PNML Framework: an extendable reference
implementation of the Petri Net Markup Language

L.M. Hillahl, F. Kordor, L. Petrucc?, and N. Teves

1 Universit P. & M. Curie - Paris 6, CNRS UMR 7606 - LIP6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, FRANCE
Fabrice. Kordon@i p6.fr,Lom Messan. H | | ah@i p6. fr
2 LIPN, CNRS UMR 7030, Universit Paris Xl
99, avenue Jean-Baptisteé@ient, F-93430 Villetaneuse, FRANCE
Laure. Petrucci @i pn. univ-parisi3.fr
3 Cedric, CNAM, 292, rue St Martin, F-75141 Paris Cedex 03, FRANCE
nicol as.treves@namfr

Abstract. The International Standard on Petri nets, ISO/IEC 15909, provides a
formal semantics and syntax to enable model interchange and indd&sam-
ination. Part 2 defines a concrete interchange format ag/anbased language:
PNML. This language is bound to evolve together with future developments of the
standard.

This paper presentnML Framework, a companion implementation of the stan-
dard. It provides developers of Petri net tools with a convenient asidway to
implement support oPNML documents. It abstracts away from amyL explicit
manipulation and ensures compliance with the standard by using APIs.

Keywords: PNML, Petri nets standardisation, metamodels, MDE.

1 Introduction and Goals

The International Standard on Petri nets is divided in thpaes. The first one deals
with basic definitions of Place/Transition, Symmetric, &igh-level nets.

The second part, ISO/IEC 15909-2, defines the interchangeatofor Petri net
models: Petri Net Markup Language [8]NML, an XML-based representation). This
part of the standard was published on November 11, 2009 nitvsready to be used
by tool developers in the Petri Nets community.

Now, the standardisation group starts working on the thand. pSO/IEC 15909-3,
aims at defining extensions and variations on the whole jeafiPetri nets. Extensions
are for instance the support of modularity, time or probtéd. Variations consider less
important semantic changes such as inhibitor arcs, boupldeés etc. This raises the
need to support such flexibility in the standard.

This paper preseneNML Framework: an APl-based Framework to assist tool de-
velopers in achieving conformance with the standard. Thivattns forPNML Frame-
work are twofold:

— First, it provides tool developers with a programmer-fdlrset of APIs which al-
lows them to easily export/import compliaPML documentsPNML Framework

has been designed as a companion to the standard; it allohdesigners to ma-
nipulate Petri Net concepts instead>iL constructs and frees them frommL
programming.

— Second, due to part 3, the standard is deemed to evolve apdrsdiiferent kinds
of Petri netsPNML Framework will provide a middleware software layer to cope
with consistency of the required variations at the XML level

The paper is structured as follows. Section 2 describesdtrerfets types metamod-
eling framework around whichNML Framework is conceptually built. Then it presents
the architecture aPNML Framework and its use of the metamodels. Uses of the tool are
presented afterwards. Section 2 ends by showing how Peétiboks can interact with
PNML Framework. Section 3 reports a typical application exaroplaodel translation
from PNML to CoQ format. Finally, section 4 discusses how the design priasipf the
standard implemented B®NML Framework allows for flexibility and ability to evolve,
strongly required for compatibility with the upcoming Parbf the standard.

2 PNML Framework Architecture and Services

As a companion to the standamiML Framework must support numerous kinds of
Petri nets. So its design is based on a structured set of rod&sissued from the
standard and describing components in the family of Petsi. ne

This section quickly recalls the metamodels architectuat ére detailed in [3]. For
lack of space, we do not summarise the metamodels in this [papé3] is available
online. We only focus on the overall architecturerofML Framework and the way this
framework is intended to be used.

Metamodels for Petri nets For the standard to be both robust and maintainable, the
interchange format should convey structural informatienFetri nets while being re-
spectful of their semantic constraints. Thus, part 1 of taedard defines the semantics
of severaPetri Net Typesi.e. P/T, symmetric and high-level nets), while part 2 provides
the associated metamodels.

