constructs the set of matches in
successive rows by calling operation add (from

3

Modeling complex systems with VeriJ
Yan Zhang et. al.

JavaVeriJ

• basic data types: int, boolean…

• arithmetic operators: +,-, =, …

• control flow statements : if, for …

• variable declaration

• method declaration

• class instance creation

• …

Created elements
• VeriJList
• Random
• Non-Deterministic (ND) Choice
• …

• cast

• exception

• threads (not yet)

• libraries

• inheritance

• native code

• I/O

• …

(a) VeriJ versus Java.

util

Util

+ random(min : int, max : int,

playerID : int) : int

+ NDChoice(playerID : int) : boolean

VeriJList<T>

+ add(elt : T)

+ get(index : int) : T

+ size() : int

+ set(index : int, elt : T)

(b) VeriJ additional elements

Figure 2: Illustration of VeriJ definition.

1 public class TestNim {
2 public s t a t i c void
3 main (S t r i n g [] args) {
4 Nim nim ;
5 nim = new Nim () ;
6 boolean gameover ;
7 gameover = nim . gameover () ;
8 while (! gameover) {
9 nim . T r a n s i t i o n () ;

10 gameover = nim . gameover () ;
11 } }
12 }
13

14 public class Nim {
15 private Board board ;
16 private i n t p layer ID ;
17

18 public Nim (){
19 board = new Board () ; }
20 public void T r a n s i t i o n () {
21 boolean gameover ;
22 gameover = gameover () ;
23 i f (! gameover) {
24 playEnvironment () ;
25 }
26 i f (! gameover) {
27 p l a y C o n t r o l l e r () ;
28 } else
29 isBad () ;
30 } . . .
31 }
32

33 public class Board {
34 private L i s t<In teger> Matches ;
35 private boolean isMatchEmpty ;

36 public Board () {
37 Matches = new V e r i J L i s t<In teger > () ;
38 for (i n t i = 0 ;
39 i < Constants .NBRow; i = i +1) {
40 i n t num;
41 num = 2 ∗ i + 1 ;
42 Matches . add (num) ;}}
43 private i n t chooseNBtake (i n t index ,
44 i n t p layer ID) {
45 boolean empty ;
46 empty = matchEmpty () ;
47 i f (empty)
48 return 0;
49 else{
50 i n t matchesNumber ;
51 matchesNumber = Matches . get (index) ;
52 i n t maxTake ;
53 maxTake = Math . min (matchesNumber ,
54 Constants . MaxNBtaken) ;
55 i n t random ;
56 random = U t i l . random (1 ,maxTake , p layer ID) ;
57 return random ; }}
58 private i n t chooseRow (i n t p layer ID) {
59 i n t NonemptyRow = −1;
60 i n t s ize ;
61 s ize = Matches . s ize () ;
62 for (i n t NBMatchRow = 0; NBMatchRow < s ize ;
63 NBMatchRow=NBMatchRow+1) {
64 i n t getNBMatchRow ;
65 getNBMatchRow = Matches . get (NBMatchRow) ;
66 i f (getNBMatchRow != 0) {
67 NonemptyRow = NBMatchRow ;
68 boolean choice ;
69 choice = U t i l . NDChoice (p layer ID) ;
70 i f (choice)
71 return NBMatchRow ;
72 }} . . . } . . . }

Figure 3: VeriJ description of the Nim game.

4

Modeling complex systems with VeriJ
Yan Zhang et. al.

the VeriJList type), with argument (2 ∗ i + 1)
within a loop.

• A call to random (line 56) is used in
method chooseNBtake to randomly generate
the number of matches to take in one move.
Similarly, NDChoice (line 69) is used in method
chooseRow to randomly choose the row in
which matches will be taken in that move. Both
random and NDChoice carry the label of each
player by playerID.

