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Abstract—Decision Diagrams are now widely used in model
checking as extremely compact representations of state spaces.
Many Decision Diagram categories have been developed over the
past twenty years based on the same principle. Each one targets
a specific domain with its own characteristics. Moreover, each
one provides its own definition. It prevents sharing concepts and
techniques between these structures.

This paper aims to propose a basis for a common Framework
for Decision Diagrams. It should help users of this technology to
define new Decision Diagram categories thanks to a simple spec-
ification mechanism called Controller. This enables the building
of efficient Decision Diagrams dedicated to a given problem.

I. INTRODUCTION

Decision Diagrams (DDs) are now widely used in model
checking as extremely compact representations of state
spaces [1]. Numerous DD categories have been developed over
the past twenty years based on the same principle (a brief
survey is proposed in Section II).

DD categories now form a family of abstract data types,
not only data structures [2]: each member of this family
is designed to functionally manipulate specific mathemati-
cal structures such as Boolean Logic for Binary Decision
Diagrams (BDDs) [3] and Zero-suppressed Decision Diagrams
(ZDDs) [4], vectors in a finite subset of natural numbers
for Multi-valued Decision Diagrams (MDDs) [5], term set
rewriting for Σ Decision Diagrams (ΣDDs) [6], etc. They are
all based on compact data structures associated with operations
manipulating them.

However, each new DD category leads to a new definition.
Thus, there is little sharing of principles, implementation
and concepts between different ones. For instance, some DD
categories define optimizations that cannot be extended to
others due to a lack of generality in the definitions.

Another consequence is that users of DDs usually try to
adapt their problem to existing categories due to the difficulty
of providing a new one. A specification mechanism, that
allows model checker designers to create problem-specific
DDs, would be of interest.

The objective of this paper is to present polyDDs, a first
step towards the definition of such a general DD Framework.
We aim to group a large set of many currently existing DD
categories, and to provide a simple specification mechanism

with the notion of controller. A controller describes a DD
type, i.e. a DD category (BDD, DDD, etc.) and a variable
order (linear or not). By leaving variables and their domains
as parameters, a whole DD category can be defined.

Our purpose is to introduce flexibility in the definition
of DDs to adapt polyDD and have them behave like existing
DD categories such as BDDs, MDDs or ΣDDs. Moreover,
polyDDs can be used to define very specific DD-based rep-
resentation for a given class of systems or even for a given
specification. To our knowledge, this is the first attempt to
exhort the user to define its own DDs.

This work is a first step in the direction of providing a
parametric data type with the main specificities and power
of DDs. On the one hand, some DD characteristics are not
covered yet to focus on the basis, on the other hand, polyDD
handles specifications that the existing DD categories do not.
This structure is to be used jointly with user defined operations
to implement efficient model checking algorithms.

The paper is structured as follows. Section II provides a
brief survey of the main DDs characteristics, and specifies
which ones are included or excluded from polyDDs. Section III
provides both intuitive and formal definitions of the controller.
Then, Section IV defines polyDDs. Finally, Section V defines,
as an example, a DD category adapted to a specific real world
problem from the robotic domain: CKBot configurations [7].

II. DECISION DIAGRAM CHARACTERISTICS

All DD data structures share the same basic principle: each
data to be encoded is represented as a path where nodes are
labeled with variables and output arcs carry a value for the
variable. The terminal node (also called terminal for short) is
usually, but not always, associated with a value.

Then, a set of data is a set of paths where the common
beginning parts are shared (i.e. represented only once), leading
to the construction of a tree. Of course, only paths with
consistent beginning parts can be put in the same set: if the
first encountered difference between two paths is a node label,
the two nodes cannot be shared and the paths cannot belong
to the same set. The first encountered difference between two
paths can, thus, only be a value.



Table I
CHARACTERISTICS OF SOME DDS

Name V. O. D. Red. Term. H. A.

(a) BDD [3] f l. B DC B no term.
ZDD [4] f. l. B ZS B no term.

(b)
ADD [8] f. l. B DC N no term.
MDD [5] f. l. ⊂ N DC B no term.
eMDD [9] f. l. ⊂ N DC,ZS,Id B no term.
IDD [10] f. l. R+ DC N no term.

(c)
DDD [11] n.f. no N no B no term.
SDD [12] n.f. no uns. no B yes term.
ΣDD [6] n.f. n.l. TΣ no B yes term.