Another challenge is the support of variations and exterssi®o meet these issues,
a metamodel-based approach as well as associated modeterigg techniques, were
chosen since they are tooled up and easily accessible. iticadithey provide modular
and incremental features to handle variations and extessibthese Petri nets types in
an elegant manner, preserving their structural relatipssh

The choice of model engineering techniques is driven by thte ©f the art of
reliable approaches dealing with such issues. Althaugh is a semi-formal modelling
notation, its flexible levels of abstraction, expressivitydularity and hierarchy make
it appropriate for our goals. This is enforced by the fact tttessemantical interpretation
of Petri nets is required in an interchange format (only ayms transferred).

So far, the standard provides a modular and incrementayd@diPetri net types
metamodels. The metamodels of these Petri Nets types aap®rated in UML pack-
ages. Fig. 1 shows their relationships, outlining the im&etal design approach.

—1 —1 —1

Place/Transition Symmetric nets | SSM9e>> | High-level Petri net
nets 4 Graphs

~
~

T
N ¢l<<merge>>
<<merge>>\ —

~
~

| PNML Core Model

Fig. 1. Overview of theuML packages oPNML

The PNML Core Modelpackage (see Fig. 2) contains the basic structural definitio
of a Petri net as a labelled directed graph. All type speaifiormation of the net is
embedded in the labels. Labels are associated with nodespathe net. TheNML
Core Modelis intended to be the primary building block upon which ceterPetri
net types are defined. Therefore, it imposes no restrictiolabels because it is not a
concrete Petri net type. For additional details concertfiegnetamodels, the reader is
referred to [3].

As shown in Fig. 1, each concrete Petri net type is built eitlpon thepNML Core
Modelor upon another existing concrete Petri net type. Flaee/Transition Netpack-
age thus merges its definitions with themML Core Modelones, while theHigh-level
Petri Net Graphgackage merges its own with tisymmetric Netenes. Each concrete
Petri net type defines its legal labels by extending the pwirdefinitions in the source
package ENML Core Modelfor P/T nets andSymmetric Netfor High-level Petri Net
Graphg and possibly adding some syntactic restrictions by me&rsce formulae

PNML Core Model |
- toolspecific * T tr
PetriNetDoc
toolspecific * | tool

version

net| 1.

toolspecific *

PetriNet] n——abel ©
Id object *
type

LK name {redefines label

Object

label *
Id

Annotation

name
redefines label

Attribute

graphics 0.1 Graphics

graphics 0..1
page
1

1_source *
Page Node DI
farget *

TransitionNode

—————————————————————————
context Arc inv: |
self.source.page = self.target.page !

Fig. 2. Overview of thePNML Core Modelpackage

RefTransition

RefPlace |

Lists < <<import>>

—
NS Shi . _<Smeor>> | High-level Petri Net
rngs Graphs

< — R
— il - [

e |
Integers LA‘:\ v~ | <<merge>>
~ e

— P — v

~

TTlng,_g\e: -
= =~ | ArbitraryDeclarations Symmetric Nets

Fig. 3. High-level Petri Net GraphseusingSymmetric Netand importing type-specific labels

(e.g.connectivity between places and transitions). The metaisaaf these labels are
designed in specific packages so as to be reused as much ddepbssveen related
Petri net types.

Fig. 3 illustrates this extension mechanism freBymmetric Net® High-level Petri
Net GraphsHigh-level Petri Net GraphseuseSymmetric Netdefinitions but extend
their terms by adding new concepts: lists, strings, integed arbitrary declarations. A
more detailed presentation of the standardised Petri pestig provided in [3].

