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Abstract. Model Driven Development (MDD) focuses on the intensive
use of models during software development. In this paradigm, models
are the central development artifact: transformations are used to derive
executable programs, or tests for a given platform. This makes building
quality models a cost-effective approach, as the models can be reused
for many analysis or generation goals, and not just document a design.
However, high quality models are needed for the approach to be suc-
cessful. Hence the goal of performing analysis of high-level behavioral
specifications such as UML, to enhance their quality and detect defects
or ensure desired behavior.
High-level specifications provide many facilities to handle large specifi-
cations (such as hierarchical structuring mechanisms) and provide so-
phisticated features to handle programming language’s rich semantics.
However, the price of these features is that these specifications are diffi-
cult to analyse, the semantics are not necessarily formally defined, and
the complexity of the language features usually limits analysis to manual
inspection, or in the best cases simulation.
On the other hand, formal specifications have been developed specifically
with analysis purposes in mind. In particular, model checking is an auto-
matic approach suitable to analyse formally defined behaviors. However,
formal specifications languages such as CSP, PROMELA, Petri nets, etc.
have a steep learning curve, and are not cost effective since they are not
directly linked to code.
In this paper, we explore an approach to integrate formal methods with
high-level notations, by translating high-level specifications to formal
ones to enable analysis. We are thus bringing Model Driven Engineering
to Verification Driven Engineering. We show how this approach was put
in practice with UML within the context of the ModelPlex project.

1 Introduction

Industry has always faced a major challenge in the design and implementation
of complex systems: how to ensure that they behave appropriately. To do so,

⋆ This work has been partially supported by the ModelPlex European integrated
project FP6-IP 034081 (Modeling Solutions for Complex Systems)



the emerging consensus emphasizes the need for models. We use ”models” in
the broad sense, meaning tool manipulable descriptions of software design and
artifacts. Although simulation and testing are the most common tools used to
improve quality assurance, they only increase user’s confidence in a piece of
software, since by nature they are not exhaustive techniques.

Furthermore, in distributed systems that are becoming the norm, the inherent
asynchronous behavior produces non-determinism that testing may have trouble
detecting correctly. Only formal methods are capable of proving properties for
such systems.

Current practice of software development strongly gravitate around Model
Driven Engineering (MDE) that provides guidelines on how to elaborate models
at each step of the development process. However, with the notable exception of
hardware design, formal specifications are not widely accepted because they are
difficult to operate:

– Their application to real-size systems most often requires heavy use of ab-
stractions and tricky encodings of the specification,

– They must be operated using an appropriate formal notation and the re-
lated tools. Each one has its strengths and weaknesses, and all are relatively
complex to acquire for an engineer,

– The models produced for verification of a design are usually not reusable for
other goals such as code generation. Thus a rupture exists between the mod-
els and reality, and the investment in the models is considered too expensive
for the quality assurance results provided.

This process usually require highly skilled engineers in both their application
domain and various formal methods. These people are difficult to find. Thus,
adoption by industry remains limited to niche applications, partly because the
formalisms used for model checking purposes are considered too difficult to be
used by average developers.

In contrast, Model-Driven Engineering (MDE) techniques are gaining atten-
tion since machine-readable specifications (models) are more precise, less error
prone, can be processed by automated tools, and can allow by code generation
to be less dependent on fast evolving technologies [19].

So, the use of formal methods suffer from methodological and technical issues
and decrease the benefits of MDE. In [24], we proposed to define Verification

Driven Engineering (VDE) as an an addition to the use of models all over
the software development cycle. Since there is no “silver bullet”, the idea is to
provide enough information to help picking up the correct technique and tools.
By providing model transformations and self configuration mechanisms to choose
the adapted formal verification techniques and tools, we can increase their use
by industry.

Models and related notations are crucial. When a community uses a notation,
and links from that notation to formal methods can be operated, then it is
possible to exploit tools and help designers to build safer systems while requiring
limited knowledge of underlying techniques.



The objective of this paper is to show how VDE can be operated to provide
such help to engineers in an automated way, to answer simple questions such
as deadlock detection, bounds of resources, etc. To do so, we propose a general
schema for relating high-level notations to formal methods (section 2). Then, this
schema is instantiated for UML (section 3) and we present an implementation
on some useful properties (section 4) before a conclusion.

