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Abstract—Intrusion detection systems (IDS) are one way to
tackle the increasing number of attacks that exploit software
vulnerabilities. However, the construction of such a security
system is a delicate process involving: (i) the acquisition of
the monitored program behavior and its storage in a compact
way, (ii) the generation of a monitor detecting deviances in the
program behavior. These problems are emphasized when dealing
with complex or parallel programs.

This paper presents a new approach to automatically generate
a dedicated and customized IDS from C sources targeting
multi-threaded programs. We use Petri Nets to benefit from a
formal description able to compactly describe parallel behaviors.
Obtained models can then be enhanced with extra requirements
such as resources usage limits or temporal execution bounds by
means of observers. We illustrate the benefits of our approach on
a recent class of attacks targeting web servers.

I. INTRODUCTION

Context: As the size and complexity of software con-
stantly grow, testing and verifying the correctness of a sys-
tem become more and more difficult. Monitoring the system
execution can be considered as a complementary approach to
traditional ones. It also increases confidence in the correctness
of the system at runtime [1].

Some security software use monitoring to protect systems
from intruders. More precisely, a family of intrusion detection
systems (anomaly-based) uses a program reference behavior
model and, at runtime, compares it to the observed system
execution traces. If a deviation from the reference behavior
is observed (e.g. an unexpected trace or event), an alarm is
triggered. A countermeasure may then be taken. Obviously,
the precision of monitoring strongly relies on the quality and
the precision of the reference behavior model.

However it appears that statically-computed reference be-
havior models are no more sufficient to handle new kinds
of attacks [2]. Current attacks use either a combination of
legal actions in order to reach an abnormal state [3] or mimic
legal behavior and use a malicious data-flow to achieve an
intrusion or to cause damages [4]. Static models are not
relevant anymore in such cases because all actions are legal.
Static analysis has to be enriched by a dynamic analysis that
focuses on data, execution times or context variations and that
can trigger appropriate alarms.

Building the reference behavior model of a given program
is a challenging problem and several approaches have been
considered during the past years:

• some approaches rely on learning techniques. In this case
the reference behavior model is built according to the
observation of execution traces [5],

• other approaches build the reference behavior model
directly from the program [6] either manually (by a
human expert) or thanks to static analysis of source [7]
or binary [3] code.
Problems: Once the model is built, both approaches store

the reference behavior model into a monitor which is dedicated
to the analysis of the program execution. Current solutions
suffer two main drawbacks presented below.

First, the reference behavior model size for complex systems
is a huge problem since a lot of information has to be stored
and processed at runtime. This is particularly true for parallel
or multi-threaded programs, when all possible executions must
be recorded and modeled. Moreover, considering the previous
remark about new kinds of attacks, reducing the precision of
the model may not be a good solution.

Second, the complexity of the reference behavior model is
problematic for the monitoring efficiency. In fact, the more
precise the model is, the more parameters have to be checked
at runtime. Precise models generally lead to a high overhead at
runtime. Thus, a compromise between the ability to discover
fine attacks, the size of the model and the monitoring efficiency
must be found.

Contributions: Considering these critical points, we pro-
pose an automatic way to generate host-based IDS [8] from
program sources. The main characteristics of our approach are:

1) we use Petri nets, a formal notation, to describe the
reference behavior model associated with a program. We
show that multi-threaded programs with very large state-
space can be monitored with a limited overhead, by a
small and compact monitor, without any loss of precision
or accuracy.

2) we propose to enrich the reference behavior model by
additional security constraints in order to deal with
complex and new attacks. We also show that Petri nets
are well adapted to this kind of modular construction.

Since the entire process is automatic, a new monitor can be
generated each time the program is patched or updated. The
specification of new security constraints is also costless thanks
to the definition of observers. Consequently, our method is
much more resilient to 0-day attacks (i.e. exploitation of
undiscovered or unpatched application vulnerabilities [9]).



Finally, our approach includes a flexible and customizable
process that allows designers of security solutions to tune
the construction process in order to build a dedicated set of
monitors.

Contents: To get a consistent vision of the IDS generation
process, section II recalls how we extract relevant informations
from program sources to automatically build a behavioral
reference model as already presented in [10]. Then, section III
presents the automatic code generation of a dedicated IDS
from the behavioral reference model. Section IV introduces
how extra requirements that can be added to the reference
models. Finally, section V illustrates the benefits of our ap-
proach thanks to several experiments including a recent (June
2009) denial of service (DoS) attack on a HTTP server.

II. BUILDING THE REFERENCE BEHAVIOR MODEL

Our approach consists in building a reference behavior
model based on a formal notation that describes all acceptable
program behaviors. This model is used, at runtime by a
monitor, to verify the correctness of the program execution.
In fact, all monitored events (e.g. function calls, i/o, memory
allocations) are intercepted, compared and matched to this
model. Events that are not expected by the model will trigger
an alarm.