Architecture of PNML Framework Components oPNML Framework are automat-
ically generated from the metamodels in the standard, ansl iduse their structure.
We chose to encode these metamodels uging [2] in Eclipse.EMF is one of the
most advanced and mature model-driven engineering framkewae it support&JmL,
code generation and model transformation. These featueekes characteristics for
developingPNML Framework, as well as providing clean modelling faciliteesl gen-

<<component>>

Tri -
rgger API.PNMLSaveJL <<delegates> PNML Framework &l
O-

export _
Trigger |~ API.PNMLLoad | <<delegate>>

import \ - O-
7 TAPI.CoreModel | <<delegate>> £]
2 | O—— PNML Core Model
= | —
o
[2]
= APILPTNet <<delegate>> <<component>> &
[7] |
Se, 0 0 o Place/"‘ll';at:sltlon
g‘g | API.Utilities <<component>> & |
TS| apisN <<delegates> a— —<o—— Utilities
‘% 5§ : O0——— }+—=0—— Symmetric Nets API.BackEnd ,L
RN
c = APILHLPN delegat . component>> _ APLXMLUtilities
-8 ! <<delegate=> | i shTeve Betri Not
c © |]—>o—
< Graphs
1) |
8 ! APL.PTHLPN <<delegate>> <ccomponent>> &7 <<component>> £ |
S | P/T Nets in high- Third-party
- o— }—=0— . . .
level notation libraries

Fig. 4. PNML Framework architecture

erated APIsi(e.a set of APIs) for tool developers. Therefoe®|F constitutes a suitable
framework to rely on for constructingNML Framework.

Fig. 4 shows the structure ML Framework APIs. Each API (left part of the fig-
ure) manipulates a given Petri net type and is implementeal dgdicated component.
The APIs are named like the corresponding piece of metanmindbke standard. The
currently supported Petri net types aRdace/Transition netsSymmetric netsHigh-
level Petri netsandPlace/Transition nets in high-level notatioas defined in part 1 of
the standard. Each component provides an API to be useditbrbadels and navigate
their structure.

There is no noticeable duplication between the compongatss to the technical
UML mergeoperator (shown on Fig. 1) between the standardised Pdgityges in
the metamodels. Thmergeoperator includes the definitions of an existing Petri nets
type into a new one. For instankkgh-level Petri Net GraphsergeSymmetric Nets
Fig. 3. As a result, every element previouslySpmmetric Netwill then be included in
the new type.

PNML Framework also embedsdtilities that tool developers can use to trigger the
loading and storing of models infeNML documents. They can also use this compo-
nent to turn on or off syntax validation fenmML Document The Utilities component is
responsible for loadingNML documents and figuring out what type of Petri nets they
contain. It also sets up the export of Petri net models apiL documents and their
syntactic validation. This component also provides a wgaks (or in-memory reposi-
tory) where several Petri net models being handled can bedsithird-party libraries
are runtime components used bjilities, providing basic APIs to manipulate XML
trees. They are shown in grey in Fig. 4.

Most of thePNML Framework code is automatically generated. Manually agpes
code only concerns thatilities component, which represents 3600 lines of code. This
ensures maintainability in order to ease future developsresulting from part 3 of the
standard. The next paragraph shows rowiL Framework can be used.

Uses ofPNML Framework Creating, for example, a place in any type of Petri net
requires a single method call with the associated paramsteh as name, marking and
position (the method is automatically generated). TiremjL Framework performs all
the appropriate low-levetMF manipulations, in order to minimise the tool developers’
efforts. The APIs primitives implement export and imporeoiviL elements:

— Export. Petri net models stored in memory, built as instances afi Ret types
(w.r.t. their metamodels defined in the standard) are savedile compliant with
the PNML syntax.PNML Framework takes care of the process, performing the re-
quired checks to produce tireiML document.

— Import. Petri net models are loaded in memory, fremML documents, as in-
stances of Petri net typeRNML compatibility checks are performed when loading
models.