2 Connecting high-level notations with formal methods

It is now widely accepted that models should be throughout the design and
implementation procedure. However, our specific goal here is to make the best
possible usage of these models, for example to check if expected behavioral prop-
erties are verified or not.

To perform verification through model-checking, a process like the one de-
scribed in figure 1 is required. First, it is important to have specifications and
associated properties (for example, invariants modeling safety properties). These
can be expressed using standard high-level notations of an application domain
such as UML.

Specifications

Properties

formal 
specification

Properties
Model

transformation

Formal
verification

Feed-back to designer

Fig. 1. Development process involving models and verification.

Most high-level specifications are not directly suitable for the computation
of properties. Therefore, they must be transformed into formal specifications on
which properties can be verified. When the procedure succeeds a positive answer
or an error diagnostic is provided. The verification procedure however may fail
due to time or memory constraints. This error diagnostic feedback allows system
architects to improve their design.

In an iterative development cycle, model validation is introduced in every
iteration. It thus is applied on specifications that are successively refined. As
suggested in [24], the MDE (Model Driven Engineering) process come to a VDE
(Verification Driven Engineering) process. Figure 2 shows the overall develop-
ment process that is helicoidal. Each step corresponds to a version of the system
specifications that are verified and then, potentially corrected or enriched.

We first briefly investigate several types of verification techniques and then iden-
tify the main issues to be solved when using formal methods in a VDE approach.
Section 3 shows how such an approach can be instantiated for UML.
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Fig. 2. Helicoidal development life cycle.

UML is by far the most popular and tool-supported language used for in-
dustrial specifications [14]. For the formal verification community, this offers the
possibility of defining model checking based verification as one of many services
on industrial UML models. It thus helps adoption of these formal techniques
into mainstream software development methods.

2.1 Choosing a class of verification techniques

There are several classes of formal verification techniques that allow one to reason
on a model based on formal grounds. Through different theories (sets, automata,
stochastic, etc.), there is a large panel of methods. Let us list two of them.

Algebraic approaches and axiomatic logic such as Z [23] or B [1] allow
to describe a system using axioms and then, prove properties of this specifica-
tion as a theorem to be demonstrated from these axioms. For example, these
methods allow one to check for the consistency of interfaces through a complete
type checking mechanism, or even to go further and prove theorems (lemmas,
invariants) on a system.

These are of particular interest because the proof is parametric and abstract ;
for instance a property can hold for a number of entities taken in the natural
range. However, theorem provers that help elaborate the proof are difficult to
use and still require highly skilled and experienced engineers.

Model checking [10] is an active research domain [11]. It consists in the
exhaustive investigation of a system state space. A designer expresses a property
to be tested on a model, using a temporal logic formula expressing (un)desired
behaviors of the system. This formula is compared with all the paths in the
system’s state space. If there is a path that does not satisfy the property, then
the property does not hold and the returned path (or execution trace) exhibits
a counter-example for the property.

The main advantage of this technique is that it is fully automated given a
system and a property. However, results obtained are rarely parametric, they an-
swer for a particular set of resources (e.g. N threads). Besides, model-checking



is limited by the combinatorial explosion and can mainly address finite sys-
tems. However, many efficient techniques exist such as symbolic decision diagram
(BDD) [5], partial order and abstraction methods [12], or symmetry based tech-
niques [7]. They allow to scale up to more complex systems. Some recent studies
also investigate model checking of infinite-state systems [25]. Other extensions
allow the verification of time-related or probabilistic properties on a model.

The complexity of current software systems and their parallel, distributed
and heterogeneous nature raises many challenges when trying to ensure their
correctness. In this respect, model checking [22] is a formal verification technique
which promises to automatically check whether a system satisfies some stated
properties. Thus, it seems that model checking is currently a better solution for
building push-button tools implementing VDE.

2.2 Raised Issues

However, several important issues must be solved in order to operate such an
approach:

– specification issues
– transformation issues
– complexity issues

Specification Issues. To be suitable for verification purpose, the specification
must contain precise information about the behavior of its components. If the
description is structured, an appropriate way of combining behaviors of compo-
nents must be provided.