A. IDS Factory: the Overall Process

This section recalls our construction process of an IDS.
This automatic construction tackles the drawbacks identified
in the introduction by: (i) a modular static analysis of the
program source code, (ii) a Petri net-based representation of
the reference behavior and (iii) the possibility to enrich the
produced model with observers introducing a more accurate
control on the monitored program execution.

Figure 1 sketches these three steps in our building process.
First, we process C source code (Section II-B) to produce
the corresponding Petri net model (Section II-C). Then, the
Petri net model is embedded into the IDS to be used as
a reference behavior during the execution of the monitored
program (Section III).
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Fig. 1. A three-steps, perspective-driven construction flow

Perspectives are used to select and process the relevant
information for monitoring and thus to build appropriate
representations of program behavior. Perspectives are sets of

parameters used to control and to tune information extraction,
Petri nets production as well as IDS generation. This notion
is not detailed in this paper since it was presented in [10].

In this paper, we use the structural perspective (in charge of
control-flow aspects of the program), the network perspective
(dedicated to network primitives), the pthread perspective
(dedicated to thread management by the POSIX library) and
finally the system call perspective for handling all other system
calls.

B. Extracting relevant information

We use the extended Control Flow Graph (eCFG) produced
by the C front-end of GCC as a basis for our static analysis.
GCC is of interest since it is commonly used when compiling
applications. Moreover it offers interfaces to be extended
and used in other applications. Thus, our IDS generator is
directly connected to GCC and the overall construction process
is performed after the compilation of the application to be
monitored.

Let us remind that a control flow graph is a directed graph
representing the behavior of an individual process in a discrete
event model. Each node in the eCFG represents some possible
states of the process. Each action that a process may take from
a given state is represented by an edge relating to potential
successor states.

The eCFG dumped by GCC defines instructions blocks and
their relationships. All control structures such as for, while,
continue, break are processed in terms of block sequences
in the eCFG, thus reducing the number of structures to be
considered by our factory.

Listing 1 shows a snippet of the nullHTTPd server [11]
source code. This portion of code (i) checks if the server
can deal with one more client (line 3 to 9), (ii) handles new
incoming client (line 14) and (iii) delegates a new thread for
each request (line 18).

1 for (;;) {
2 /* -- check for a free thread -- */
3 for (i=0;;i++) {
4 /* -- if no thread is available... wait and retry -- */
5 if (i>=config.server_maxconn) {
6 sleep(1); i=0; continue;
7 }
8 if (conn[i].socket==0) break;
9 }

10 if (conn[i].PostData!=NULL) free(conn[i].PostData);
11 if (conn[i].dat!=NULL) free(conn[i].dat);
12 memset((char *)&conn[i], 0, sizeof(conn[i]));
13 fromlen=sizeof(conn[i].ClientAddr);
14 conn[i].socket=accept(ListenSocket , [...]);
15 if (conn[i].socket <0) continue;
16 /* -- delegate a new thread for this request -- */
17 conn[i].id=1;
18 if (pthread_create(&conn[i].handle , [...])==-1) {
19 logerror("htloop() failed...");
20 exit(0);
21 }
22 }

Listing 1. NullHTTPD server source code snippet

Listing 2, shows the eCFG extracted by GCC from the
previous snippet. Several blocks are declared. Inside of these
blocks, some part of initial code can be recognized. For
example, block 6 (line 1) refers to the initialization of the



first loop (line 3 in Listing 1), block 16 (line 23) corresponds
to the lines 14 and 15 while block 17 (line 36) refers to the
body of the last if structure at line 18 in Listing 1.
1 # BLOCK 6, starting at line 571
2 # PRED: 4 (false) 18 (fallthru)
3 [server.c : 571] iD.5737 = 0;
4 # SUCC: 7 (fallthru)
5

6 # BLOCK 7, starting at line 572
7 # PRED: 6 (fallthru) 10 (fallthru)
8 [server.c : 572] D.5745 = config.server_maxconn;
9 [server.c : 572] D.5746 = (int) D.5745;

10 [server.c : 572] if (D.5746 <= iD.5737)
11 goto <bb 8>;
12 else
13 goto <bb 9>;
14 # SUCC: 8 (true) 9 (false)
15

16 # BLOCK 8, starting at line 573
17 # PRED: 7 (true)
18 [server.c : 573] sleep (1);
19 [server.c : 574] iD.5737 = 0;
20 [server.c : 575] goto <bb 10>;
21 # SUCC: 10 (fallthru)
22 [...]
23 # BLOCK 16, starting at line 595
24 # PRED: 15 (false)
25 [server.c : 595] D.5748 = (long unsigned int) iD.5737;
26 [server.c : 596] D.5761 = (long int) iD.5737;
27 [server.c : 596] D.5762 = (void *) D.5761;
28 [...]
29 [server.c : 596] D.5765 = pthread_create (D.5764, [...]);
30 [server.c : 596] if ([server.c : 596] D.5765 == -1)
31 goto <bb 17>;
32 else
33 goto <bb 18>;
34 # SUCC: 17 (true) 18 (false)
35