Figure 4 shows the class diagram of the Nim game
from VeriJ source code. It contains four classes:
TestNim, Nim, Board and Constants. Classes Nim
and Board constitute the core part of the model. This
model was produced from the VeriJ code using a
standard UML tool.

nim

NBRow: int
MaxNBtaken: int

Constants

+ transition()
+ gameover() : boolean
- playController()
- playEnvironment()
- setControlled(player:boolean)
- isBad() : boolean

- board: Board
- isControlled: boolean

Nim

+ takeMatch()
+ matchEmpty() : boolean
- chooseNBTake(index : int) : int
- chooseRow() : int
- setMatchEmpty()

- isMatchEmpty: Boolean
Board

+ main(args: String[])

TestNim

«uses»

«uses»

Figure 4: Class diagram of the Nim game.

2.3. VeriJ compilation

To apply formal analysis to VeriJ models, VeriJ
source code is compiled into a Hierarchical
Finite State machine (HFSM), i.e. a set of finite
state machines. Recall that the transformation
(Figure 1) includes preprocessing and compilation,
using model transformation techniques involving
metamodels.

Since VeriJ takes a subset of Java as described in
Figure 2(a), its metamodel is primarily derived from
the metamodel of Java, by removing 46 metaclasses
(from the 126 metaclasses of Java) and adding the
new elements. Despite the classes removed from
Java metamodel, VeriJ metamodel is still too large to
be displayed in this paper. To get an in-depth descrip-
tion and complete details of the Java metamodel,
we refer the reader to http://wiki.eclipse.org/

MoDisco/Components/Java/Documentation/0.9.

In the preprocessing step, we extract the Java
model of the application, conforming to Java
metamodel, from either the Java source code

or the VeriJ source code, thanks to MoDisco.
MoDisco is a model-driven framework providing
tools to support software modernization. Among
these tools, discoverers automatically create models
of existing systems. The VeriJ model, conforming
to VeriJ metamodel, built out of the extracted
Java model, is obtained by pruning unnecessary
information from the Java model and building the
VeriJ specific elements. Given the Java metamodel
and the VeriJ metamodel, this step is carried out
by a set of rules Java2VeriJ.atl, using Atlas
Transformation Language (ATL) framework. A part of
the transformation code is shown in Figure 6. Rule
VeriJRandom (line 9 to 18) shows how to select and
transform a MethodInvocation element in Java to a
random element in VeriJ.

1−− @path MMJava=/ Java2VeriJ / java . ecore
2−− @path MMVeriJ =/ Java2VeriJ / ve r i J 02 . ecore
3 module Java2VeriJ ;
4 create OUT : MMVeriJ from IN : MMJava ;
5

6 he lper con tex t MMJava ! MethodInvocat ion def :
7 isVer iJMethod () : Boolean = s e l f . method . proxy ;
8

9 r u l e VeriJRandom{
10 from s : MMJava ! MethodInvocat ion (
11 s . isVer iJMethod () and s . method . name .
12 s t a r t s W i t h (’ random ’))
13 to t : MMVeriJ ! random (
14 min <− s . arguments . a t (1) ,
15 max <− s . arguments . a t (2) ,
16 p layer ID <− s . arguments . a t (3)
17)
18 }

Figure 6: ATL Rule for VeriJRandom.

3. HIERARCHICAL FINITE STATE MACHINE

The next step of our approach is to compile VeriJ
models into discrete event systems (Figure 1). The
control flow of a VeriJ model can be syntactically
described by a Hierarchical Finite State Machine
(HFSM), which is a finite set of finite automata,
linked together according to program instructions.
This model and its semantics in terms of a
pushdown system is intended to be the input of the
verification tool. We first describe HFSM with the
corresponding model transformation and give the
pushdown semantics in Section 4.

3.1. Definition

A finite state machine (FSM) over a finite alphabet
Σ is a tuple F = (S, δ, s0, sf) where S is a finite
nonempty set of states, δ is a partial mapping from
S×Σ to S, s0 ∈ S is the initial state and sf is a unique
final state.

Definition 1 A Hierarchical Finite State Machine
(HFSM) is a finite set F of finite state machines, with

5

Modeling complex systems with VeriJ
Yan Zhang et. al.

HFSM

mainFSM1 allFSM0..*

hfsm
1

parameters0..*
finalState

1

initialState
1

1..* states transitions0..*

1transExpr

destination 1
source 1

Transition

HfsmExpression TransitionExpression

Model Class

FSM

Variable StateinstanceVariables

0..*

class 0..1

Figure 5: Core part of the metamodel of HFSM.

an initial FSM F0 ∈ F and alphabet Σ∪{rF , F ∈ F},
where Σ is a finite alphabet and each rF is a symbol
not in Σ.

