Architectural and Behavioral Modeling with AADL
for Fault Tolerant Embedded Systems

Gilles Lasnier, Thomas Robert, Laurent Pautet Fabrice Kordon
Institut TELECOM - TELECOM ParisTech - LTCI LIP6 - Université Pierre & Marie Curie
46, rue Barrault, F-75634 Paris CEDEX 13, France 4, place Jussieu, 75252 Paris CEDEX 05, France
Email: {firstname.lastnam@telecom-paristech.fr Email: fabrice.kordon@lip6.fr

Abstract—AADL is an architecture description language in- that we describe with AADL: an application integrated to a
tended for model-based engineering of high-integrity sysims. passive replication architecture to be tolerant to crashes

The AADL Behavior Annex is an extension allowing the re- ; : : .
finement of behavioral aspects described through AADL. When Based on that experiment, this paper illisutrates the diffic

implementing Distributed Real-time Embedded system, fadltol- 1€S discovered while modeling this system with AADL and
erance concerns are integrated by applying replication paems. AADL-BA. It also proposes some design strategies we suggest
We considered a simplified design of the primary backup repli to describe behavior of components in AADL-BA.
cation pattern to express the modeling capabilities of AADLand The paper is structured as follow. Section Il presents the
its annex. Our contribution intends to give accurate descption e syydy and highlight two modeling challenges raised by
of the synchronization mechanisms integrated in this exanlp. . N
_ o such systems. Section Il presents the AADL descriptioresef s

Keywords-aadl; behavior; fault-tolerant; distributed systems. lected components of the PBR case study. Finally, Section IV

provides the key concept of the annex as well as guidelines

. INTRODUCTION for modeling the identified challenges.

The Architecture Analysis and Design Languadé]
(AADL) is an international standard intended for modeldzhs I[I. THE PBRSTRATEGY
engineering of High-Integrity (HI) Distributed Real-Tinzand
Embedded (DRE) systems. It aims at modeling DRE syste
with deployment, configuration and real-time informatitinys
allowing code generation. A

For systems requiring strong dependability, embedded soft
ware applications usually implement both control and data!l most safety-critical systems, fault tolerance is imple-
acquisition services. Certification processes considalyais, Mmented by duplicating the application on separate hard-
verification, test methods, and fault tolerance as mechanisware platformsReplication-basetault tolerance architectures
to increase the dependability of the whole system. Rea-tifi€cessitate a synchronization protocol between appitati
and fault-tolerance requirements are tightly related eg tioth copies. This protocol is in charge to detect theirs failures
require control on the software execution flow. The verifarat @nd ensure the fault tolerant application continue to eeliv
and code generation services enabled by AADL improve tHg service. The Primary Backup Replication mechanism pre-
system overall dependability in a MDE-based approach. sented in this paper is an adaptation of the fault tolerance

Some behavior of an AADL specification can be inferref’e€chanism described in [2]. The synchronization logic is
from the described architecture thanks to the AADL rurfistributed in each site of the distributed architecturethef
time model. However, this remains limited. AADL propose8'echanism in components called controller). The replittzes (
annexes to extend the core language. The AADL Behavig?pies of the application and their associated controdierthe
Annex (AADL-BA) allows one to refine and attach additionaPuilding blocks of the PBR strategy. The controllers enéorc
behavioral information useful for a finer systems analysis. the following behavior between the replicas:

As members involved in the elaboration of these annexes,1) One distinguished replica, called tpemary, executes
we propose a lookup on AADL-BA to be issued in spring the application. The controller of this replica performs
2010. It provides constructions to define the expected behav periodic snapshots of the application execution context,
iors of system components described with AADL. It relies on and broadcasts them to backups.
an automata-based syntax. However, ensuring the congjsten 2) Other replicas do not execute their copy of the applica-
of these automata with regards to the core specificationeof th tion, They are callethackupsand store snapshots of the
system is a difficult issue. application execution context sent by the primary.