For instance, in a notation like UML, information is consistent in diagrams
but lacks semantics when diagrams are connected. For example, state-machines
describe the behavior of a Classifier (Class or Component). But how this behav-
ior is connected to a description based on sequence diagrams is rather unclear.
Therefore, if verification can be performed on isolated diagrams like in [32] for
state-machines or in [13] for sequence diagrams, it is difficult to ensure consis-
tency of the entire system specification.

To overcome this first problem, profiling can be considered. The missing
semantic information can be stated by means of annotations that are exploited
to fix identified ”semantic variation points” and other places where the semantic
is imprecisely defined.

Another important point concerns the specification of properties. Invariant
specification is currently used in industry, for example to specify the profile
of unexpected events in the system. OCL is the standard notation to express
invariants in UML specifications. However, temporal logic is more difficult to
use and is not fully standardized.

To overcome this second problem, sequence diagrams can be used as a more
friendly way of specifying temporal logic formulae. These diagrams provide a
way to help designers to describe expected causalities between events (since



sequence diagrams express a partial order over events). These descriptions of
expected behavior can be used for verification.

Let us note that a notation like AADL [29] solves these problems by providing
a unified way to relate component to annotations1. AADL components describe
a piece of the system while annotations define either component features or com-
ponent properties. Thus, both the system, its behavior (in an annotation) and
its expected properties are defined together. This is helpful when transforming
the full specification of a system into a formal notation.

Transformation Issues. High-level concepts must be mapped to formal speci-
fications. When elaborating the transformation rules, it is important to consider:

– The granularity of atomic events: it must be tuned appropriately to limit
complexity and while remaining precise in the specification.

– The traceability of transformation to provide comprehensive feed-back to
engineers in terms of the high-level specification.

– The consistency between the transformation of the specification and its as-
sociated properties, particularly if different modeling notations are used.

Since no formal verification technique fits all the needs it is necessary to
choose the most appropriate one. Therefore, several transformations from the
high-level notation to various formal models must be considered. Each transfor-
mation is dedicated to the verification of a given property using a given tech-
nique.

Complexity Issues. Combinatorial explosion in the verification process is an-
other reason to consider several transformation. It is important to select, for a
given formal notation, the most efficient verification technique. Such a technique
depends on the formal notation but also on the property to be verified. There-
fore, there can be several transformation from the high-level notation to a given
formal notation, each one being optimizing some configuration.

As an example, let us consider deadlock detection in Petri nets. It can be
achieved by means of model checking but also trough structural analysis for
certain types of Petri Nets like in [2, 3]. The structural approach usually scales
much better, though it is less general than full model-checking. Customizing a
transformation for deadlock detection is thus of interest.

2.3 An approach to enable VDE

The elaboration of a VDE approach requires a methodology: one must cope with
the issues and elaborate its transformation and verification tools. The approach
we propose has four steps:

1 in AADL, annotations are called “properties”.



1. Selection of the semantic scope to be handled in the high-level specification.
This is necessary to bound the transformations rules. It is possible to extend
the scope when a first set of transformation rules are validated.

2. Selection of the appropriate formal notation according to the type of property
to be verified. It is also necessary to identify the technique to be used for
verification.

3. Identification of the abstraction level to be considered in the high-level spec-
ification. This corresponds to the selection of the elements to be considered
in the high-level notation for the transformation to be elaborated.

4. Mapping of the selected elements to the formal notation. It is important
to identify the elements that correspond to the “glue” in the system such
as hierarchical composition or communication mechanisms. The transforma-
tion rules handling these elements are of particular importance because they
orchestrate others.

Through these phases, it is important to preserve traceability information so
that results can be expressed in the original notation.

3 From UML to formal methods

Model-Driven Engineering (MDE) development methods are gaining increasing
attention from industry. In MDE, the model is the primary artifact and serves
several goals among which code generation, requirements traceability, and model-
based testing. MDE thus enables cost-effective building of models vs. direct
coding of an application. In this context, model-based formal verification of
behavioral consistency is desirable as it helps improve model quality.

In this section we present a translation based approach using (parts of)
UML [28] as source and Instantiable Petri Nets (IPN) as target, to enable formal
verification. IPN is a hierarchical formalism defined expressly for this purpose;
it is not meant to be used as a front-end modeling language but rather as a pow-
erful back-end verification formalism. The semantics and concepts are thus kept
simple, they are described in detail in [30]. We show that IPN are adequate to
support the introduction of model checking in an MDE process. The approach is
implemented in a prototype tool called BCC: Behavioral Consistency Checker.