The initial FSM F0, which represents the main
method, is the entry of F . States s0 and sf of F0 are
respectively the initial and final states for the HFSM
F . Each finite state machine F ∈ F corresponds to
a function called by the program executed from the
main method. A transition within F corresponds to
an instruction of the function. When the instruction
is a method invocation, the label of the transition is
a reference to another FSM, and so on. Thus letter
rF denotes the reference to FSM F , while basic
instructions are elements of Σ.

Figure 5 shows the core part of the HFSM
metamodel, the actual complete metamodel being
much larger. A model is composed of a set of
FSMs. Each FSM is composed of states and
transitions, together with its own local variables, and
a class name (corresponding to the class to which
it belongs). A Transition has a source state, a
destination state and a TransitionExpression. The
TransitionExpression is an expression denoting
a simple statement (e.g. variable declaration,
assignment, etc.) or an HfsmExpression (method
invocation) which refers to an FSM, hence bringing
in the hierarchy.

In HFSM metamodel, both the types of parameters of
a method declaration and the fields of a class belong
to the Variable metaclass. Figure 7 illustrates details

of this element, which contains three subclasses:
IntVar, BoolVar and ObjectVar which represent the
three types Integer, Boolean and References to
objects. A boolean tag is associated with variables to
indicate if the variable is global (tag is true) or local.
This feature is used in the semantics of the HFSM.

Variable

-name : String
-global : Boolean

IntVar BoolVar ObjectVar

Figure 7: Variable in HFSM metamodel.

3.2. From VeriJ to HFSM

As mentioned above, the compilation of VeriJ
(Figure 1) consists in the model transformation from
a system specified in VeriJ to its HFSM model. Using
VeriJ metamodel and HFSM metamodel, we code a
set of ATL rules VeriJ2Hfsm.atl to create the states
and transitions for each FSM in this HFSM model. To
visualize the obtained HFSM model described in the
form of XML Metadata Interchange, we create the
corresponding .dot file through project FSM2Dot4

and then generate the hierarchical FSM diagrams as
shown in Figure 8 using Graphviz5.
4https://srcdev.lip6.fr/trac/research/yzhang/browser/

FSM2Dot
5http://www.graphviz.org/

6

Modeling complex systems with VeriJ
Yan Zhang et. al.

void TestNim:main

main S.ini

main S.ini.1

main S.ini.2

main S.ini.3

main S.ini.4

main S.fin
main S.ini.
4.whilebody

main S.ini.
4.whilebody.1

Nim nim

nim = new Nim()

boolean gameover

gameover
=nim.gameover()

!(!gameover)

!gameover

nim.Transition()

gameover=nim.gameover()

(a) FSM of main

void Nim:Transition()

Transition S.ini

Transition S.ini.1

Transition S.ini.2

Transition S.ini.
2.ifThenBody

Transition S.ini.3

Transition S.ini.
3.ifThenBody

Transition S.ini.
3.ifElseBody

Transition S.fin

boolean gameover

gameover = gameover()

!gameover

playEnvironment()

!(!gameover)

!gameover !(!gameover)

playController() isBad()

(b) FSM of Nim:Transition()

Nim:Nim()

Nim S0

Nim S1this.board = new Board();

(c) Nim constructor

Board:Board()

Board S.ini

Board S.ini.1

Board S.ini.1.forTest

Board S.fin
Board S.ini.
1.forBody

Board S.ini.
1.forBody.1

Board S.ini.
1.forBody.2

Board S.ini.
1.forUpdater

this.matches =new VeriJList()

int i = 0

!(i<3)i<3

int num

num = 2× i+ 1
this.matches.add(num)

i = i +1

(d) Board constructor

Figure 8: HFSMs of Nim game obtained by application of VeriJ2HFSM.atl.

7

Modeling complex systems with VeriJ
Yan Zhang et. al.

The transformation associates with each method of
the program an FSM with the same name, with initial
and final states, which are called respectively by the
FSM’s name followed by ”S.ini” and ”S.fin”.