It is of interest to use the new features of the standard as3) When the crash of the primary is detected by a backup,
soon as possible to improve its capabilities. To do so, we backups start the election of a new primary that restarts
consider a running example of a non trivial DRE architecture the application thanks to the last snapshot received.

In this section we present the Primary Backup Replication
r(EBR) mechanism in the context of DRE systems.

Passive Replication strategy for fault tolerance

Modeling such an architecture relies on three key function®plica. The computers used in PBR is represented by a set of
the crash detection mechanism, the election protocol forpeocessorcomponents and Buscomponent.
new primary, and the reconfiguration of the elected backupData exchange and interaction between components are
to restart the application. specified through AADL features gsorts and connections
Thesystenrcomponent allows us describing our complete PBR
) }] . architecture that contains one primary replica and two bpsk

This subsection provides details on the challenges thﬁﬁen,ports and data components can both be used to model
represents each points identified as a key function of the, synchronization between the application and the cbetro
replication mechanism. _ _ A decision has to be made between these mechanisms.

‘@) The crash detection mechanisriReplica crash de- 1) The Replica System Componefihe replica module is

tection is implemented by an heartbeat protocol. Thus, gfesented in listing 1. It is aystemcontaining twoprocesses

am alive” messages are sent periodically from the primagye appiication and its controller. This makes one replica.
to backups to notify them that the primary is still running

correctly. As soon as backups no longer receive such messa@é

B. Behavioral Modeling Challenges

stem implementation Replica.impl

i bcomponents
they suspect a crash of the primary. The heartbeat protocohppii . process Application .impl;
uses watchdog or timer services to trigger the election ef th Rep_Ctrl : process Replica Ctrl.impl;
CPU : processor TheCpu;

new primary. A clean specification of interactions betweepOnnections
watchdogs (or timers) and threads needs to be provided. port Appli.OutA —> Rep_Ctrl.InA;

b) Primary election protocol: When the crash of the port Appli.OutB —> Rep Ctrl.InB;
primary is detect by backups, they start an election prdtmco Eg{: Egg—g:[: e = ﬁgg:: e
determine which backup will be the new primary. We preferreghoperties ’ ' ’

a deterministic protocol: backup IDs are sorted and the next Actual_ProcessorBinding =
primary is the backup with the smallest ID. A consensus , reference (CPU) applies to Appli;

. B . ctual_ProcessorBinding =>
algorithm designed to tolerate the crash fault model is used reference (CPU) applies to Rep Ctrl:
to ensure that every backup agreed on the identity of the newd replica.impl;
primary [3]. Once elected, this primary restarts the apian.

c) Checkpoints capture and reloa&napshots of the ap-
plication execution context cannot be performed atomjdall ~ Processes are bound to the Cpidcessor Theconnections
the whole application. In this context, we use a synchrahiz&ection shows how to conneat/out ports of the involved
checkpoint mechanism. Application threads executionexint processcomponents. Théctual ProcessorBinding property
are saved separately and combined to define the applicatidnds processes to processors.
global state. Each thread needs to wait on a synchronizatioiycess Application
barrier in order to capture a consistent global state. kroftfeatures
requires monitors or condition variable like services. InA_ = in event port;

. OutB : out event port;
In [4], AADL has already been used to describe the re-
configuration protocol used on replicas to tolerate fautlis. end Application ;
this paper, we plan to complete this approach showing how

. . . ocess implementation Application .impl
the behavioral annex can describe the behavior of threa Compone%ts PP P

Listing 1. PBR case study in AADL: replica module

implementing the replica controller. ThA : thread thread w_state A;
ThB : thread thread w_state B;
IIl. DESIGNING PBRwWITH AADLV2 connections

The AADL standard [1] is managed by the Society of Auto- Eg[: ITT]AB .gutghf‘;”g*u}&

motive Engineers (SAE). for lack of space, we do not remind ... o _
the new features of AADL version 2.0 that are presentédld Application .impl;
in [5]. This section illustrate the standard capabilitigthwhe ,cad thread w_state A:

description of the software architecture of PBR componentsfeatures
The_Shared Data : requires data access SharedData.Impl;