Fig. 5 illustrates the export and import mechanisms. It shawetri net model on
the left-hand side as drawn by a tool user. A typical tool @ethe object representation

<pnml xmins="...">
<net id="1">
\ Create

export
—_—

<place id="2">
<name>
<text>Ready</text>

Starter Start_Race g

O T

</
End_Race navigate import ;ill'\itiaIMarking>

< <text>4</text>
(and fetch) [__Name |~ <initialMarking

potiom (—i—>cs [vale=Ready]

Get_prepared </pnmi>
PN model to be Standard UML object model PNML representation of
exchanged of the PN model in PNML Framework the PN model

Fig. 5. Export and import of a Petri net model fropmmL

depicted in the centre of the figure. It can be exported by ppEapriate APl into a
PNML file shown on the right-hand side. ImportirgML models is similar.

This process enjoys the independency between the toohaltegpresentation and
the current version afNML. Compatibility concerns are handled byML Framework.

Interaction schemes in usingPNML Framework PNML Framework is implemented in
Java on top of Eclipse. Itis also distributed as a standdibray. In order to us@NML
Framework, a tool may be implemented in Java (not necegserilop of Eclipse) or in
any language supporting Java bindings. Fig. 6 depicts tlys teausePNML Framework
in order to support the interchange standard.

Tool T1 directly uses the provided API to export/import model®NML. T1 is the
typical example of a standard compliant Petri net tool thiés onPNML Framework.
This is the case of Coloane [4].

Tool T2 exemplifies the use of a standalone application that enslueesonversion
of PNML files from/to an existing tool. This converter must parsedpice the T2 internal

Petri net tool T3

i T3's own PNML !
. implementation :

Petri net tool T1 N R i
export import Standalone conversion Petri net tool T2
- application
PNML [Framework | PNML Framework!
|

Starter Start_Race

export

<net id="net1"

import <Inet> ’ | import

</pnmi> | b 1
PNML document T T T T T T T

Fig. 6. Petri net tools exchangirgNML documents

[ModelRepository.getInstance().createDocumentWorkspace("cquksp"); 1

|an11mport pim = new PnmlImport();

Ipim.setFallUse(true);

[HLAPIROOtClass imported = (HLAPIRootClass) pim.importFile("pnmlDocument");]
I

[Processor proc = MainProcessor.getProcessor(imported);

[if (imported.getClassO.equals(!

1 fr.1ip6.move.pnml.ptnet.hlapi.PetriNetDocHLAPI.class)) 1 (5)
1
1

:{ p = new PTProcessor(); return p;}

[proc.process(imported, new PrintWriter(new FileWriter("cogDocument™")));] 6

Fig. 7. Source code of theNML2Coq main function

format. This is also the case of both the CPN-AMI [5] impoxplert facilities and the
PNML2Coq plug-in that is presented in section 3.

In contrast to T1 and T2, todI3 relies on its own implementation of the standard.

Thus, support oPNML evolutions such as extensions and variations must be tahyle
T3 developers (with a risk of not conforming to the standafdie PNML web site [8]
will be continuously maintained and provide updated versiof PNML.

3

Typical use:PNML to CoQ example

This section illustrates the use PRML Framework through the export of a Petri net
in PNML format into a @Q theorem prover [7] representation as described in [1]. This
example is representative of the situation of tool T2 in trevipus section, even if it
focuses on the import of models framiML documents only (the export is very similar).

Overview of the process The code snippets of Fig. 7 shows the key instructions to
program the import of @NML Document There are six steps to complete the design of
PNML2Coq (their numbers are shown on the right-hand side of the code):

1.

create a workspace INML Framework where models can be manipulated (this is
an in-memory repository to allow developers to work on saverodels during the
same session),

. create arimporter (from the Utilities package) to import @NML Document this

document remains untyped at this staige {t can be any type of Petri net),

decide what to do in case the loaded Petri net type is unfkpew.downgrade to
the closest type known ISNML Framework or to a specified one, or raise an error,
import the document (no work needed, this is provide@yL Framework),

set theprocessoto be used for the loaded Petri net; thiscessoihas to be written
by the tool designer (as presented later in this section),

theprocessois called to perform the desired operations (here, genar@s file).

private void processNets(PetriNetHLAPI ptn) {

//Some printout into the output Coq file...