(d)
EVBDD [13] f. l. B no {0} no +
EVMDD [14] f. l. ⊂ N no {0} no +

WDD [15] f. l. ⊂ N no {0} no param.

Column names: V. (set of variables), O. (variable order), D. (variables’
domain), Red. (reduction rule), Term. (number of values associated with the
terminal), H. (hierarchy), A. (value associated with a path)
Abbreviations: f. (fixed), n.f. (not fixed), l. (linear), n.l. (not linear), uns. (un-
specified), DC (Don’t Care), ZS (Zero-suppressed), Id (Identity-suppressed),
term. (the value is the terminal one), + (the value is computed by adding
values along the path), param. (the computation is a user-defined parameter).

To be more efficient, common bottom parts of the tree are
also shared. The tree is then said to be a reduced diagram
and forms a Directed Acyclic Graph (DAG), preserving the
canonical representation. If more than one tree is stored,
common bottom parts of all the trees are also shared.

BDDs [3] were the first DDs and were initally defined
to store Boolean functions over a fixed number of Boolean
variables. To share larger parts of the tree and to ensure
consistency between paths, BDDs variables are met in the
same order along all the trees paths. Such an order is said to
be linear in the sequel. The DAG is then said to be an ordered
diagram. As usual, when we refer to BDDs, we assume they
are Reduced Ordered Binary Decision Diagrams (ROBDDs).

The variable ordering is also used, together with the vari-
ables domain, to further reduce the DAG: a predefined pattern
can be safely removed from it when it can always be unam-
biguously restored from the variable order. Two such reduction
rules have been introduced:
• “Don’t Care”: do not store a variable the value of which

is meaningless (ROBDDs [3]),
• “Zero-Suppressed”: do not store a variable if only false

satisfies the function (ZDDs [4]).
BDDs have been a success from both an academic and an

industrial point of view. So, they spread in various application
areas: many DD-based structures appeared to extend their effi-
ciency and their expressiveness. Some of them are summarized
in Table I (a complete survey is out of scope of this paper).

The domain is the most obvious characteristic to be ex-
tended: MDDs are defined over finite subsets of N, Data De-
cision Diagrams (DDDs) over N, Interval Decision Diagrams
(IDDs) over R+ and for Set Decision Diagrams (SDDs) the
domain definition is user defined. This domain extension has
lead to a new reduction rule (“Identity Suppressed”) for the
extensible MDDs (eMDDs): a node with a unique output arc
labeled by a value v cannot have input arcs labeled by v.

Many DD-based structures inherit a fixed number of
variables and a linear order from the BDDs. DDDs [11],

SDDs [12] and ΣDDs [6] are examples of DDs with an
unspecified number of variables: this way dynamic structures
can be handled (lists, heaps, dynamic arrays, terms. . . ).

Moreover, from the definitions of DDDs and SDDs, vari-
ables are not ordered and, thus, no reversible reduction rules
can be defined. It limits the available operations. ΣDDs add
constraints that define a non-linear (partial) order (variables
depend on previously encountered values).

However, from a practical point of view, even DDDs and
SDDs use implicit non-linear orders to avoid, e.g., binary
operations (like union) on inconsistent paths. Controllers in-
troduced in Section III can describe such non linear orders,
allowing to generalize the reduction rule, that we name Trans-
parent Domains, for those DDs.

When libraries were designed for DDs with linear order,
a technical optimization was introduced: parts of the DAG
leading to terminal 0 alone were not represented (thus a
missing value on outgoing arcs from any node means that 0 is
the leaf that will be encountered whatever the path followed
afterward may be).

When DDs with unbounded variable domains were intro-
duced (DDDs, SDDs and ΣDD), this technical optimization
became part of the definition: infinite parts of the graph were
linked to terminal 0 (and were not stored) in order to obtain
finite structures. This feature is generalized as the Vanishing
Terminals reduction rule in Sections III-C and IV-B.

Most DD categories are not hierarchical: they only share
paths at the beginning and the end of the structure. Hierarchy,
as in SDDs and ΣDDs, allows to recursively use DAGs to
label arcs instead of values. This way parts that would be
in the middle of a “flat” version of the DAGs (with few
sharing possibilities) can be shared in a hierarchical version.
Controllers in Section III define a general framework to handle
hierarchy.

Finally, a value is associated with each path in the DAG.
This way total functions can be stored using DDs. This value
is, most of the time, the value associated with the terminal.
But it can also be the result of a computation carried along
the path. This is the case for Edge-Valued Binary Deci-
sion Diagrams (EVBDDs) [13], Edge-Valued Multi-Valued
Decision Diagrams (EVMDDs) [14] and Weighted Decision
Diagrams (WDDs) [15]. We do not handle such DDs.