A. Modeling the PBR Architecture with AADLv2 InA : in event port;
Modeling a DRE system with AADL requires to identify OutA : out event port;

- e) roperties
the different roles of components and their hierarchies. Fn Dispatch Protocol = Periodic;
AADL, data and subprograms are located in threads. Threadg eriod _ _ > 500 Ms;

| | ted in processes (roviding a memorv spac Compute Execution.Time = 0 ms .. 200 ms;
are also loca in p providing Y SPaC&aadline = 500 Ms.:

shared by all enclosed threads). System components are usefthread w_state A;
to hierarchically structure the system, thus increasing th
readability of the specification.

We selectedprocess thread subprogramscomponents to 2) The Application Process Componenthe Applica-
model the application and replica controller modules of #on process is presented in listing 2. Sectifmaturesde-

Listing 2. pbr case study in AADL: application process

scribes its interfaceevent portsfor infout communication

We focus here on the description of the different execution

to halt/resume the thread execution. Two concurrent tlseathodes of the process. Properties, components and cormectio
ThA and ThB, manage the application context (componecdn be mode-specific. The keywoidsmodesallow to specify
The_Shared_Dat a) and take care of variables consistency. the mode in which the component is involved.

Listing 2 also describes one of these thread interfaceThe operational modes of replicas described in Il are

(thread_w state_A) and its properties (period, etc).

primary, backupand election Mode transitions are explicitly

3) The SharedData Data Component:Since the appli- defined asnode init — [eventtriggered — > mode final.
cation context is manipulated by two threads, we use theMode switch is synchronized with events occurring from

AADLv2 dedicated pattern to specify sharehta compo-

ports. When the replica controller mackupmode receives a

nents. ConcurrencyControl_Protocol selects a concurrencylsElectionevent, then the it switches to tlectionmode.
management policy supported by the AADL runtime (here,] o
Priority_Ceiling). Provides subprogram accessefines the B- Checkpoint synchronization and watchdogs

subprograms to be used to access data that will be required’he checkpointing service has to enforce a rendez-vous. Iti

by threadsThA and ThB. This is depicted in listing 3.

data Shared Data

features

Update : provides subprogram accessUpdate;
Read . provides subprogram accessRead;
properties

Priority = 240;
ConcurrencyControl_Protocol = Priority_Ceiling;
end SharedData;

data SharedData.Impl

subcomponents

State : data;

UpdateSpg :subprogram Update;

ReadSpg :subprogram Read;

connections

Cnx1l : subprogram access UpdateSpg—> Update;
Cnx2 : subprogram access ReadSpg—> Read;

end SharedData.Impl;

Listing 3. PBR case study in AADL: shared data

has to block threads until all participants reached the eend
vous. Then the controller saves the copy of the application
state, and releases application thread executions.

The two reasons for suspending a thread are when it is
waiting for a dispatch trigger, or for a shared resourcehmn t
first case, it is easy to control how the thread is wake-up by
sending an event on one of its ports. A thread will reach such
dispatch state at the end of a call sequence. These particula
states can be used to set up rendez-vous between threads.

In the second case, a Concurrency Control Protocol de-
fines how critical sections assciated to shared data should
be protected. One of the proposed protocol uses subpro-
grams implementing the usual lock and unlock primitives
(mutexes) to enforce mutual exclusion. These primitives ca
be used to program more complex synchronization services.
So, synchronizations can be either defined at the thread or
subprogram level but through different mechanisms. Next

4) The Replica Controller Process Componefihie replica section highlights the fact that describing the implemeoita

controller process (see listing 4) contains a thread sy

"from scratch” with rendez-vous is easier at the threadlleve

ing actions.Connectionsshow the links between this thread The heartbeat Watchdogs are often imp|emented with soft-

and the replica controller process throyggbrts

process Replica_Controller
features
SshotRcv :in event data State;
SshotSnd :out event data State;