36 # BLOCK 17, starting at line 597
37 # PRED: 16 (true)
38 [server.c : 597] logerror (&"htloop() failed..."[0]);
39 [server.c : 598] exit (0);
40 # SUCC:
41

42 # BLOCK 18
43 # PRED: 15 (true) 16 (false)
44 [server.c : 601] goto <bb 6>;
45 # SUCC: 6 (fallthru)

Listing 2. Part of the eCFG produced by GCC for the listing 1

In order to build the reference behavior model, our factory
extracts, from this eCFG, information which is relevant for the
monitoring. The control information is processed before all
system and library calls. Each extracted element is associated
with a small piece of Petri nets according to building rules
that are defined by perspectives.

C. Building the Reference Behavior Model

Introduction to Petri nets: Petri nets [12] are a graphical
formal modeling language where places represent resources
or states, and transitions describe relations between places.
Places hold tokens potentially carrying data that are consumed
or produced by transitions according to a firing rule. Tokens
are carried out from places to transitions and then from
transitions to places by means of arcs. The firing rule is the
following: when input places of a transition hold a sufficient
number of tokens having the appropriate values, the transition
can be fired. If it happens, such tokens are removed from input
places and new tokens are produced in output places. Due to
lack of space, we do not provide a formal definition of Petri
nets which can be found, for example, in [12] or [13].

We however introduce the following notations that are used
later in the paper. P is the finite set of places and T is the finite
set of transitions (P∩T = /0). C is a color function which is a
mapping from P∪T to Σ, a set of finite and non empty sets;
W− and W+ are the forward and backward incidence matrices
that associate with each pair (p, t) of P×T a mapping from
C(t) to Bag(C(p)). φ is a guard function that associates with
each t ∈ T a mapping from C(t) to B (the set of booleans).
Finally, we associate a label λ with each transition. λ(t) = ε

means that the transition t can be fired at anytime (once its
preconditions are satisfied). Other labels λ(t) = e indicate that
t can be fired only if the event e has been caught by the IDS
(see Algorithm 1).

The set of inputs (resp. outputs) of a place p ∈ P is the set
•p (resp. p•) defined by: •p = {t ∈ T | W−(p, t) 6= 0} (resp.
p• = {t ∈ T | W+(p, t) 6= 0}). The same sets can be defined
for transitions. We note m(p) ∈ Bag(C(p)) the marking of a
place p that indicates the number and the quality of the tokens
inside this place.

Petri nets are suitable for the description of concurrent
behaviors [13] and can be seen as a compact way to represent
all the possible executions of the corresponding model (i.e.
the state space). This characteristic is crucial since safety-
critical programs are often complex, multi-processed or multi-
threaded. Their state spaces are generally huge due to the
interleaving of elementary actions. This interleaving is not
represented in the Petri net itself since it models the structure
of the program (its dynamics is represented by tokens). Petri
nets can be seen as a state space generator and thus, as a
compact representation of state spaces. Section V-B shows
some convincing data for a small multi-threaded program.

So, since state spaces are hard to handle with the classical
representation techniques of IDS such as automata or regular
expressions, we use Petri nets to describe legal behaviors of
programs we want to monitor.

For composition purposes we use colored and hierarchical
Petri nets [12] where submodels can be attached to places of a
standard Petri net (see Figure 3). Hence, a model is composed
of one or more submodels connected by means of input/ouput
places. A virtual place can also refer to another one to make
links between submodels.

In our approach, Petri nets are used to represent legal
program behaviors. Places stand for legal behavior states,
reachable at runtime. Transitions are used as event barriers,
fireable only if the expected events are received. And tokens
carry thread, process or resource identifiers.

Building the structural model: Information about the
program structure is always processed first. Thanks to con-
struction rules defined by the structural perspective, each
control element is extracted from the eCFG and is transformed
into a piece of Petri net. More precisely, blocks (BLOCK)
are transformed into places and links between blocks (SUCC,
PRED) are transformed into transitions. Static function calls are
also resolved and dedicated transitions are used to link them
together. Special patterns are used [10] to deal with recursive
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Fig. 2. Structural model built from Listing 2 processing

calls and to avoid the “impossible path problem” [7].
Figure 2 shows the structural model associated with the

eCFG presented in Listing 2. Dotted arcs represent links to
the rest of the structural model. The main loop (lines 1) is
modeled in area A, while the small one (line 3) is in the area
B. An external function call (logerror) is made in block
16. Two virtual places (logerror entry and logerror exit) are
used to connect this function to the logerror Petri net. Name
of places (resp. transitions) is built according to this rule
P{block number} (resp. s{block from} {block to}).