for (PageHLAPI page : ptn.getPagesHLAPI())
processPages(page);

//Some printout in the output Coq file...

public void process(HLAPIRootClass rcl, PrintWriter pw){
PetriNetDocHLAPI root = (PetriNetDocHLAPI) rcl;
for (PetriNetHLAPI net : root.getNetsHLAPI())
processNets(net);

¥ }

Fig. 8. Code snippets from the processor

private void processPages(PageHLAPI page) {

for (PageHLAPI pg : page.getObjects_PageHLAPI())
processPages(pg);

for (PlaceHLAPI pl : pth.getObjects_PlaceHLAPI())
processPlace(pl);

for (TransitionHLAPI tr : pth.getObjects_TransitionHLAPI())
processTransition(tr);

for (ArcHLAPI arc : pth.getObjects_ArcHLAPI())
processArc(arc);

Fig. 9. Code snippet showing how Pages are handled

Design of the ProcessorA PNML document can contain several Petri nets, each of
them composed of one or more pages. Henceptheesscode (snippet on the left-
hand side of Fig. 8) first handles nets (code on the right-isihel of Fig. 8) and then
pages (snippet of Fig. 9). The processor uses a writer @amgtput the resulting 6Q
syntax into a ©Q document (second argument in {y@cesssignature).

Fig. 9 details the processing of a page. It successivelyagettosed pages, places,
transitions and arcs. All processing functions are writigithe tool developer, accord-
ing to his needs. This is eased by the iteratorsrhatL Framework provides for pages,
places, transitions and arcs.

Fig. 10 shows how places are translated intQClt handles an object correspond-
ing to a placepl a, accessing its attributes through the methods provideeNsyL
Framework €.g.pl a. get 1 d()) so as to construct the output string in the@format.

All the examples in the figures above show that models arelédntirough the
provided APIs only. Therefore, the tool developer usimgvL Framework does not
manipulate anyNML code. The processing we have exposed is fully implemented in
PNML2Coq application. It can be reused for another export. In fastyL2Coq is in-
spired from theeNML2DoT tutorial available at [6].

private void processPlace(PlaceHLAPI pla) {
StringBuffer sb = new StringBuffer();
nbplaces++;
sb.append("Definition " + pla.getId() + := mk" + "Place" +
allPlaces = allPlaces + pla.getName().getText() +"::";
sb.append("\n");
sb.append("Definition m" + pla.getId() + " := (" + pla.getId() + ",0).");
initMarking = initMarking + "m" + pla.getName().getText() +"::";
print(sb.toString());

+ nbplaces + ".");

Fig. 10.Code snippet showing how places are handled

The PNML2Coq application was implemented in one afternoon. The develbpd
no programming practice with Java but is an experiencedrpromer.

4 Achieving PNML Flexibility and Ability to Evolve

The standard is deemed to evolve.(able to support new Petri net types introduced in
part 3) and flexiblei(e.able to cope with additional information not in the standaFdr
both,PNML Framework guarantees standard compliance and thus pessber ability

of interchanging models with other tools.

Mechanisms for Ability to Evolve The modular design of metamodels, as well as a
compositional and incremental ways to build new Petri npe$yprovidePNML with
the ability to evolve. This capability is crucial for the vikoon part 3 of the standard —
addressing the definition of new Petri net types and stringwonstructs.

SincePNML Framework has, from the start, been designed as a companibe t
standard, its future enhancements will also follow the adea on the standard. This
approach is both valuable for proof of concept purposes disasduture use by tool
developers.

The work on addressing the mechanisms for an evolving stdrefeould be fed
by the Petri net community long-standing research achiemsnand recent results.
We are therefore actively seeking theoretical as well astiga contributions from
practitioners willing to share their new definitions and esiments.

Mechanisms for Flexibility Moreover, flexibility of PNML allows tool developers to
cope with tool-specific information in their models whicha$ course, not included in
the standard. For instance, if a tool associates C code witisitions, it can be intro-
duced agool specific informatiornin the PNML documentPNML Framework supports
this provision of the standard.