Each transition is obtained from a statement of the
VeriJ model. It takes the name of the statement
as the label “transExpr” of TransitionExpression
type. In particular, since a block statement in VeriJ
is a special subclass of Statement which contains
statements, each block is transformed into a list
of transitions in an FSM, for example, the body
of a method declaration, the body of the control
statements such as If Statement (without else
statement from Transition S.ini.2 to Transition S.ini.3
and with else statement from Transition S.ini.3 to
Transition S.fin), While Statement (from main S.ini.4
to main S.fin) and For Statement (from Board S.ini.1
to Board S.fin).

The naming of the states inside a FSM is defined in
the following way: Given the source and destination
states of the transition obtained from a Block
statement, the states in the list of transitions
are named by adding the ordered number or
strings that indicate the structure of a control
statement. For example, in Figure 8(a), main S.ini.1
denotes the source state of the first transition, main
S.ini.4.whilebody.1 represents the source state of the
Block statement, the while body.

3.3. Example of the Nim game

The result of the transformation is now illustrated on
the Nim game example from Section 2.2. A part of
the associated set of FSMs is depicted in Figure 8.
We give details about the transformation on this
example, refering to pieces of code from Figure 3.

Figure 8(a) present the main FSM in the class
TestNim. Figure 8(c) and Figure 8(b) are from
the class Nim presenting constructor and the
function Transition respectively. Figure 8(d) gives the
constructor of class Board. We now describe the
hierarchical structure of these FSMs.

In Figure 8(a), the invocations of constructor
Nim() from S.ini.1 to S.ini.2, nim.gameover()

from S.ini.3 to S.ini.4 and nim.Transition()

from S.ini.4.whilbody to S.ini.4.whilbody.1 compose
the first level of the hierarchy. For instance,
the method invocation of Transition reference
the FSM in Figure 8(b), while the constructor
invocation transition expression references the FSM
in Figure 8(c). In addition, the invocation of Board()
referencing to the FSM in Figure 8(d) makes the
second level of the hierarchy.

The two steps above thus set up a consistent
chained model transformation framework which
makes maintenance and refinement easy. ATL
also provides traceability mechanisms of the
transformations in the form of TraceAdder (Jouault
2005). Another Eclipse plug-in from Atlas group,
Atlas Model Weaver (AMW6), also offers a means to
generate an ATL execution trace in a weaving model.
Once the HSFM model is generated from the VeriJ
model, we can build the corresponding pushdown
system.

4. FROM HFSM TO PUSHDOWN SYSTEMS

It is well known that FSMs are not expressive
enough to describe program semantics. For exam-
ple, method calls and returns need to be correctly
matched, including recursion schemes. Local vari-
ables in different procedure calls need to be dis-
tinguished. Pushdown systems (PDS), introduced
in (Oettinger 1961; Chomsky 1962), are a natural
choice for modeling method calls and interproce-
dural program behaviours, by adding a (possibly
unbounded) stack to a finite set of control states.
As mentioned in the introduction, pushdown systems
are used in several recent verification tools (e.g.
jMoped for Java and MOPS or Magic for C) to
describe programs when recursion is involved. In
fact, pushdown systems give a formal semantics to
programs.

4.1. Definitions

The basic definition of pushdown automata is the
following.

Definition 2 A Pushdown Automaton (PDA) is a
tuple P = (P,Γ,∆, c0), where P is the set of states or
control locations, Γ is the alphabet of stack symbols,
∆ is the set of transition rules, a partial mapping
from P × Γ to P × Γ∗, and c0 ∈ P × Γ is the initial
configuration. A transition rule δ ∈ ∆ is written as
(p, z) ↪→ (p′, α) with p, p′ ∈ P, z ∈ Γ and α ∈ Γ∗.

The semantics of P is given as a transition system
with P×Γ∗ the set of configurations. For a rule δ ∈ ∆
and a non empty γ = zβ ∈ Γ∗ with z ∈ Γ and β ∈ Γ∗,
there is a transition (p, γ)

δ−→ (p′, αβ). In other words,
z is the topmost stack symbol, each transition pops
z and pushes the word α.