3.1 Verification of UML

UML is a standard defined using a meta-modeling approach to establish the con-
cepts of the various diagrams, and plain English to describe dynamic aspects of
the specification. UML2 has introduced an important refactoring of the descrip-
tion of actions and behaviors, which allows to describe the behavioral diagrams
(activity, state machine and interaction diagrams) using a common base. The
semantics of a UML2 model is thus more precise than in UML 1.x. But so-called
semantic variation points are deliberately left in the standard, to help UML fit
all possible application fields of software engineering. The semantics of UML
thus remains imprecise and subject to interpretation.



The idea of providing formal semantics to (at least parts) of the UML by
translation to a more formal description is widely used [4]; it allows to use the
UML as a (relatively) user friendly graphical environment and exploit the exist-
ing formal verification techniques and tools without redeveloping them specifi-
cally for the UML. It also is compatible with the ideas of Model-Driven Engi-
neering (MDE) in which the model is the central artifact, and translations from
the model to other artifacts (code, tests. . . ) with specific goals in mind is the
norm.

One of the challenges when defining such a translation is to handle the com-
position of parts of a behavior, defined using different types of diagrams. This
touches on the problem of consistency among UML diagrams of a given sys-
tem: although structural consistency rules are defined (using OCL) and can be
checked mostly syntactically, the multiple viewpoints offered by the UML induce
the possibility of defining incompatible behaviors quite easily.

Given the wealth of work on translation of UML models for analysis purposes,
we focus here on a few propositions which are the most similar to this work,
particularly those targeting dialects of Petri nets in the translation.

Merseguer et al. have done an important work ([6] gives an overview) on
translation of the UML to labeled generalized stochastic Petri nets (LGSPN) for
performance analysis purposes. Tool support is provided through the ArgoSPE
tool set and the model checker GreatSPN. This work is perhaps the closest to
ours because the semantics used to compose the LGSPN is based on synchroniza-
tions, like in our IPN. However, that work is centered on performance evaluation
rather than consistency checking. Moreover LGSPN do not allow hierarchical
compositions.

The work of Eshuis et. al [17] also gives a formal semantics to activity di-
agrams through translation to workflow nets, and more recently to NuSMV.
However they concentrate mainly on a subset of activity diagrams compatible
with UML 1.5, and do not handle hierarchy of the description.

Shatz et al. have also done a large body of work [21, 31] on formalization of
UML semantics, mostly centered on state charts, that uses Petri nets as transla-
tion target. The focus of that work is in correctly capturing the full run to com-
pletion semantics of UML state machines. It thus does not address the problem
of inter diagram consistency checking.

Engels et al. [16] have elaborated a formalization framework based on CSP as
semantic domain. This work is mainly focused on protocol state charts of UML
1.4. It does not handle hierarchy as to enable scalability in the specification.

Overall the main originality of this work is in the composition mechanisms
used and the fact we natively support hierarchy instead of requiring a flatten-
ing of the representation, which leads to scalability issues. We also present an
implementation in section 4.



3.2 Instantiable Petri Nets

In this work we have used Instantiable Petri Nets (IPN) as a target in the
transformation. This formalism is presented in detail in [30], we give an informal
presentation here sufficient to explain the subsequent transformation.

IPN explicitly support the concepts of type and instance that allow to ade-
quately match the structure of high-level models designed with UML. They also
allow to reuse parts of a model in various scenarios, and offer good scale up
properties to handle large and complex specifications. Finally, since instances of
a type share a common definition, they allow to capture internal regularity or
symmetries of a system, which can be exploited for model checking.

IPN explicitly support a compositional definition based on the notion of
synchronizations. A wide corpus of theoretical [18] and empirical [8] results
(introduced by process algebra such as CSP [26], up to applicability to proba-
bilistic systems [15]) show that this mode of composition is favorable to better
compositional verification algorithms.

Their definition is split in two parts.

First, we define Elementary Petri Nets, which are essentially standard Petri
nets in which transitions bear a visibility that may be private or public. A public
transition is part of the interface of the net; it can only be fired if it is sollicited
through an external synchronization. Transitions private to a net can be fired
according to usual Petri net semantics.