Enriching the model: Information to be checked during
the program execution (i.e. declarations, system calls, library
calls, etc.) is processed according to the remaining selected
perspectives. Thanks to the same pattern mechanism, these
perspectives lead to the construction of sub-Petri nets con-
nected to the structural model.

As shown by Figure 3, sub-models are carrying more
details about the block contents. In this example, we describe
the blocks 15 and 16. The first one contains an accept
system call modeled by a labeled transition. At runtime this
transition is fireable only if an accept event is caught from the
observed program. The second detailed block (16) contains
the instruction creating a new thread: pthread_create. This
behavior is modeled by a transition that produces two tokens:
one for the parent’s execution state and one for the child’s
one. A virtual place (htloop entry) is also used to indicate that
the life of the child begins in htloop function.

Once all selected perspectives have been processed, the
model for nullHTTPd is composed of 597 sub-models, 2835
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Fig. 3. Sub-models produced by the syscall perspective for blocks 15 & 16

places, 1737 transitions and 4809 arcs.

Finalizing the model: This model can be flattened and
optimized in order to reduce its size and its complexity. First,
sub-models are merged with their place and targets of virtual
places are resolved. The complete algorithm is also presented
in [10]. Second, formal structural reductions are applied. They
preserve the Petri net behavioral properties [14] but reduce its
size. Our experiments show that those reductions can reduce
the size of the model from 40% up to 70% (see Table I). For
nullHTTPd, the finalized reference behavior model contains
485 places, 583 transitions and 1761 arcs.

III. AUTOMATIC GENERATION OF THE DEDICATED IDS

Once the behavior reference model is built. The associated
IDS must be produced. Our implementation choices are con-
sidered in this section.

A. Overall Architecture

The overall architecture of a generated IDS is described in
Figure 4. It consists in two parts. The dynamic one (the model)
is generated by our factory (Evinrude) according to both the
program and the set of symbols to be monitored. It is linked
to the static part (the Firing Algorithm) that is independent
from the monitored program.
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Fig. 4. Architecture of the generated IDS

Catching incoming events: The IDS is compiled as
a dynamic library (.so) loaded thanks to the LD_PRELOAD
environment variable prior to monitored program execution.
This library overloads desired symbol definitions and thus
allows to define actions to be performed before executing the
real calls. Listing 3 shows the kind of actions we perform
before allowing an accept system call to be processed.

1 /* backup the real system call */
2 _BIANCAaccept =
3 (int (*)(int, struct sockaddr*, socklen_t*))
4 dlsym (RTLD_NEXT , "accept");
5

6 /* override the system call */
7 int accept(int fd, struct sockaddr *a, socklen_t *alen) {
8 int ret;
9 /* ask the model whether the event is allowed or not */
10 fire(&global_table , ACCEPT , tid);
11 /* call the real system call */
12 ret = _BIANCAaccept(fd, a, alen);
13 /* return the result to the monitored program */
14 return ret;
15 }

Listing 3. How to overload the accept system call



The main advantages of this interposition technique are
flexibility and easy initialisation. Thus, we have been able to
develop a working prototype and to focus on the benefits of the
behavior reference model representation. But, from a security
point of view, this mechanism can be easily circumvented by
an attacker. Aware of that weak point, we have designed our
IDS in such a way that this catching layer can be replaced
without impacting the rest of the IDS. Future work will
consider more advanced mechanisms such as virtual-based
interposition or monitoring in a isolated memory space.

Validating events: Each time an event is caught (i.e.
observed) by the IDS, it must be validated against the reference
behavior model. This validation is performed thanks to the
fire function (see line 10 in Listing 3).

The behavior of this function is presented in Algorithm 1.
M is the set of current states of the model and e is the event
that has been caught from a process or thread identified by id.

Algorithm 1 The monitor firing algorithm
1: function FIRE(M,event, id)
2: S← false
3: for all m ∈M do
4: Pid ←{p ∈ P | id ∈ m(p)}
5: for all {t ∈ p• | p ∈ Pid} do
6: if (λ(t) 6= ε)∧ (λ(t) 6= event) then
7: M←M \{m} . discarded markings
8: continue;
9: end if

10: if m(p)≤W−(p, t)∧φ(t) then
11: m′(p)← m(p)−W−(p, t)+W+(p, t)
12: if λ(t) = ε then
13: M←M∪{m′}
14: else
15: m(p) = m′(p) . here, λ(t) = event
16: S← true
17: end if
18: else
19: M←M \{m}
20: end if
21: end for
22: end for
23: return S
24: end function

To check the validity of the event, the monitor tries to fire all
transitions (line 5) that are outputs of places (p•) containing
an id token. To be fireable, a transition must be labeled by
ε or by the event e that is being processed (line 6). The
marking of input places as well as the transition guard are
checked (line 10). If all conditions are satisfied a new marking
is computed (line 11). If the transition is labeled by ε, we add
the new state to M. This new state will be processed during
the next loop. If the transition is labeled by e, then the event
is valid (line 16) and the reached marking (m′) replace m (i.e.
the one we fired the transition from) in M. If the considered
transition labelled by e cannot be fired, the marking is removed

from M. If no transition labeled by e is fired during this
execution (i.e. S = false), the fire function will return false
and the execution will be stopped.