Figure 9 shows an example of a pushdown
automaton with its semantics. In Figure 9(a), P =
{p, q}, Γ = {A,B}, ∆ contains the three rules
(p,A) ↪→ (p,AB), (p,A) ↪→ (q, ε) and (q,B) ↪→
(q, ε), and the initial configuration is c0 = (p,A). The

6http://www.eclipse.org/gmt/amw

8

Modeling complex systems with VeriJ
Yan Zhang et. al.

PDA has an infinite set of configurations depicted in
Figure 9(b).

p

q

A/ε

A/AB

B/ε

(a) A PDA P

p,A

q, ε

p,AB p,ABB

q,B q,BB

p,ABn

q,BBn

· · ·

· · ·

(b) Transition system of P

Figure 9: A PDA example.

4.2. Extended PDS

In order to represent object references, we slightly
extend the definition of pushdown automata to
include an explicit representation of the heap.

Let X be a set of variables, including variable this.
For each x ∈ X, let Dx be the (finite) range of x. The
set Dx can either be the set of values of a primitive
type (restricted to int and boolean here) or the set
of references Ref = {$0, $1, $2, . . .} containing heap
addresses. In particular, Dthis = Ref . Default values
are ⊥ for all ranges, for instance 0 for int, false for
boolean or $0 for Ref .

A valuation is a partial mapping v : X → D where
D =

⋃
x∈X Dx such that for each x ∈ X, v(x) ∈

Dx. For a valuation v, we define Dom(v) = {x ∈
X | v(x) is defined} and we denote by V the set
of all valuations, with ∅ for the valuation such that
Dom(v) = ∅. For y ∈ X and d ∈ Dy, define v′ by:
Dom(v′) = Dom(v)∪{y}, v′(y) = d and v′(x) = v(x)
for x 6= y. If y /∈ Dom(v), we write v′ = v ∪ [y 7→ d]
and if y ∈ Dom(v), we write v′ = v[y 7→ d]. Along the
same line, for a subset {x1, . . . , xn} of X and values
d1, . . . , dn, we denote by [x1 7→ d1, . . . , xn 7→ dn] the
valuation v such that Dom(v) = {x1, . . . , xn} and
v(xi) = di for i = 1, . . . , n.

Given a HFSM F with initial FSM F0, we write Σ̂ =
Σ ∪ {rF , F ∈ F} and F = (SF , Σ̂, δF , s0,F , sf,F)
for each F ∈ F . We set S =

⋃
F∈F SF , the stack

alphabet is Γ = S × V (recall that V is the set of all
valuations) and we define the set of configurations
by: Q = (C × V)∗ × V × Γ∗ where C is the set
of class names from the VeriJ model (with ∅ for the
empty class name). A configuration q = (h, g, γ) ∈ Q,
consists of:

• h ∈ (C × V)∗ the heap state. Hence, an empty
heap is described by ε (also represented in the
figure by $0 :⊥) and the letters are of the form
(c, w) ∈ C × V , where c is a class name and
w ∈ V is a valuation for the attributes of an
object in this class.
A non empty heap is described either as h =
(c1, w1) . . . (cn, wn) for some n ≥ 1 and adding
an object to h can be written as h.(c, w) for
some new (c, w) ∈ C × V .

• g ∈ V the global variable state is the valuation
of static variables and the temporary variables
for return statements; For a variable in g, the
boolean tag global in Variable has value true.

• γ ∈ Γ∗ the stack state where each element
(s, v) ∈ Γ is composed of an FSM location and
a variable valuation.

We now explain how the HFSM is interpreted in
terms of PDS actions. The initial configuration of the
PDS is q0 = (ε, ∅, (main0, ∅), where main0 denotes
the initial state of F0. A transition from configuration
q = (h, g, γ) to configuration q′ = (h′, g′, γ′) is written
q

t−→ q′, for some transition t : s
δ−→ s′ from FSM F

with δ ∈ Σ̂. The stack state evolves from γ = zβ
to γ′ = αβ, where α ∈ Γ∗ is a word of length
|α| ≤ 2. In this context, it is sufficient to consider
rules with maximal length 2, which corresponds to
a method invocation: stacking the initial state of the
method called and the return address after popping
the topmost stack symbol.

