
PNML Framework: an extendable reference
implementation of the Petri Net Markup Language

L.M. Hillah1, F. Kordon1, L. Petrucci2, and N. Tr̀eves3

1 Universit́e P. & M. Curie - Paris 6, CNRS UMR 7606 - LIP6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, FRANCE

Fabrice.Kordon@lip6.fr, Lom-Messan.Hillah@lip6.fr
2 LIPN, CNRS UMR 7030, Université Paris XIII

99, avenue Jean-Baptiste Clément, F-93430 Villetaneuse, FRANCE
Laure.Petrucci@lipn.univ-paris13.fr

3 Cedric, CNAM, 292, rue St Martin, F-75141 Paris Cedex 03, FRANCE
nicolas.treves@cnam.fr

Abstract. The International Standard on Petri nets, ISO/IEC 15909, provides a
formal semantics and syntax to enable model interchange and industrialdissem-
ination. Part 2 defines a concrete interchange format as anXML -based language:
PNML. This language is bound to evolve together with future developments of the
standard.
This paper presentsPNML Framework, a companion implementation of the stan-
dard. It provides developers of Petri net tools with a convenient and fast way to
implement support ofPNML documents. It abstracts away from anyXML explicit
manipulation and ensures compliance with the standard by using APIs.

Keywords: PNML, Petri nets standardisation, metamodels, MDE.

1 Introduction and Goals

The International Standard on Petri nets is divided in threeparts. The first one deals
with basic definitions of Place/Transition, Symmetric, andhigh-level nets.

The second part, ISO/IEC 15909-2, defines the interchange format for Petri net
models: Petri Net Markup Language [8] (PNML, an XML-based representation). This
part of the standard was published on November 11, 2009. It isnow ready to be used
by tool developers in the Petri Nets community.

Now, the standardisation group starts working on the third part. ISO/IEC 15909-3,
aims at defining extensions and variations on the whole family of Petri nets. Extensions
are for instance the support of modularity, time or probabilities. Variations consider less
important semantic changes such as inhibitor arcs, boundedplaces etc. This raises the
need to support such flexibility in the standard.

This paper presentsPNML Framework: an API-based Framework to assist tool de-
velopers in achieving conformance with the standard. The motivations forPNML Frame-
work are twofold:

– First, it provides tool developers with a programmer-friendly set of APIs which al-
lows them to easily export/import compliantPNML documents.PNML Framework

has been designed as a companion to the standard; it allows tool designers to ma-
nipulate Petri Net concepts instead ofXML constructs and frees them fromXML

programming.
– Second, due to part 3, the standard is deemed to evolve and support different kinds

of Petri nets.PNML Framework will provide a middleware software layer to cope
with consistency of the required variations at the XML level.

The paper is structured as follows. Section 2 describes the Petri nets types metamod-
eling framework around whichPNML Framework is conceptually built. Then it presents
the architecture ofPNML Framework and its use of the metamodels. Uses of the tool are
presented afterwards. Section 2 ends by showing how Petri net tools can interact with
PNML Framework. Section 3 reports a typical application exampleof model translation
from PNML to COQ format. Finally, section 4 discusses how the design principles of the
standard implemented byPNML Framework allows for flexibility and ability to evolve,
strongly required for compatibility with the upcoming Part3 of the standard.

2 PNML Framework Architecture and Services

As a companion to the standard,PNML Framework must support numerous kinds of
Petri nets. So its design is based on a structured set of metamodels issued from the
standard and describing components in the family of Petri nets.

This section quickly recalls the metamodels architecture that are detailed in [3]. For
lack of space, we do not summarise the metamodels in this paper but [3] is available
online. We only focus on the overall architecture ofPNML Framework and the way this
framework is intended to be used.

Metamodels for Petri nets For the standard to be both robust and maintainable, the
interchange format should convey structural information for Petri nets while being re-
spectful of their semantic constraints. Thus, part 1 of the standard defines the semantics
of severalPetri Net Types(i.e.P/T, symmetric and high-level nets), while part 2 provides
the associated metamodels.