We then define a Composite type, to hold instances of elementary nets, or,
recursively, instances of a composite type. A Composite may contain synchro-
nizations, again labeled with a visibility. A synchronization forces synchronous
firing of its parts, that is transitions belonging to the interface of the contained
instances.

This hierarchical formalism uses a semantic largely inspired by process calculi
such as CSP. It also borrows from component based formalisms (such as Corba
component model (CCM), or Fractal) the notions of components defined as
hierarchical composition of simpler bricks.

Examples of IPN will be provided in the next sections, a formal definition of
IPN can be found in [30].

3.3 How to translate

The issues relating to transformation of UML to a formal notation are explained
here through an example.

We use in this paper UML activity diagrams. A similar approach can be
applied to other UML diagrams that represent a Behavior. The essential char-
acteristic of a behavior is that it begins with an occurrence of a start event
and ends with a termination event occurrence (UML Superstructure, section 13,
p.419 [28]).

The transformation is based on a set of patterns of transformation. The prin-
ciple consists in building one IPN type per diagram of the UML specification.



These types will then be instantiated and assembled according to various veri-
fication scenarios. Hence for each activity diagram we build an elementary IPN
type.

We first apply the translation rules for the various types of nodes of the UML
activity diagram, using the patterns described in figure 3.

a

o.send

recv

call(a)

arc

initial

final

action

sendEvent

recvEvent

callBehavior

in : N/A
out : a

in : a
out : N/A

in : a
out : a

in : a
out : b

in : a
out : b

in : a
out : c

t

t

t

t

t t’

a

a

a

a b

a b

a b c

place
private
transition

public
transition

IPN
graphical
notation

UML name UML graphics IPN pattern Connections

Fig. 3. Translation rules for nodes of UML2 activity diagrams. Patterns are expressed
here in a simplified form: each generated public transition is also associated to sufficient
information to enable appropriate connections in the linking phase (see section 3.4).

Places: Each node gives rise to one or more places and zero or more public
transitions. The most complex case is the callBehavior pattern where the place
b represents a state where we are waiting for the called behavior to complete. We
keep track during the application of this transformation of the in and out places
generated for each UML object. After this first pass all places of the resulting
IPN have been produced; each control flow has a source (the “out” place of the
source activity) or a destination (the “in” place of the target activity) or both.
An additional case not represented on this figure (but used in the example see
fig. 6) arises for control flows that link two control nodes (e.g. merge to fork):
we produce an additional place for these edges that acts as both as source and
destination in the translation.

Interface: The public transitions produced are meant to be synchronized
with other diagrams: the transition labeled t of the initial pattern is meant to
be synchronized with the transition t of the callBehavior pattern. Similarly, the
transition t of the final pattern is meant to be synchronized with the transition



t′ of the callBehavior pattern. Transition t of the sendEvent pattern is meant to
be synchronized with the appropriate corresponding transition t of the recvEvent

pattern of the receiving object.
States: We additionally define two labeled states for each diagram, active

which assigns one token to the place corresponding to the UML initial node, and
passive (the default) in which all places are initially empty.

Transitions: We then translate the control flows and control nodes of the
UML activity diagram, using the patterns described in figure 4. In these patterns,
the activities noted a, b and c are just placeholders for the actual nodes that
the edges connect to: the translation pattern is centered on a control node, and
queries the control flows that link to it to obtain the appropriate source or target
place that was defined in the first translation step.

a b
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c
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a

b

c

a

c

b

Control Flow
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Join

Decision

a

b
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t’

a.out

b.in

c.in

t

t’

t

UML name UML graphics IPN pattern

Fig. 4. Translation rules for edges of UML2 activity diagrams.

These patterns are mostly straightforward Petri net interpretations of UML
semantics, so we hope a reader familiar with both UML and Petri nets will
understand these translation patterns without further ado.

All the transitions produced in this phase have private visibility: interaction
with other diagrams happens within nodes in activity diagrams. This is to be
contrasted with the reactive semantics of UML state-machines, in which edges
are the main point of interaction with other diagrams.

Application to an example Figure 5 presents a small example that describes
an order and shipping process. It contains many of the UML features our trans-
lation supports. The action HandlePayment of the “Order” activity is a Call-

Behavior action that refers to the behavior described by the “HandlePayment”



activity. The translation yields one elementary net for each activity, graphically
depicted in figure 6. Names and graphical layout have been added to the figure
to help the reader track the transformation.