B. Implementing the algorithm

The proposed algorithm is optimized to reduce the moni-
toring overhead. Indeed, in case of parallel or multi-threaded
program, a global interpreter lock (GIL) is necessary since the
incidence matrix W is shared between all threads.

To release the GIL, we divide the Petri net into several
asynchronous sub-Petri nets, each one being executed by a
different process or thread. The partitioning is performed by
reordering the incidence matrix columns in order to extract
autonomous sub-Petri nets (i.e. that minimize interactions).
This partition corresponds to independent synchronized state-
machines. Thus, only the remaining synchronizations have
to be protected by a mutex mechanism which reduces the
overhead as shown in Figure 8. Parallel code is generated for
each sub-Petri nets. It encodes the corresponding state machine
and performs a relation to caught events.

So, the dynamic part of the IDS consists in the generated
code corresponding to the Petri net. The static part imple-
ments the main algorithm checking for the validity of events
according to the dynamic part and updates the markings.

IV. ADDING REQUIREMENTS TO THE BEHAVIOR MODEL

Since static analysis of the source code produces an over-
approximation of the program behavior, produced models are
subject to false-negatives. Such false-negatives are typically
exploited by new kinds of attacks provoking illegal actions
using combinations of legal behavior [15].

A way to cope with this lack of precision is to provide
new constraints for the model. In this paper, we present two
kinds of constraint patterns expressed by means of Petri nets
components. This technique, originally introduced by [16] for
verification purpose, consists in adding extra pieces of models
that observe the existing model and enforce constraints or
formulas at runtime.

Let us introduce two kinds of observers: resource usage
observers, and temporal bounds observers.

Each observer requires observable points (i.e. where it is
connected to the model). These points are identified in the
source code and then located in the Petri net model thanks
to the links to the corresponding program source. Bounds of
these observers are set up by an engineer. They could also be
computed dynamically during the program execution.

A. Resource Bounds Observers

At runtime, programs usually deal with resources such as
files, sockets, semaphores, threads, processes, etc. An inade-
quate (but legal) use of those resources can lead to a crash of
the program or of the underlying system.

The resource-bounds observer observes and constrains the
number of resources that can be acquired and released during
the execution of the program. Based on a counter, it triggers
an alarm if the counter is lower than the minimum or greater
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than the maximum bound. It requires two observable points:
(i) where the resource is acquired and (ii) where it is released.
In both cases, there are potentially multiple locations.

The gray sub-Petri net, at the top of Figure 6, is an example
of an observer. It is attached to the main net (the black
part of the Figure 6) thanks to the observable points: acquire
and release transitions. When a “get” event is caught by the
monitor, it tries to fire the transition labelled by this event. The
number of current allocated resources 〈r〉 is fetched from place
counter. If this number is lower than the specified bound (max-
bound), the transition can be fired, a resource from the place
resources is consumed and the number of allocated resource
is increased (〈r++1〉). Otherwise, the transition acquire cannot
fire and the execution is stopped.

A similar check is performed when the “set” event is caught
by the monitor. In this case, the number (〈r〉) of current
allocated resources is compared to the min-bound before being
decreased (〈r–1〉). If the check fails, release cannot fire and
the execution is stopped.

More sophisticated resource-bounds observers can also be
defined. Since the process or thread identity is carried by
Petri net tokens, a maximum usage bound can be defined
per process or per thread. Hence, if a thread or a process
starts using resources in an incorrect way, it is possible to
stop without breaking the execution of the entire program.
The Section V presents a typical use of this kind of observer
in order to avoid a denial of service attack in a web server.

B. Temporal Bounds Observers

We define a temporal-bounds observer as a way to observe
and control the time needed by a program to go from one state
to another during its execution. Too much variations of this

...

acquire

acquire release
⟨r⟩

counter[r < max-bound]

3

[r > min-bound]

release

resources

⟨r⟩

⟨r--1⟩⟨r++1⟩

{get} {set}

Fig. 6. Sub-Petri net that limits the use of a resource between min and max

value is the typical signature of a system or program anomaly.
To avoid this situation, extra requirements such as timeout can
be defined and added to the reference behavior model.