We finally give several examples of rules from
configuration q = (h, g, γ), assuming the size of the
heap is |h| = n and γ = zβ, with z = (s, v) the
topmost stack symbol.

(i) Non-static variable declaration of the form
δ : type x = initializer;
This statement adds to v a valuation for x,
assigning the result d of the evaluation of
initializer, which changes the stack state. The
successor state is q′ = (h, g, γ′) with γ′ = αβ
and α = (s′, v ∪ [x 7→ d]).

(ii) Instantiate a class of the form δ : new Class;
For a variable x declared as a reference
variable, this operator allocates memory for the
new object in the heap and returns a reference
to that memory cell. The successor state is
q′ = (h′, g, γ′) with h′ = h.(c, w) where c is
the class name Class and w assigns default
values to all fields. Moreover, γ′ = αβ with
α = (s′, v ∪ [x 7→ $(n + 1)]). Instantaneously,
another rule (Method invocation) is applied for
the constructor call.

9

Modeling complex systems with VeriJ
Yan Zhang et. al.

(iii) Method invocation of the form
δ : ob.m(arg1, arg2...);
Let M be the FSM associated with method
m() with m0 its initial state, mf its final state
and x1, x2... the parameters. The successor
state is q′ = (h, g, γ′) with γ′ = αβ and
α = ((m0, v0)(s′, v)), where v0 is the valuation
defined by v0(xi) = argi for i = 1, 2, . . . and
v0(this) = $j if the reference of object ob is
$j. Note that reaching the final state mf of M
(with a return statement) will pop the topmost
stack symbol, hence returning the control to s′,
the successor state within the FSM that emitted
the call.

(iv) Assignment of the form δ : x = expression;
Let d be the value resulting from the expression
evaluation. When x is a field stored in the heap
cell (c, w), the successor is q′ = (h′, g, γ′)
where h′ changes (c, w) to (c, w[x 7→ d]),
γ′ = αβ and α = (s′, v). When x is a static
variable, the successor is q = (h, g′, γ) where
g′ = g[x 7→ d]. When x is only a local variable
in that FSM, the successor is q = (h, g, γ′) with
γ′ = αβ and α = (s′, v[x 7→ d]).

Examples of these rules are given in the next
section on the Nim game, together with the model
transformation step.

4.3. PDS model of the Nim game

Figure 10 shows a part of the PDS of the Nim game.
It illustrates the application of the transition rules
presented in Section 4.2. In this figure, there are a
set of configurations (rounded boxes separated by
arrows). Each configuration is composed of a heap
state (leftmost inner box, h), a global variable state
(middle inner box, g) and a stack state (rightmost
inner box, γ). The PDS evolves from top to bottom.

The Nim game has two constants: NBRow and
MaxNBtaken which are transformed into literal values
during the procedure from VeriJ to HFSM. It does
not have any other static variables, hence the global
variable is reduced to ∅ in this case. Whenever
an instantiation happens with the new operator, an
object is added to the heap state. Its fields hold the
default values of their respective types.

The main method of Nim game contains the object
creation δ : Nim nim = new Nim();. In the PDS, it is
decomposed into three steps: (i) reference variable
declaration Nim nim, (ii) instantiation nim =
new Nim and (iii) initialization by invoking the
constructor nim.Nim(). This pushes the initial state
of Nim onto the stack (Nim S0, [this 7→ $1] in 4th

configuration).

In the constructor declaration Nim(), the class
instance creation statement this.board =
new Board(); is decomposed into two steps:
this.board = new Board and board.Board(). This
pushes the initial state of Board onto the stack
(Board S0, [this 7→ $2] in 6th configuration).

Due to the lack of space, we skipped configurations
related to further statements up to the return of
the call to the constructor of Board. In the 7th

configuration, the final state Nim S1 is reached.
Then, upon the return of the call to constructor of
Nim, the topmost stack symbol is popped, which
leads to the 8th configuration.

5. CONCLUSION AND PERSPECTIVES

This paper presents VeriJ, a language for the
modeling and controller synthesis dedicated to
complex systems. Based on a limited subset of Java,
VeriJ also contains specific elements for the purpose
of solving controllability. This approach combines
the advantages of an easy specification with Java,
including the facilities of an integrated development
environment, with the use of existing verification
tools, acting on standard transition systems.