IsPrimary : in event port;
IsBackup :in event port;
IsElection : in event port;

end Replica Controller;

process implementation Replica_Controller .impl
subcomponents
ThA : thread thread snap.sync
in modes (Primary, Election, Backup);
connections
port ThA.SshotSnd—> SshotSndin modes (Primary);
port SshotRcv—> ThA.SshotRcvin modes (Backup);

modes

Primary : initial mode; —— modes

Backup mode;

Election mode;

Backup —[IsElection}> Election; — transitions
Election —[IsBackup}> Backup ;

Election —[IsPrimary}l-> Primary;
end Replica_ Controller.impl;

Listing 4. PBR case study in AADL: Replica controller proses

ware timers. No timer services are directly available in AAD
Nevertheless, the concept of dispatch on timeouts can melfou
in the AADL-BA. We show in next section how to define a
watchdog as an additional dispatch condition for the replic
controller thread component.

IV. AADL B EHAVIOR SPECIFICATIONS

The AADL Behavior Annex is an extension to specify the
behavior attached to AADL components. It intends to refine
the implicit behavior specified in the core of the language.
Thus, it is possible to attachleehavioral specificatiorto each
AADL component using AADLannex subclauses

The AADL-BA defines several languages. A state/transition
automaton describes component behavior. A dispatch con-
dition language refines thread dispatch behavior. An inter-
action operations language specifies component interactio
as communications through ports, parameters, subprogram
calls, etc. A behavior action language describes actiorseto
processed when transition triggers. Finally, an expresisin-
guage provides logical, relational and arithmetic expoess
to manipulate variables. In this section, we do not detal th
expression language which syntax is very close to the one
provided by Ada.

A. The Behavior Specification behavior ofevent datadata or eventports. Thus, behaviors

A behavior specificationis expressed as a state transitiod"d policies governingata andevent datgports queues (e.g
automaton with guards and actions. Guards and actions g&&lueue protocol) can be specified. o
variables to manipulate data. Frozen ports mechanism can be used to ensure availability

The automaton specifies the sequential execution beha@received data on a port after thread dispatch occurs. Send
of subprogramand dispatch protocol. Input and output be@nd receive outputs through ports can be specified.
havior of AADL threadsor devices dynamic behavior of a The standard defines several ways to model access to shared
processor asystemcan also be expressed by an automaton‘?'atffl subcpmpongnts (see next subsection). .

Local variables (non-persistent) are used to save inter-Finally, interaction between components using supprogram
mediate results. State variables referencing an AADL d&8n be specified by the syntaySubrogram!or MySubro-
component ompersistentcan be used to reduce the size ogram!(paraml,...paramNjThis call to subprogram access is
the state automaton by keeping track of counts for instancélefined in the actions attached to transitions.

A behavior automaton starts from anitial state and termi- B. Chekpointing Implementation

nates in afinal state.Completestate represents a suspend/re- }]
sume state out of which threads and devices are dispatched [61) Shared Data SemanticShe standard defines three ways

Remaining states are called execution state and represé@tdodel critical section in order to access shared data.
intermediate state of the automaton. a) The smaller action block:A smaller action block

A transition represents a change from the current sour@acapsulates the shared data subcomponent referencéevith t
state to a destination state. A transition is activated witeen Use of {" and '}’ characters as delimiters. If an action block
dispatch or execute condition is evaluated to true. Then tR@ntains references to several shared data subcompoimemts,
attached action is executed. resource locking (resp. unlocking) will be done in the same

Dispatch condition affect the execution of a thread based 0i§SP- reverse) order as the occurrence of the referendbs to
external triggers. Execute condition models behavior withshared data subcomponents [6].
an execution sequence of a thread, subprogram or other P) Provides subprogram accessAppropriate provides
component. They are based on input values from ports, shafé@program access of the corresponding shared data com-
data, parameters, and behavior variable value [6]. ponent can be called in actions associated to transitions.