Like the resource bounds observer, the temporal-bounds
observer is expressed by means of a Petri net submodels. Its
representation uses a time transition coming from the time
Petri nets [17]. This particular transition can be fired only
before max time units elapsed from the moment it is enabled
(i.e. all conditions are satisfied).

Consequently the time bounds observer uses one bound:
max . This limit represents the maximum time allowed to the
program to go from the first observable point (start transition)
to the second one (finish transition). The last observation points
(next transitions) are automatically computed since they follow
the finish transition.

An example of such an observer is presented in Figure 5(a).
Here, the time transition timer defines that max time units are
allowed, at runtime, to go from start to finish.

The behavior of the observer is depicted in Figure 5(b):
once start is fired (when a “begin” event is caught), the timer
is started. If the timer value overpasses max time units, the
observer is locked. Thus, when the “end” event is caught, the
timer is stopped. At this stage, the observer is either unlocked
(wait=true) or locked (wait=false). In the first case, next
events caught by the monitoring are allowed. In the second
case, the observer is blocked and thus stops the program.

V. EXPERIMENTATION

This section illustrates the benefits of our approach and the
efficiency of the produced IDS thanks to three benchmarks.

The first one concerns standard and sequential programs
(Section V-A). It shows that on simple and usual programs
the produced IDS do not suffer from an excessive runtime-
overhead and can be compared to existing monitoring solu-
tions.

The second benchmark is dedicated to the analysis of a
highly multi-threaded simple server (Section V-B). This pro-
gram has a huge state space and its monitoring is impossible
with classical approaches based on automata. We show that,
in addition to the monitoring of such an example, our IDS is
able to perform this validation without a prohibitive overhead.

The third benchmark demonstrates the usefulness of extra-
requirements. It deals with the detection of a recent denial of



Service on the nullHTTPd server (Section V-C).

A. IDS for Sequential Programs

We first assess our approach using a benchmark of well-
known programs such as gzip, cat, cp, openssh and the
python interpreter. These programs are either sequential or
use very few threads or processes.

Table I provides the size of the generated Petri nets for
these programs (i.e. the behavioral reference model embedded
into the monitor) and the percentage of nodes that have been
deleted during the finalization phase (see Section II). It also
shows the time needed to generate those models and the size
of the resulting IDS.

These results confirm that our IDS factory is able to
process real-life programs without any human intervention.
Any changes in the program can be propagated in a new
version of the IDS in a very limited time.

Figure 7 illustrates the monitoring overhead for cp, cat and
gzip induced by our IDS. It also reveals the composition of
this overhead. Tests are performed using a set of large inputs
and execution time is measured without any monitoring. Then,
the same inputs are processed on the monitored version. We
also measure the overhead with a slightly modified version
of the monitor: a pseudo-monitor (i.e. a monitor without the
firing rule implementation) to evaluate the part corresponding
to the “event catching” mechanism.
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Fig. 7. Monitoring overhead (with and without the firing rule algorithm) for
three sequential programs compared to the strace performances

These results are compared to the overhead observed when
the program is monitored with strace (from the family of
ptrace-based solutions) to catch events (in a situation similar
to the pseudo-monitoring). Basically, strace is a debugging
linux tool able to catch system calls and is commonly used in
host-based IDS implementation.

The event catching mechanism induces an execution over-
head below 2% and appears to be efficient compared to
the strace-based solutions. In fact, all symbols are stati-
cally loaded during the library initialization and only desired
system and library calls are caught at runtime. Moreover
the LD_PRELOAD does not require any kernel access or trap
mechanism in order to catch system calls.

The full monitor overhead remains around 10% depending
on the number of calls. This is always lower than the strace
based event catching mechanism alone. These performances
are thus better than most of the ones produced in the current
state of the art (let us cite a well accepted solution in [18] that
is about 20% overhead).

B. IDS for Multithreaded Programs

Let us now evaluate the benefits of our approach on a mas-
sively multi-threaded program and, in particular, the evolution
of the overhead when parallelism increases. For that purpose
we use a small program to be monitored: the echo server. This
program has been fetched and adapted (to be able to scale up)
from a public database of C programs. It is implemented as
a main thread waiting for queries. For each query, the main
thread delegates a new thread to execute the service.

A characteristic of this example is its state-space explosion:
the number of reachable states grows exponentially according
to the number of clients asking for a service (See Table II).
Such an application cannot be handled by current monitoring
approaches, due to the high memory consumption required to
store the reference behavior model as automata.

TABLE II
ECHO SERVER STATE-SPACE ACCORDING TO THE NUMBER OF CLIENTS

Number of simultaneous clients Behavior size (# of states)
5 1.68×104

10 2.82×108

25 1.34×1021

50 1.79×1042

100 3.23×1084

The source code of this application has been processed by
our IDS factory in 5 seconds. The final embedded model is a
Petri net composed of 13 places, 18 transitions and 39 arcs.
Storage of the reference behavior model requires a few Kbytes
for the structure and another Kbyte to store threads context (the
second part increases linearly with the number of threads).