Another challenge is the support of variations and extensions. To meet these issues,
a metamodel-based approach as well as associated model engineering techniques, were
chosen since they are tooled up and easily accessible. In addition they provide modular
and incremental features to handle variations and extensions of these Petri nets types in
an elegant manner, preserving their structural relationships.

The choice of model engineering techniques is driven by the state of the art of
reliable approaches dealing with such issues. AlthoughUML is a semi-formal modelling
notation, its flexible levels of abstraction, expressivity, modularity and hierarchy make
it appropriate for our goals. This is enforced by the fact that no semantical interpretation
of Petri nets is required in an interchange format (only syntax is transferred).

So far, the standard provides a modular and incremental design of Petri net types
metamodels. The metamodels of these Petri Nets types are encapsulated in UML pack-
ages. Fig. 1 shows their relationships, outlining the incremental design approach.

2

PNML Core Model

Symmetric nets
Place/Transition

nets

High-level Petri net

Graphs

<<merge>>
<<merge>>

<<merge>>

Fig. 1.Overview of theUML packages ofPNML

ThePNML Core Modelpackage (see Fig. 2) contains the basic structural definition
of a Petri net as a labelled directed graph. All type specific information of the net is
embedded in the labels. Labels are associated with nodes, arcs or the net. ThePNML

Core Modelis intended to be the primary building block upon which concrete Petri
net types are defined. Therefore, it imposes no restriction on labels because it is not a
concrete Petri net type. For additional details concerningthe metamodels, the reader is
referred to [3].

As shown in Fig. 1, each concrete Petri net type is built either upon thePNML Core
Modelor upon another existing concrete Petri net type. ThePlace/Transition Netspack-
age thus merges its definitions with thePNML Core Modelones, while theHigh-level
Petri Net Graphspackage merges its own with theSymmetric Netsones. Each concrete
Petri net type defines its legal labels by extending the primary definitions in the source
package (PNML Core Modelfor P/T nets andSymmetric Netsfor High-level Petri Net
Graphs) and possibly adding some syntactic restrictions by means of OCL formulae

PNML Core Model

PetriNet

Id
type

PetriNetDoc

Label

Name

net 1..*

ToolInfo

tool
version

AttributeAnnotation

Graphics

Object

Id

Page

PlaceNode

Node

XMLSchemaDataType::
String

TransitionNode

Arc

Place TransitionRefPlace RefTransition

toolspecific *

toolspecific *

toolspecific *

label *

label *

name {redefines label}
0..1

graphics 0..1

graphics 0..1

name
{redefines label}

0..1

page
1..*

object *

1 target

1 source

*

*

ref 1ref 1

* *

text 1

context Arc inv:
self.source.page = self.target.page

Fig. 2. Overview of thePNML Core Modelpackage

3

<<merge>>

<<
im
po
rt>
>

<<import>>

High-level Petri Net

Graphs

Terms

Symmetric Nets

Lists

Strings

Integers

ArbitraryDeclarations

<<imp
ort>>

<<
im
po
rt>
>

<<imp
ort>>

<<import>>

<<merge>>

<<import>>

Fig. 3.High-level Petri Net GraphsreusingSymmetric Netsand importing type-specific labels

(e.g.connectivity between places and transitions). The metamodels of these labels are
designed in specific packages so as to be reused as much as possible between related
Petri net types.

Fig. 3 illustrates this extension mechanism fromSymmetric Netsto High-level Petri
Net Graphs. High-level Petri Net GraphsreuseSymmetric Netsdefinitions but extend
their terms by adding new concepts: lists, strings, integers and arbitrary declarations. A
more detailed presentation of the standardised Petri net types is provided in [3].