Compilation of VeriJ specifications into transi-
tion systems, as well as a preprocessing step,
are performed with a complete chain of model
to model transformations, using state-of-the-art
model-driven engineering frameworks like Modisco
and ATL. These operations (Java2VeriJ.atl and
VeriJ2Hfsm.atl) produce, from a program, a set of
hierarchically structured finite automata, interpreted
using pushdown system semantics, hence enabling
the use of recursion.

Contrary to software model-checking, where a large
scope of programs is targeted, we focus on model
generation, with controller synthesis as primary goal.
Our approach is well suited to software engineers
or domain experts wishing to use existing tools for
controller synthesis.

Future steps of this work include checking the
correctness of the two sets of ATL rules as recently
done in (Planas et al. 2011; Ehrig and Ermel 2008)
and linking this model generation with the controller
synthesis:

1. Final encoding of a pushdown system into Hi-
erarchical Decision Diagrams (SDD) (Thierry-
Mieg et al. 2009), an efficient symbolic data
structure used by our verification tool, libddd7.

2. Extending the early experiments of a controller
synthesis engine, based on this tool, which

7http://ddd.lip6.fr

10

Modeling complex systems with VeriJ
Yan Zhang et. al.

$0: ⊥ ∅ main S0, ∅

$0: ⊥ ∅ main S1, [nim ↦ $0]

$0: ⊥
$1: Nim
[board ↦ $0, isControlled ↦ false]

∅ main S1, [nim ↦ $1]

$0: ⊥
$1: Nim
[board ↦ $0, isControlled ↦ false]

∅
Nim S0, [this ↦ $1]
main S1, [nim ↦ $1]

$0: ⊥
$1: Nim
[board ↦ $2, isControlled ↦ false]
$2: Board
[matches ↦ $0, isMatchesEmpty ↦ false]

∅
Nim S1, [this ↦ $1, board ↦ $2]
main S1, [nim ↦ $1]

$0: ⊥
$1: Nim
[board ↦ $2, isControlled ↦ false]
$2: Board
[matches ↦ $0, isMatchesEmpty ↦ false]

∅
Board S0, [this ↦ $2]
Nim S1, [this ↦ $1, board ↦ $2]
main S1, [nim ↦ $1]

$0: ⊥
$1: Nim
[board ↦ $2, isControlled ↦ false]
$2: Board
[matches ↦ $3, isMatchesEmpty ↦ false]
$3: VeriJList
[VeriJList(0) ↦ 1, VeriJList(1) ↦ 3, ...]

∅
Nim S1, [this ↦ $1, board ↦ $2]
main S1, [nim ↦ $1]

$0: ⊥
$1: Nim
[board ↦ $2, isControlled ↦ false]
$2: Board
[matches ↦ $3, isMatchesEmpty ↦ false]
$3: VeriJList
[VeriJList(0) ↦ 1, VeriJList(1) ↦ 3, ...]

∅ main S1, [nim ↦ $1]

Nim nim;

nim = new Nim;

nim.Nim();

this.board = new Board;

board.Board();

• • •

pop

• • •

Heap state Stack stateGlobal variables state

Figure 10: A part of the PDS of Nim game.

11

Modeling complex systems with VeriJ
Yan Zhang et. al.

showed promising results in terms of scalabil-
ity (Zhang et al. 2010).

A further goal is to apply this technique on
industrial size complex systems, thus completing
the centralized control of an automated highway
system initiated in (Bérard et al. 2008). We expect
this approach to be part of an industrial modeling,
verification and control synthesis tool kit to handle
complex systems specifications.