The test procedure considers 49 executions of our server
(numbered by i from 2 to 50). Execution i involves i clients.
Each client makes 109

i calls to the server and thus expects
the same number of answers. We measure the time needed
by the server to proceed all calls. Note that clients run on
separate machines, thus generating up to 50 simultaneous
threads in the server. Performances have been measured on
a Intel Core2Duo at 2.66GHz, with 2GB of RAM connected
with Gigabit Ethernet to a cluster where 50 nodes are playing
the client role. Detailled results are presented in Figure 8.

Whatever the number of concurrent clients, our event catch-
ing mechanism remains costless (pseudo-monitoring in Fig-
ure 8). The third curve shows that most of the overhead (60%)
comes from the remaining locks used for synchronizations
between threads (pseudo-monitoring (and locks)).

The global observed overhead for this example is about
34%. It is almost constant from 2 to 50 simultaneous clients
(i.e. threads). These results seems average but this example is
one of the worst possible configuration since we observe that



TABLE I
PETRI NET ABSTRACTIONS AND RELATED STORAGE FOR SOME COMMON PROGRAMS

Program Source Code Petri Net Model (reduced) Reduc. Factor IDS size Time
(loc) Places Transitions Arcs (% nodes) (KBytes) (seconds)

su-7.5 522 68 70 175 64% 97 11
cat-7.5 782 225 262 713 56% 101 25
cp-7.5 1 142 715 916 2 835 54% 184 110

stty-7.5 1 905 239 276 809 67% 207 35
nullhttpd-0.5.1 2 023 485 583 1 761 56% 227 9

netcat-0.7.1 4 701 309 432 1 178 54% 201 11
openntpd-3.9p1 5 514 589 743 2 474 52% 313 13

gzip-1.2.4 8 049 408 598 1 757 68% 270 11
wu-ftpd-2.6 24 742 2 022 2 786 9 061 56% 988 328

openssh-5.2p1 90 069 37 653 47 502 180 884 61% 11 264 1 137
squid-2.7 138 624 20 622 25 813 107 590 50% 13 030 23 991

httpd-2.2.13 293 840 12 181 14 769 50 724 36% 14 844 15 652
python-2.6.2 1 142 172 54 258 66 460 366 199 70% 15 360 25 781
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Fig. 8. Runtime overhead considering various monitor implementations for
the echo-server example and according to the number of clients

all threads are waiting for an access to the kernel space to
execute system calls.

In a real application, the overhead due to locks would be
hidden by the computation done in user space and by the time
spent in i/o. This situation is shown in Figure 9 where the
server executes some code before answering a request. Thus,
the ratio between user instructions and system calls is more
like that a standard application.

In this second experiment, we show that a workload of 3ms
is sufficient to divide the overhead by almost two. For a server
that has to answer 5× 106 queries, the overhead is below
2% if each threads does a work (i.e an i/o or a user space
computation) of 5ms before answering.

Thus, if we consider that most of parallel or multi-threaded
applications are doing some computation between system
calls, our solution appears to be quite efficient.

C. The Slow Denial of Service Attack

A denial of service (DoS) attack is an attempt to make a
service unavailable. A classic DoS attack is the distributed
denial of service (DDoS) that involves a large number of
computers flooding the bandwidth of the targeted server, thus
overloading it.

In June 2009, a new class of DoS attack was discovered.
It only requires a single computer and is able to bring down
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Fig. 9. Runtime overhead for 50 simultaneous clients making 5×106 requests
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most of web servers. A demonstration of this attack (called
Slowloris) is available in [19]. It uses partial and valid HTTP
requests to hold connections and to slow down the web server.
Since the HTTP protocol is not violated, host-based IDS
are unable to detect the problem. Moreover, the bandwidth
remains available and HTTP packets are valid, thus network-
based IDS (that monitor network data) cannot diagnose the
problem.

Most of multi-threaded HTTP servers like Apache web
server [20] delegate a thread for each request or group of re-
quests and have a maximum number of working threads. Thus,
if an attacker can hold as many connections as the maximum
number of working threads, the service becomes unavailable.
This maximum number of simultaneous connections is usually
low (200 for Apache web server and 50 for nullHTTPd).

Unlike DDoS, this attack is stealthy: only the targeted
service is affected and the bandwidth and CPU usage remain
very low. Moreover, no log message is written by the server
because no request is completed. Thus, this attack is tricky to
detect even for system administrators.

For demonstration purposes, we use the version 0.5.1 of the
nullHTTPd [11] server, which is vulnerable to the Slowloris
attack. The reasonable size of the generated IDS (see Table I)
makes it a perfect illustration. The server is configured to



handle 50 simultaneous client (this is the default configuration)
and performances have been measured on a cluster of bi-
processor Intel Xeon at 2.8GHz, with 2GB of RAM, and
connected with a Gigabit Ethernet.