1) Subprogram Behavior Specificatiorfhe initial state They must be explicitly defined to implement the concurrency
represents the starting point of a call. The final state Fepl@ntrol protocol which coordinates accesses to shared data
sents the completion of a call. The automaton describes the C) Getresource and releaseesource runtime services:
execution behavior of a subprogram with one or more retufet resourceandreleaseresourceruntime services specified
points [6]. Its has one or more intermediate execution stat@ the runtime support of the AADLv2 standard [1] can be
but no complete state. manually inserted in actions attached to transitions.

2) Thread and Device Behavior Specificatiofi$ie behav- According to the AADLv2 standard, the user can also
ior automaton of thread or device describes: one initiaiesteprovide specific implementations dfet resource and re-
representing the state before initialization actions; onmore leaseresourceat execution platform level.
complete state representing halt/resume state; zero oe morThe small block action is easy to use. It allows implicit
intermediate execution state and one final state repregen@nd automatic placement gét resourceandreleaseresource
finalization completed by thread or device. services by the use of”, ' }'. However concerning modeling

The behavior of a thread dispatch is a dispatch conditi@@mplex critical section as multiple data shared and mieltip
evaluates to true. Then, the thread dispatches and tmsitiock/unlock, the semantic defined is not precise enough.
(outgoing of a complete state) is taken. Actions associatedThe use of provides subprogram access implies to check
to the transition is performed. Periodic dispatches are irall subprogram access and implementation to avoid run-time
plicit. Sporadic dispatches can be triggered by the arrivéblation. So, systems analysis becomes more complex.
of event, data, event data on ports or the call to providesThe use ofget resource and releaseresource run-time
subprogram access features. AADL-BA describes timeout fe@rvices is very expressive to model access to criticalsect
thread dispatch with the use oh dispatch timeouas dispatch The user can specify easily with subprogram calls where is
condition. Timeout is a dispatch trigger condition raiségra the begin and the end of the section.
the specified amount of time since the last dispatch [6]. However the use of multiple critical section and/or mutipl

3) Other Component Behavior Specificatio$ie automa- shared data is not trivial to model. Subprogram behavior
ton of other components (process, processor, etc) statits wiutomaton without complete state reflected the fact that a
one initial state representing the state before inititiima one subprogram can not be blocked. So, if the user specifies it
ore more complete states and one final state representingatuas get resourceand release resourceimplementation then
state after finalization [6]. it is not possible to describe the subprogram behavior. iBhis

4) Component Interaction Behavior SpecificatiodADL a problem for the system analysis.
threads interact through shared data, connected portsudd s Finally, according to different semantic of the annex, wd fin
program calls. AADL-BA provides mechanisms to model théhat modeling a critical section is a complex problem. So, in

our case we choose to use the AADL port and its semanticrieceives a InA event, the condition on dispatch InA is true,
model the checkpointing mechanism. the transition betweenl to itself triggers.

2) Modeling Challenge and Complexity8ynchronization = Thus,ReceiveSnapshand StoreSnapshaubprograms are
for checkpointing requires to specify a complex synchra@alled (see actions section attached to the transition).
nization mechanism between threads. We have mentioned,{fcx pehaviorspecification {+=
section Il that the core AADL allows the description of states
synchronization mechanisms between shared resourced.(dat Si: initial state;

sl: complete state;
Subprogram accesses or events sent on connected ports are . final state -
also involved to model these check-pointing mechanisms. transitions _
The listing 5 depicts the behavior automaton of thread Si —[I-> sl { InitSpg! };

. . . sl —[on dispatch InA]-> s1 { ReceiveSnapshot!;
thread w_state A contained in the application process. The StoreSnapshot!};

thread behavior automaton has one initial s&itgwo com- s1 —[on dispatch timeoufl—> sf { OutElection! };
plete statesl, s2 and one final statef. *x
annex behaviorspecification {xx Listing 6. PBR case study in AADL-BA: timeout
states
si: initial state; We focus now on the dispatch timeout. According to the
sl, s2: complete state semantics of the AADL-BA the timeout occurs when the
tr;;éi:i'gr?é state; period of the thread expired. The thread is in skdtevhen the
si —[[-> s1 { InitSpg! }; timeout triggers. If the backup replica controller procdess
sl —[on dispatchl—> s2 { gotTXPU}tatiorll!: not receive the snapshot (ileA) then the timeout triggers.
UtA'!) s . . .
s2 —[on dispatch InA]-> sl { Computation2! }; The transition betweesl andsf with th_eon d|spa_tch timeout
wx)} condition occurs. The performed actio®\tElection) is the

emission of an event on the OutElection out event port. This
event is transmitted to other backup replica controllecpss.