ReceiveOrder

FillOrder

Ship Order

HandlePayment

CloseOrder
[order

accepted]

[order rejected]

act Order 

Send Invoice Make Payment Accept Payment

act HandlePayment

Fig. 5. An example adapted from the UML standard, p.357.
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Fig. 6. IPN elementary net types obtained by application of the translation rules.

3.4 Composing Diagrams

The first translation step has allowed to build an IPN type for each diagram of
the original specification. Additionally we have built a trace that gives for each
UML behavior of the original specification the name of the IPN type produced
and the set of links to other behaviors that need to be resolved.

Inter-diagram links: The information contained in a link depends on its
nature :



– For send event type links, we have the target UML object instance and the
name of the transition that sends this event (i.e. noted t in Fig.3).

– For receive event type links, we have the event and the name of the reception
transition (i.e. noted t in Fig.3)

– For CallBehavior actions, we have the target UML Behavior and the name
of the transitions corresponding to the call and behavior end (i.e. t and t′ in
Fig.3)

– Finally for CallOperation actions, we have the target operation name and
the target UML object instance as well as the names of the call/return
transitions of the IPN.

We then incrementally build more complex scenarios by using different link-
ing strategies.

Diagrams in isolation: The most basic strategy consists in building “iso-
lated” behaviors from each behavior (see Fig.7 top). For a net type n representing
a behavior b, we build isolated(b)as a composite type containing a single instance
i of type n, two public transitions call and end that synchronize to i.call and
i.end respectively, and one private transition synchronizing to each transition of i

mentioned in the links. The public link transitions corresponding to interactions
with the environment are made private in the isolated type, thus enabled at will
provided local conditions allow it.The states active and passive are also defined,
as associating the corresponding state to i. The isolated construction thus allows
to control the consistency of a diagram in an uncontrolled environment setting.

call

end

i:Ordercall

end

callPay

endPay

Isolated(Order)

call

end

i:Ordercall

end

callPay

endPay

Connected(Order,1)

p:Isolated(Payment)call

end

synchronization

parts
instance

private
synchronization

public
synchronization

i:Order

Fig. 7. Composite IPN types produced to analyze composed behaviors

Composing diagrams: Inductively, we can then build types connected(b, k)
(see Fig.7 bottom) corresponding to connections resolved up to depth k, where
isolated(b) is equivalent to connected(b, 0). The type connected(b, k+1) contains
one instance i of type n (representing b) and for each behavior b′ mentioned as



a link target, an instance of the connected(b′, k) net type. The call and end

transitions are again exported with public visibility, and the links are actually
resolved by synchronizing the link transitions of n with the call and receive of
the depth k behavior instances.

UML behaviors can be associated to classifiers or operations. The main use
case we have considered is a model where operations may be defined by activity
diagrams. Class diagrams are exploited in the following way: when operations
of the class are associated with activity diagrams, we construct an IPN type
that contains instances of the IPN types corresponding to the activities and
“export” the public transitions of the nested activity diagrams. In particular the
transitions that allow to start (initial node pattern) and detect the end (final
node pattern) of an operation are made visible to connect to CallBehavior of
other objects.

When the class contains objects by composition, the corresponding IPN types
are instantiated. This gives us a context necessary to determine the target of a
CallBehavior or SendEvent action.

3.5 Defining Consistency Checks

One of the main issues when defining properties to verify is that the user (at
the UML level) should not explicitly manipulate the formalisms used to specify
properties, typically LTL or CTL formulae. This limits the scope of what we can
verify, but as we show here, many useful checks can already be defined without
user intervention.

Verifying Properties A model-independent property can be defined regardless
of the model instance considered. Typical examples include absence of deadlocks
or livelocks, boundedness. . . These are the easiest to handle as they naturally do
not require user input.