Architecture of PNML Framework Components ofPNML Framework are automat-
ically generated from the metamodels in the standard, and thus reuse their structure.
We chose to encode these metamodels usingEMF [2] in Eclipse. EMF is one of the
most advanced and mature model-driven engineering framework, as it supportsUML ,
code generation and model transformation. These features are key characteristics for
developingPNML Framework, as well as providing clean modelling facilitiesand gen-

Place/Transition

Nets

<<component>>

Symmetric Nets

<<component>>

High-level Petri Net

Graphs

<<component>>

P/T Nets in high-

level notation

<<component>>

Third-party

libraries

<<component>>

Utilities

<<component>>

PNML Core Model

<<component>>

<<component>>

API.Utilities

PNML Framework

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

<<delegate>>

API.XMLUtilities

API.CoreModel

API.PTNet

API.SN

API.HLPN

API.PTHLPN

API.PNMLSave

API.PNMLLoad

<<delegate>>

<<delegate>>

API.BackEnd

C
re
a
te
 a
n
d
 n
a
v
ig
a
te
 P
N
 m
o
d
e
ls
 o
f
th
e

c
o
rr
e
s
p
o
n
d
in
g
 t
y
p
e

Trigger

export

Trigger

import

Fig. 4. PNML Framework architecture

4

erated APIs (i.e.a set of APIs) for tool developers. Therefore,EMF constitutes a suitable
framework to rely on for constructingPNML Framework.

Fig. 4 shows the structure ofPNML Framework APIs. Each API (left part of the fig-
ure) manipulates a given Petri net type and is implemented bya dedicated component.
The APIs are named like the corresponding piece of metamodelin the standard. The
currently supported Petri net types are:Place/Transition nets, Symmetric nets, High-
level Petri netsandPlace/Transition nets in high-level notation, as defined in part 1 of
the standard. Each component provides an API to be used to build models and navigate
their structure.

There is no noticeable duplication between the components thanks to the technical
UML mergeoperator (shown on Fig. 1) between the standardised Petri nets types in
the metamodels. Themergeoperator includes the definitions of an existing Petri nets
type into a new one. For instanceHigh-level Petri Net GraphsmergeSymmetric Netsin
Fig. 3. As a result, every element previously inSymmetric Netswill then be included in
the new type.

PNML Framework also embedsUtilities that tool developers can use to trigger the
loading and storing of models intoPNML documents. They can also use this compo-
nent to turn on or off syntax validation forPNML Document. TheUtilities component is
responsible for loadingPNML documents and figuring out what type of Petri nets they
contain. It also sets up the export of Petri net models intoPNML documents and their
syntactic validation. This component also provides a workspace (or in-memory reposi-
tory) where several Petri net models being handled can be stored.Third-party libraries
are runtime components used byUtilities, providing basic APIs to manipulate XML
trees. They are shown in grey in Fig. 4.

Most of thePNML Framework code is automatically generated. Manually developed
code only concerns theUtilities component, which represents 3600 lines of code. This
ensures maintainability in order to ease future developments resulting from part 3 of the
standard. The next paragraph shows howPNML Framework can be used.

Uses ofPNML Framework Creating, for example, a place in any type of Petri net
requires a single method call with the associated parameters such as name, marking and
position (the method is automatically generated). Then,PNML Framework performs all
the appropriate low-levelEMF manipulations, in order to minimise the tool developers’
efforts. The APIs primitives implement export and import ofPNML elements:

– Export. Petri net models stored in memory, built as instances of Petri net types
(w.r.t. their metamodels defined in the standard) are saved in a file compliant with
the PNML syntax.PNML Framework takes care of the process, performing the re-
quired checks to produce thePNML document.

– Import . Petri net models are loaded in memory, fromPNML documents, as in-
stances of Petri net types.PNML compatibility checks are performed when loading
models.

Fig. 5 illustrates the export and import mechanisms. It shows a Petri net model on
the left-hand side as drawn by a tool user. A typical tool creates the object representation

5

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter

1

4

4

PN model to be

exchanged

id=1
:Net

id=pageId
:Page

id=2
:Place

value=Ready
:Name

........

........