To do soPNML Framework provides black box orientedML constructs, that allow
any non-standard but well-formediL constructions to be included inrNML docu-
ment. These can be included and retrieved by a tool-specéitad (the norPNML
XML sentence is encapsulated within tool-specific tagsyiL Framework ensures con-
sistent behaviours in import/export functions.

Thus, to embed some C code in a Petri net for instance, a tostlpnovide arkxmL
representation of C programs. It might just be the whole G@dbedded in a opening
and closingxMmL tag, or a more elaborate syntax tree if the tool developetsniano
have that form.

Impact on the end-userPNML Framework is maintained so as to be standard compliant
and also to ensure backward compatibility with its formersians, starting from its
current version 2.1, which implements the internationahdtrd (2009 version). This
is possible thanks to the design choices.

So, if the metamodels evolve, the provided APIs will be regated so that the
former are backward compatible with the new ones. The manageof flexibility is

orthogonal and thus not affected by evolution. So, mainteaas not impacted by stan-
dard evolution issues. MoreovenML Framework is designed to be upward compatible
when new upgrades of the standard will appeag.(vhen introducing new extensions
and/or variations in part 3 of the standard).

If tool developers want to implement their own Petri Net tgpextend an existing
one, they must provide the framework with fSML-annotated metamodel, as well as
its PNML grammar. Metamodels of the current Petri net types can b aséutorials.
Then, the code handling the new models is automaticallyrgéee. \We have proceeded
in this way to extend the P/T type with inhibitor, reset anadarcs.

5 Conclusion

PNML Framework has been designed as a companion and support/tiES05909-2,
which defines theNML interchange formaPNML Framework provides a set of APIs
to read and writeeNML files. This software is developed thanks to model engingerin
techniques (heremF).

PNML Framework has been successfully used to quickly elaboratxport from
Petri nets to ©Q. The main design steps to build this application demoresdr#te
simple use oPNML Framework.

PNML Framework is open source and distributed under the Eclipsade. It is
implemented in Java. But as shown in this paper, import/xfpoctions can be quickly
developed as a standalone program for tools not being deselio Java.

PNML Framework enjoys flexibility capabilities and ability toadwe, which con-
stitute a major issue in further development of the standadl free tool developers
from maintenance issues due to its evolution. Initial sesfté experiments with small
extensions such as inhibitor arcs etc. have assessed thjeséwes.

AcknowledgementsThe authors are very grateful to Ekkart Kindler for his suppad
his comments on earlier versions of this paper.

References

1. C. Choppy, M. Mayero, and L. Petrucci. Experimenting formabfsf Petri Nets refine-
ments. InProc. Workshop REFINE (associated with FM2008), Turku, Finjaradume 214
of Electronic Notes in Theor. Comp. S@ages 231-254. Elsevier Science, May 2008.

2. Eclipse FoundatiorEclipse Modeling Frameworkt t p: / / www. ecl i pse. org/enf/.

3. L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N.&ves. A primer on the Petri Net
Markup Language and ISO/IEC 15909-Petri Net Newsletter (originally presented at the
10th International workshop on Practical Use of Colored Petri Nets #rel CPN Tools —
CPN’09), 76:9—28, October 200%ht t p: / / ww. cs. au. dk/ CPnet s/ event s/ wor kshop09/
asset s/ paper 06. pdf .

. The Coloane home page. urt:t p: // col oane. i p6.fr/, 2009.

The CPN-AMI home page. utht t p: // www. | i p6. fr/cpn-ani, 2009.

The PNML Framework home page. urt:tp: //pnm . i p6.fr/, 2009.

INRIA. The Coq Proof Assistant home pa@ét p: //cog.inria.fr/,2009.

. ISO/IEC/SC7/WG19The Petri Net Markup Language home padget p: / / ww. pnnt . or g,
20009.

o~ oA

10