6. REFERENCES

Bérard, B., Haddad, S., Hillah, L., Kordon, F., and
Thierry-Mieg, Y. (2008). Collision Avoidance in In-
telligent Transport Systems: towards an Application
of Control Theory. In Proceedings of the 9th In-
ternational Workshop on Discrete Event Systems
(WODES’08), pages 346–351, Göteborg, Sweden.
IEEE Press.
Bouton, C. L. (1901). Nim, a game with a complete
mathematical theory. Annals of Mathematics, 3:35–
39.
Brat, G., Havelund, K., Park, S., and Visser, W.
(2000). Java PathFinder - Second Generation of
a Java Model Checker. In Proceedings of the
Workshop on Advances in Verification.
Chaki, S., Clarke, E. M., Kidd, N., Reps, T. W., and
Touili, T. (2006). Verifying Concurrent Message-
Passing C Programs with Recursive Calls. In Tools
and Algorithms for Construction and Analysis of
Systems, pages 334–349.
Chen, H. and Wagner, D. (2002). MOPS: an
Infrastructure for Examining Security Properties of
Software. In In Proceedings of the 9th ACM
Conference on Computer and Communications
Security, pages 235–244. ACM Press.
Chomsky, N. (1962). Context-free grammars and
pushdown storage. In Quarterly Progress Report
No. 65, pages 187–194. MIT Research Lab. Elect.,
Cambridge, Mass.
Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S.,
Pasareanu, C. S., and Zheng, H. (2000). Bandera:
Extracting Finite-state Models from Java Source
Code. In 22nd International Conference on Software
Engineering, pages 439–448. ACM Press.
Ehrig, H. and Ermel, C. (2008). Semantical correct-
ness and completeness of model transformations
using graph and rule transformation. In Proceed-
ings of the 4th international conference on Graph
Transformations, ICGT ’08, pages 194–210, Berlin,
Heidelberg. Springer-Verlag.
Gvero, T., Gligoric, M., Lauterburg, S., d’Amorim,
M., Marinov, D., and Khurshid, S. (2008). State
extensions for Java PathFinder. In Proceedings
of the 30th international conference on Software

Engineering (ICSE’08), pages 863–866, New York,
NY, USA. ACM.
Havelund, K. (1999). Java PathFinder, A Translator
from Java to Promela. In Proceedings of the 5th and
6th International SPIN Workshops on Theoretical
and Practical Aspects of SPIN Model Checking,
pages 152–, London, UK. Springer-Verlag.
Holzmann, G. J. (1997). The model checker
SPIN. IEEE Transactions on Software Engineering,
23:279–295.
Jouault, F. (2005). Loosely Coupled Traceability for
ATL. In Proceedings of the European Conference
on Model Driven Architecture (ECMDA) workshop on
traceability, pages 29–37.
Oettinger, A. G. (1961). Automatic syntactic
analysis and the pushdown store. In Structure of
Language and Its Mathematical Aspects, volume 12
of Symposia on Applied Mathematics, pages 104–
129. American Mathematical Society.
Planas, E., Cabot, J., and Gómez, C. (2011). Two
Basic Correctness Properties for ATL Transforma-
tions: Executability and Coverage. In Proceedings
of the 3rd International Workshop on Model Trans-
formation with ATL, pages 1–9, Zürich, Switzerland.
Ramadge, P. and Wonham, W. (1987). Super-
visory Control of a Class of Discrete-Event Pro-
cesses. SIAM Journal of Control and Optimization,
25(1):206–230.
Suwimonteerabuth, D., Berger, F., Schwoon, S., and
Esparza, J. (2007). jMoped: a test environment
for java programs. In Proceedings of the 19th
international conference on Computer aided verifi-
cation, CAV’07, pages 164–167, Berlin, Heidelberg.
Springer-Verlag.
Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., and
Kordon, F. (2009). Hierarchical Set Decision
Diagrams and Regular Models. In Tools and
Algorithms for the Construction and Analysis of
Systems, 15th Int. Conference, TACAS 2009, volume
5505 of LNCS, pages 1–15. Springer.
Zhang, Y. (2010). Modeling Automated Highway
Systems with VeriJ. In MOdelling and VErifying
parallel Processes (MOVEP), pages 138–143.
Zhang, Y., Bérard, B., Kordon, F., and Thierry-
Mieg, Y. (2010). Automated Controllability and
Synthesis with Hierarchical Set Decision Diagrams.
In Proceedings of the 10th International Workshop
on Discrete Event Systems (WODES’10), pages
291–296.
Ziller, R. (2002). Finding Bad States during
Symbolic Supervisor Synthesis. In Ruf, J.,
editor, Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und
Systemen (MBMV), pages 209–218, TÃbingen,
Germany. Shaker.

12