PNML representation of

the PN model

<pnml xmlns="...">
 <net id="1">

 <page id="pageId">

 <place id="2">
 <name>
 <text>Ready</text>

 </name>

 <initialMarking>
 <text>4</text>
 </initialMarking

</pnml>

Standard UML object model

of the PN model in PNML Framework

export

import

create

(and fetch)

navigate

Fig. 5.Export and import of a Petri net model fromPNML

depicted in the centre of the figure. It can be exported by the appropriate API into a
PNML file shown on the right-hand side. ImportingPNML models is similar.

This process enjoys the independency between the tool internal representation and
the current version ofPNML. Compatibility concerns are handled byPNML Framework.

Interaction schemes in usingPNML Framework PNML Framework is implemented in
Java on top of Eclipse. It is also distributed as a standalonelibrary. In order to usePNML

Framework, a tool may be implemented in Java (not necessarily on top of Eclipse) or in
any language supporting Java bindings. Fig. 6 depicts the ways to usePNML Framework
in order to support the interchange standard.

Tool T1 directly uses the provided API to export/import models inPNML. T1 is the
typical example of a standard compliant Petri net tool that relies onPNML Framework.
This is the case of Coloane [4].

Tool T2 exemplifies the use of a standalone application that ensuresthe conversion
of PNML files from/to an existing tool. This converter must parse/produce the T2 internal

export

import

PNML document

<pnml xmlns="....">

<net id= "net1"...>

..........................

..........................

 </net>

</pnml>

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter

1

4

4

Petri net tool T1

PNML Framework
Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter

1

4

4

Petri net tool T2

PNML Framework

Ready 4

In_Race

Podium

Start_Race

End_Race

Get_prepared

Starter

1

4

4

Petri net tool T3

T3's own PNML

implementation

import

export

export import Standalone conversion

application

Fig. 6.Petri net tools exchangingPNML documents

6

ModelRepository.getInstance().createDocumentWorkspace("coqWksp");

PnmlImport pim = new PnmlImport();

HLAPIRootClass imported = (HLAPIRootClass) pim.importFile("pnmlDocument");

pim.setFallUse(true);

Processor proc = MainProcessor.getProcessor(imported);

proc.process(imported, new PrintWriter(new FileWriter("coqDocument")));

if (imported.getClass().equals(

fr.lip6.move.pnml.ptnet.hlapi.PetriNetDocHLAPI.class))

{ p = new PTProcessor(); return p;}

1

2

3

4

5

(5)

6

Fig. 7.Source code of thePNML2COQ main function

format. This is also the case of both the CPN-AMI [5] import/export facilities and the
PNML2COQ plug-in that is presented in section 3.

In contrast to T1 and T2, toolT3 relies on its own implementation of the standard.
Thus, support ofPNML evolutions such as extensions and variations must be handled by
T3 developers (with a risk of not conforming to the standard). ThePNML web site [8]
will be continuously maintained and provide updated versions ofPNML.

3 Typical use:PNML to COQ example

This section illustrates the use ofPNML Framework through the export of a Petri net
in PNML format into a COQ theorem prover [7] representation as described in [1]. This
example is representative of the situation of tool T2 in the previous section, even if it
focuses on the import of models fromPNML documents only (the export is very similar).

Overview of the process The code snippets of Fig. 7 shows the key instructions to
program the import of aPNML Document. There are six steps to complete the design of
PNML2COQ (their numbers are shown on the right-hand side of the code):

1. create a workspace inPNML Framework where models can be manipulated (this is
an in-memory repository to allow developers to work on several models during the
same session),

2. create anImporter (from theUtilities package) to import aPNML Document, this
document remains untyped at this stage (i.e. it can be any type of Petri net),

3. decide what to do in case the loaded Petri net type is unknown; e.g.downgrade to
the closest type known byPNML Framework or to a specified one, or raise an error,

4. import the document (no work needed, this is provided byPNML Framework),
5. set theprocessorto be used for the loaded Petri net; thisprocessorhas to be written

by the tool designer (as presented later in this section),
6. theprocessoris called to perform the desired operations (here, generatea COQ file).