We run Slowloris on a single host. We also set 15 clients
that request a page of 1Mbyte on the server. Figure 10 shows
the evolution of the average response time according to the
number of connections hold by Slowloris. Since all requests
are valid, no anomaly is detected by our IDS but performances
are going down. Thus, protected or not, the server quickly
becomes unavailable.
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Fig. 10. Response time for 15 simultaneous clients according to the number
of connections handled by the client running Slowloris

To handle this attack, we specify a constraint to the model:
“A client must not use more than 10 working threads”. This
constraint is checked at runtime thanks to a resource bounds
observer (see Section IV-A) directly plugged into the reference
behavior model associated with nullHTTPd. This observer
checks for the number of working threads dedicated to each
client.

Like many other servers, nullHTTPd uses a main thread
that waits for requests on a accept instruction. For each
request, it delegates a new thread (via the pthread_create
system call). Once the request is finished, this new thread
closes the communication socket with its client (using the
close system call) and dies. Thus, the observer must acquire
a new occurrence of the resource for each new connection
(i.e. increment the counter associated with the observer), and
release it (i.e. decrements the counter) when the thread closes
its socket.

This information gives us the observable points in the source
code. Thanks to links between the code and the model, we can
attach the observer to the model. Figure 11 shows a part of the
reference behavior model and its connection to the observer.
The central place (Connect Obs) is the core of the observer.
It contains tokens 〈id,value〉 where id is the identifier of the
client which makes the request and value the number of threads
already dedicated to it. When the accept transition is fired, the
token dedicated to the client is fetched from the observer place
and its value is incremented. On the contrary, when the close

transition is fired, the value of the token associated with the
client is decremented.

Let us note that, so far, the observer place is initially marked
with one token per color domain identifying clients of the
server (with the associated value set with 0). This solution
should be replaced by a more elegant one where tokens are
created when new clients are treated. This is not the case yet
due to current implementation constraints.
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Fig. 11. Resource bounds observer that limit the number of working threads
allowed for one client. Only the relevant part of the Petri net describing the
reference behavior model is shown here

In the standard implementation of observers in our IDS, the
program is stopped once the limit is exceeded. But in our case,
if a client surpasses the limit of 10 working threads, we don’t
want to stop the server (it would be ease the attacker’s work).
So, we propose a dedicated implementation described below.

In this new implementation of our IDS, if the fire function
indicates that bound is exceeded, the caught system call is
not propagated to the underlying system, and the return value
is modified. More specifically, in Listing 3 line 12 is not
executed, and the variable ret is set to -1. Hence, the accept
call returns an error code for this client. The observer returns
a valid value for other clients to allow the accept call.
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The execution results of this modified IDS are shown in
Figure 12. In this experiment, a client executes Slowloris
and tries to handle 35 connections. The first set of results
represents the server response time under normal conditions
(no attack). The second one shows that the server protected by
the IDS without an observer cannot handle requests coming
from more than 32 clients (the DoS is thus effective). Finally,
the last curve shows that an IDS with an observer correctly set
up is able to limit the impact of a malicious client. Requests
are slow down (from 40 simultaneous clients), but the server
is still available.

VI. CONCLUSION

This paper presents an automatic way to generate dedicated
IDS from program sources. To do so, we use a Petri net based
representation of the program behavior obtained from static
analysis of the eCFG produced by GCC.

Our solution brings several advantages:
1) the process is automatic and thus, IDS can be built more

rapidly than in current solutions as soon as a correction
is applied on a program to be monitored;

2) the notion of perspective allows to select a set of actions
to be monitored in the program, based on a dictionary
of symbols (e.g. system calls), it is easy to select the
set of events to be monitored and thus collect relevant
information only from source code;

3) thanks to the use of Petri nets, our representation of the
program behavior is much more compact than current
approaches and thus allow us to tackle larger programs
with a good precision;

4) the generated behavior reference model can be enriched
with observers to precisely check for resource usage or
time constraints, thus adding precision to the monitoring;

5) the generated IDS are quite small compared to tradi-
tional ones and thus, they introduce a very low execution
overhead.

Points 1 and 4 allow us to deal with so called 0-day attacks.
A prototype of our IDS generator is implemented. It has

been used to assess the solution against several case studies, in-
cluding the detection of a recent (June 2009) denial of service
attack on a web sever. These experiments show the viability
and the efficiency of our solution against real programs.

Another advantage (not yet exploited) is that the reference
behavioral model could be exploited by verification tools (at
least for reasonable size programs), thus performing so-called
off-line analysis, in a similar way than the one performed with
SPIN [21].

Another future work include the management of stack
configuration during execution, to enable a finer detection of
mimicry attacks [15].
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