We first run a structural bounds computation tool (based on [27]), that pro-
duces for each place its structural min/max bounds. This tool scales very well as
the check is structural so the complexity is linked to the number of places and
transitions of the specification, and not to the state space size. This tool allows
to detect:

– dead code: [0..0] bounded places indicate unreachable model elements. The
interpretation here is that the model element associated to the place is ei-
ther unreachable (logical design error) or disconnected from the rest of the
diagram (modeling bug). In practice, the second interpretation is often cor-
rect, as a common error, due to the GUI of UML modeling tools, is to delete
elements from a diagram but not from the model;

– unbounded behavior: if a place marking is bounded by +∞ this usually
indicates a serious misuse of fork/join constructs. This error was actually
raised several times in the models provided by industrial partners of Mod-
elPlex. Neither testing, nor simulation tasks which were working with the
same models correctly identified this issue. Simulation actually detected a



choke point during performance evaluation and suggested attributing more
resources to this faulty activity. Testing would need an infinite test sequence
to correctly tag this problem.

When the previous check does not detect unbounded behavior, we can pro-
ceed to use model checking based tools for more advanced checks. At this stage
we check for absence of deadlocks in the specification. Existence of deadlocks is
tagged as an error.

We also check for activity diagrams that their final state is reachable when
the initial state is set to “active” (see section 3.3). This is tagged as an error if
it is not verified.

The list of verification goals is extensible as we think of new checks interesting
for the end-user.

3.6 Conclusions on the Transformation

We thus support the BasicActivities, IntermediateActivities and StructuredAc-
tivities packages of the standard, which means our tool handles UML compliance
level 2 (see UML2 superstructure [28] for definition of compliance levels).

The weakness of this translation is in the non-determinism of decision nodes,
and the absence of any data manipulation. While this may seem a severe re-
striction, in practice the diagrams we studied (within ModelPlex) were mostly
annotated in plain text. They correspond to early phases of design where the
logic of the control flow is the focus. Other diagrams we studied were obtained
by translation from BPEL, a language for describing the workflow of a business
process, where again data manipulation is not the focus. In any case, supporting
code level annotations requires extending the standard with a tool specific profile,
as the UML standard does not define any data types other than String, Boolean
and UnlimitedNatural, or any concrete syntax for actions (e.g. arithmetic).

To overcome this weakness, the transformation could be refined to take into
account data, possibly using a CEGAR like approach [9] to limit the induced
complexity. This is a perspective at this stage.

The strength of the approach is that it preserves the modularity of the UML
specification. Thanks to the concepts of IPN, a UML translation is quite easy to
set up, and only one IPN type is produced per UML diagram. When considering
several scenarios and a system composed of interacting objects, the fundamental
notion of instantiation from object-orientation which is preserved in IPN allows
to adequately reuse a model defined in parts. The semantics of IPN are sufficient
to capture the concepts of UML behavioral diagrams (sequence, alternative, fork
join and parallel behavior, synchronization on events, multiple instantiation. . . ).

Backward correspondence between generated IPN and the original specifica-
tion is easy to trace since the transformation preserves the structure of UML
model. Thanks to this, namespaces are preserved and propagated to IPN objects,
thus allowing to trace each transition or place to the corresponding UML model
element. THus, when errors are detected in the IPN, it is possible to reconstruct
and display a trace in the original UML notation (see figure fig:cs:sap in section 4
where the problems reported refer directly to the UML specification).



4 Behavioral Consistency Checker

We have implemented the approach described in section 3 as a proof of concept
in the BCC (Behavioral Consistency Checker) tool.

BCC is designed on top of Eclipse to transparently use formal model checking
to provide behavioral consistency checks on UML specifications. Requirements
on the tool include that it should need minimal user training, and that the
underlying verification technology has to be transparent. To reach these aims,
BCC uses UML diagrams as input, and produces easily understandable compiler-
style errors and warnings when consistency rules are violated.

This tool was developed as a contribution to the European integrated project
ModelPlex2 (21 industrial and academic partners, 20 MAC, 36 months). Within
the project, models produced by industrial use case providers are used for sev-
eral other goals than just verification, such as code generation, requirements
traceability and test generation. Thus the investment in the modeling effort is
amortized, and any check we can implement that improves the quality of the
models is valuable, as the approach is model-centric, and model quality is a goal
in itself in this setting. BCC will be integrated in a “model-based simulation,
verification and testing (SVT) workbench” that is one of the project deliverables.

The tool is implemented in Java using the EMF framework to parse standard
XMI UML models. The transformation is written entirely in Java, rather than
using a model transformation engine such as ATL: we had non trivial traceabil-
ity issues otherwise. Model-checking tools (written in C or C++) are run trans-
parently on the CPN-AMI model-checking platform [20]. Post-interpretation of
verification results is again written in Java, using the transformation traces in-
tensively.