7

public void process(HLAPIRootClass rcl, PrintWriter pw){

 PetriNetDocHLAPI root = (PetriNetDocHLAPI) rcl;

 for (PetriNetHLAPI net : root.getNetsHLAPI())

 processNets(net);

}

private void processNets(PetriNetHLAPI ptn) {

 //Some printout into the output Coq file...

 for (PageHLAPI page : ptn.getPagesHLAPI())

 processPages(page);

 //Some printout in the output Coq file...

}

Fig. 8.Code snippets from the processor

private void processPages(PageHLAPI page) {

 for (PageHLAPI pg : page.getObjects_PageHLAPI())

 processPages(pg);

 for (PlaceHLAPI pl : pth.getObjects_PlaceHLAPI())

 processPlace(pl);

 for (TransitionHLAPI tr : pth.getObjects_TransitionHLAPI())

 processTransition(tr);

 for (ArcHLAPI arc : pth.getObjects_ArcHLAPI())

 processArc(arc);

}

Fig. 9.Code snippet showing how Pages are handled

Design of the ProcessorA PNML document can contain several Petri nets, each of
them composed of one or more pages. Hence, theprocesscode (snippet on the left-
hand side of Fig. 8) first handles nets (code on the right-handside of Fig. 8) and then
pages (snippet of Fig. 9). The processor uses a writer class to output the resulting COQ

syntax into a COQ document (second argument in theprocesssignature).
Fig. 9 details the processing of a page. It successively getsenclosed pages, places,

transitions and arcs. All processing functions are writtenby the tool developer, accord-
ing to his needs. This is eased by the iterators thatPNML Framework provides for pages,
places, transitions and arcs.

Fig. 10 shows how places are translated into COQ. It handles an object correspond-
ing to a place,pla, accessing its attributes through the methods provided byPNML

Framework (e.g.pla.getId()) so as to construct the output string in the COQ format.
All the examples in the figures above show that models are handled through the

provided APIs only. Therefore, the tool developer usingPNML Framework does not
manipulate anyPNML code. The processing we have exposed is fully implemented in
PNML2COQ application. It can be reused for another export. In fact,PNML2COQ is in-
spired from thePNML2DOT tutorial available at [6].

private void processPlace(PlaceHLAPI pla) {

 StringBuffer sb = new StringBuffer();

 nbplaces++;

 sb.append("Definition " + pla.getId() + " := mk" + "Place" + " " + nbplaces + ".");

 allPlaces = allPlaces + pla.getName().getText() +"::";

 sb.append("\n");

 sb.append("Definition m" + pla.getId() + " := (" + pla.getId() + ",0).");

 initMarking = initMarking + "m" + pla.getName().getText() +"::";

 print(sb.toString());

}

Fig. 10.Code snippet showing how places are handled

8

ThePNML2COQ application was implemented in one afternoon. The developer had
no programming practice with Java but is an experienced programmer.

4 Achieving PNML Flexibility and Ability to Evolve

The standard is deemed to evolve (i.e.able to support new Petri net types introduced in
part 3) and flexible (i.e.able to cope with additional information not in the standard). For
both,PNML Framework guarantees standard compliance and thus preserves the ability
of interchanging models with other tools.

Mechanisms for Ability to Evolve The modular design of metamodels, as well as a
compositional and incremental ways to build new Petri net types providePNML with
the ability to evolve. This capability is crucial for the work on part 3 of the standard —
addressing the definition of new Petri net types and structuring constructs.

SincePNML Framework has, from the start, been designed as a companion to the
standard, its future enhancements will also follow the advances on the standard. This
approach is both valuable for proof of concept purposes as well as future use by tool
developers.

The work on addressing the mechanisms for an evolving standard should be fed
by the Petri net community long-standing research achievements and recent results.
We are therefore actively seeking theoretical as well as practical contributions from
practitioners willing to share their new definitions and experiments.