When the transitiosi to s1triggers, thenitSpgsubprogram Then the reception of this event triggers the mode change int
specified in the actions sectio{ (..’ };) initialized the thread. replica controller process.

Complete statesl and s2 are waiting states used when
the thread waits for dispatch (execution). At the first dispa v (_:ON_CLUSION _
the transitions1 to s2 triggers and the actions attached to the PU€ t0 the recent publication of AADLv2 and AADL-BA, it
transition are executed. Thus the subprog@emputationls 'S of interest to check .|f engineers can use both AADLv2 and
invoked and theDutA! produces an event on the event pod*ADL-BA safely (e.g. in a consistent way). For that purpose,

OutA This signal releases the thread which has completed {f§ M0del the Primary Backup Replication strategy (PBR) that
works and waits irs2 for a signallnA to resume. is a typical fault-tolerant mechanisms for Distributed Rea

The synchronization protocol is described through transime and Embedded systems. _ _
tions triggered and actions executed betwsérand s2 s2 We successfully modeled the PBR architecture but the point
is the rendez-vous stat@utA event is the notification that a Was to detail the behavior of its building blocks. the replica
thread reach the rendez-vouisA is the event received whencontrollers. Both thread and subprogram behavioral models
checkpoint is completed. should be accurate enough to describe complex synchroniza-
tion scenarios. We detailed the PBR checkpointing mechanis
C. Heartbeats Protocol Implementation through thread and subprogram models. Yet, we identified

This subsection describes how to use AADL-BA to moddiotential issues in subprogram behavioral models. We plan

the behavior of the heartbeats protocol using AADL-BAC Propose errata to clarify the behavior of the subprogram
synchronization primitives.

timeout for backup replicas.
The heartbeat protocol used in the PBR architecture relies REFERENCES

on a timeout that is triggered once the specified amount [9{ SAE, Architecture Analysis & Design Language v2.0 (ASS5CBIpL.

time since the last dispatch has expired. The timeout value' 1 5gqg.
given by thePeriod property of the thread. [2] H. Zou and F. Jahanian, “Real-time primary-backup wegilon with

ot ; ; temporal consistency guarantees,’liéth Int. Conf. on Dist. Computing
Listing 6 depicts the behavior automaton of the thread Systems (18th ICDCS'98) The Netherlands: IEEE, May 1998,

_contai_ned _in the replica _ContrO”_er process _(bE_‘CkUp rap)ic [3] R. S. M. Pease and L. Lamport, “Reaching agreement in theemce of
including timeout. We give a simple description for better faults,” JACM vol. 27, no. 2, pp. 228-234, Apr. 1980.

; ; ; it [4] D. de Niz and P. H. Feiler, “Verification of replication duitectures in
understanding. Thatatessection declaresi as initial state AADL? in ICECCS IEEE Computer Society, 2009, pp. 365-370.

(before thread initialization)s1 as complete state (for dis-(s) G. Lasnier, B. zalila, L. Pautet, and J. Hugues, “OCARINAN Envi-
patch) andsf as final state. ronment for AADL Models Analysis and Automatic Code Genierator

When the thread starts, initialization is due by invoking ELgrgplgtEgrgg AFF;QLZEZ“%”USA"zi?gg"ab'e Software Technologies'09 - Ada

the InitSpg subprogram. The transition starts from the initials] sAE, Annex X Behavior Annex (AS5506-X draft-2,133pt. 2009.
statesi and stops in thesl complete state. When the thread

Listing 5. PBR case study in AADL-BA: thread behavior autémna