A prototype of the tool is available at http://move.lip6.fr/software/

BCC/ and uses services of our CPN-AMI Petri net Framework as a back-end to
compute some properties. It currently handles activity diagrams and a subset of
state-machine diagrams. It will be completed by the end of ModelPlex (March
2010). We are working on improved class and component diagram handling.
Component diagrams allow to have a specific connection topology as the parts

are class instances. We also work on a sequence diagram translation to IPN.
It will allow to control that the sequences describing an expected behavior are
indeed executable. Thus it is a means for the user of specifying model-specific
properties to check.

Case Study BCC was used on the case study models from industrial partners
in the project. We briefly present here some verification results obtained using
BCC.

BCC can be run directly on a XMI UML file, but it is integrated as an
Eclipse plugin relying on the EMF/GMF validation service and Eclipse UML2
tools. The user simply sets the scope by selecting one or more UML packages
(folders) to be analyzed, and selects the ”Validate” action. The model is explored

2 http://www.modelplex.org



to detect diagrams to be checked, then transformations Preconfigured properties
are selected by the designer and then it really works as a push-button tool that
can be operated without any knowledge of the underlying techniques.

One study provides a good illustration about the use of such tools. The SAP
case study where a small portion is represented in figure 8. This model specifies
the activity diagram of a web store system. When payment is to be done, the
system must both check credit card and stock. If one condition fails, then it
restart the payment procedure (back to ask client state).

ask client

check credit

check stock

validate 

transaction

[OK]

[OK]

[else]

[else]

Fig. 8. Portion of the web store system specification.

BCC automatically performs all implemented checks and shows that the
specification contained structurally unbounded parts, meaning that, whatever
the number of resources provided to execute check stock and check credit, these
transition will still constitute a bottleneck.

Fig. 9. Window showing bad results for the web store system.



Figure 9 show the BCC user interface in Eclipse. The tool is invoked through
the contextual menu “validate model” in the model subwindow. Then, the de-
tected problems are reported in the standard “problem view” (below the main
window) which usually contains compilation errors. Messages refer to UML ob-
jects, double clicking on an error outline the problematic model element in the
model browser window.

In parallel with BCC, model-based simulations and test generation for the
same system have been performed. Performance oriented simulation detected
potential bottlenecks in both check stock and check credit procedures. However,
no explanation of this phenomena was provided. Testing may not be able to
capture this bad property of the system, as the bad behavior is exhibited only
in infinite traces. Thus model-based verification is a good complement to other
model-based validation techniques.

Such model-independent properties (no dead code or boundedness) are of
interest to compute on any type of specification. Therefore, a tool like BCC is
valuable to help engineers to improve systems early in the software life cycle (in
our case, at design level), which is typically a goal of VDE.

5 Conclusion

This paper proposes an approach to extend MDE (Model Driven Engineering) to
VDE (Verification Driven Engineering). VDE is MDE together with an intensive
use of formal verification techniques to compute properties directly from models,
as soon as possible in the software life cycle.

We exemplify this by providing a way to verify automatically some basic
properties on UML model without any intervention from an engineer. This ex-
ample has been implemented in a tool BCC (Behavioral Consistency Checker) ;
its experimentation in a project shows that it produces interesting information
to engineers to debug their models.

A main point of this paper is the presentation of an original translation
mechanism based on Instantiable Petri Nets (ITS), as a basis to express concepts
of a higher level modeling language (such as UML). ITS offers a hierarchical way
to assemble subsystems or elementary Petri Net components by means of a well-
suited set of synchronization mechanisms. ITS also enable efficient verification
techniques suitable to tackle large specifications.

So, ITS appear to be an pivot language suitable to:

– Define an operational semantics for a high-level modeling language (here, it
was experimented for UML collaboration diagrams and state charts),

– Use this semantics to perform formal verification on the system by means of
appropriate techniques such as structural analysis or model checking.

This paper also provides a step-by-step method to elaborate a verification
schema based on transformation techniques and patterns associated to the con-
cepts provided in a high-level modeling language. One could use this method, to
implement VDE for other languages as soon as its behavioral semantics can be
captured by means of appropriate patterns.
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