Mechanisms for Flexibility Moreover, flexibility ofPNML allows tool developers to
cope with tool-specific information in their models which is, of course, not included in
the standard. For instance, if a tool associates C code with transitions, it can be intro-
duced astool specific informationin the PNML document.PNML Framework supports
this provision of the standard.

To do so,PNML Framework provides black box orientedPNML constructs, that allow
any non-standard but well-formedXML constructions to be included in aPNML docu-
ment. These can be included and retrieved by a tool-specific method (the non-PNML

XML sentence is encapsulated within tool-specific tags).PNML Framework ensures con-
sistent behaviours in import/export functions.

Thus, to embed some C code in a Petri net for instance, a tool must provide anXML

representation of C programs. It might just be the whole C code embedded in a opening
and closingXML tag, or a more elaborate syntax tree if the tool developer wants it to
have that form.

Impact on the end-userPNML Framework is maintained so as to be standard compliant
and also to ensure backward compatibility with its former versions, starting from its
current version 2.1, which implements the international standard (2009 version). This
is possible thanks to the design choices.

So, if the metamodels evolve, the provided APIs will be regenerated so that the
former are backward compatible with the new ones. The management of flexibility is

9

orthogonal and thus not affected by evolution. So, maintenance is not impacted by stan-
dard evolution issues. Moreover,PNML Framework is designed to be upward compatible
when new upgrades of the standard will appear (e.g.when introducing new extensions
and/or variations in part 3 of the standard).

If tool developers want to implement their own Petri Net typeor extend an existing
one, they must provide the framework with itsPNML-annotated metamodel, as well as
its PNML grammar. Metamodels of the current Petri net types can be used as tutorials.
Then, the code handling the new models is automatically generated. We have proceeded
in this way to extend the P/T type with inhibitor, reset and read arcs.

5 Conclusion

PNML Framework has been designed as a companion and support of ISO/IEC-15909-2,
which defines thePNML interchange format.PNML Framework provides a set of APIs
to read and writePNML files. This software is developed thanks to model engineering
techniques (hereEMF).

PNML Framework has been successfully used to quickly elaborate an export from
Petri nets to COQ. The main design steps to build this application demonstrated the
simple use ofPNML Framework.

PNML Framework is open source and distributed under the Eclipse licence. It is
implemented in Java. But as shown in this paper, import/export functions can be quickly
developed as a standalone program for tools not being developed in Java.

PNML Framework enjoys flexibility capabilities and ability to evolve, which con-
stitute a major issue in further development of the standardand free tool developers
from maintenance issues due to its evolution. Initial successful experiments with small
extensions such as inhibitor arcs etc. have assessed these objectives.

AcknowledgementsThe authors are very grateful to Ekkart Kindler for his support and
his comments on earlier versions of this paper.

References

1. C. Choppy, M. Mayero, and L. Petrucci. Experimenting formal proofs of Petri Nets refine-
ments. InProc. Workshop REFINE (associated with FM2008), Turku, Finland, volume 214
of Electronic Notes in Theor. Comp. Sci., pages 231–254. Elsevier Science, May 2008.

2. Eclipse Foundation.Eclipse Modeling Framework. http://www.eclipse.org/emf/.
3. L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Trèves. A primer on the Petri Net

Markup Language and ISO/IEC 15909-2.Petri Net Newsletter (originally presented at the
10th International workshop on Practical Use of Colored Petri Nets andthe CPN Tools –
CPN’09), 76:9–28, October 2009.http://www.cs.au.dk/CPnets/events/workshop09/
assets/paper06.pdf.

4. The Coloane home page. url:http://coloane.lip6.fr/, 2009.
5. The CPN-AMI home page. url:http://www.lip6.fr/cpn-ami, 2009.
6. The PNML Framework home page. url:http://pnml.lip6.fr/, 2009.
7. INRIA. The Coq Proof Assistant home page. http://coq.inria.fr/, 2009.
8. ISO/IEC/SC7/WG19.The Petri Net Markup Language home page. http://www.pnml.org,

2009.

10