For simplicity, we also only handle Boolean results,
stored in terminals. Extension to other result types may
seem obvious, as for Multi-Terminal Binary Decision
Diagrams (MTBDDs) [16] a.k.a. Algebraic Decision Diagrams
(ADDs) [8], but hierarchy introduces some subtleties that are
left as future work.

III. CONTROLLER : PARAMETERIZING THE POLYDD
FRAMEWORK

This section defines the controller. It describes a DD type by
defining both a DD category (BDD, DDD, etc.) and a variable
order (linear or not).

We follow the same approach as the description of words
with a Deterministic Finite Automaton (DFA). So, a controller



is an annotated graph that defines the shape of the DDs. It
provides information about the DD characteristics: variables,
associated domains, reductions, etc. Associated with a clearly
defined semantics, it recognizes its compatible DDs. Moreover,
reduction techniques and operations are defined according to
the controller.

A. Intuitive Introduction to Controllers

To intuitively introduce controllers, we will now present
how to describe some DD types, through an analogy with the
ML type system: records (cartesian products) and unions.

1) Functional Type: Let us consider total functions f from
Boolean variables (x,y,z) to one Boolean result:
type f = input -> output

where the domain and co-domain are defined as:
type input = { x:bool ; y:bool ; z: bool }
type output = bool

Each of these functions can be represented by a BDD. One
of them is shown in Figure 1, with variable order x < y < z.

0

1

z

z

y

y

x

0

1

0

1

0

1

0

1

0

1

Figure 1. A BDD representing one function of type f

The controller for these functions, and for the BDD of
Figure 1, is presented in Figure 2. Edge labels are triplets
〈variable, variable domain, successor variable〉. The chaining
of variables referenced in edges labels defines the order.
Although they seem redundant, the two variables are useful
in more complex controllers, seen in the remainder of this
section. The initial vertex is given by the incoming arrow,
labeled with the initial variable. Variable τ denotes termination.
A controller vertex together with a variable (initial or returned
by an input arc) is called a root.

〈x,B,y〉 〈y,B,z〉 〈z,B,τ〉
x

Figure 2. Controller for BDDs representing f with variable order x < y < z

The DD of Figure 1 is compatible with the controller of
Figure 2. Compatibility can be intuitively explained as below.
Every path in the BDD is also found in the controller. A
controller path is for instance x 0−→ y 1−→ z 0−→ τ. Node variables
in the DD are input variables on controller edges. Arcs are
unfoldings of the domains on edge labels of the associated
controller. So, arcs from a DD node cover the whole domain of
their controller edge. Controller vertex with special variable τ

corresponds to DD terminals 0 or 1.
2) Equivalent Controllers: The controller of Figure 2 is

specific to a DD type, as it contains one vertex per variable.
Controllers for other types in the same BDD category require
more or fewer vertices, when the number of variables differs.
For modeling and genericity purposes, the number of vertices
in controllers for a whole category should remain constant,
whatever the number of variables in the system is. Moreover,
we require that at most one edge exists between two vertices.

In order to share the same graph structure (same vertices and
edges, but not same labels) between controllers of the same
DD category, the idea is to define a controller pattern by
folding the controller. Edge labels are then sets of triplets.

The controller of Figure 2 can be folded as in Figure 3. The
loop edge defines the succession of variables in the described
BDDs. So, only this edge label has to be rewritten according
to the number of variables. It is a first step towards controller
parameterization. Figure 3(a) shows a terminal vertex for
variable z partially folded, whereas Figure 3(b) shows it as
fully folded. Note that all these controllers are equivalent (≡):
C1 ≡ C2 ⇔ Path(C1) = Path(C2). Every DD compatible with
one controller is compatible with the equivalent ones.

〈x,B,y〉,〈y,B,z〉

〈z,B,τ〉
x

(a) Partially folded
〈x,B,y〉,〈y,B,z〉,〈z,B,τ〉

x

(b) Fully folded

Figure 3. Folded controllers from the one of Figure 2

3) Union Type: Let us consider the following type:
type t = A of { x1:bool ; y1:bool }

| B of { x2:bool ; y2:int }

This type hides a variable for the discriminant, that we call t,
as its enclosing type. From the value of the t discriminant
(A or B), two total variable orders are defined: x1 < y1 or
x2 < y2.

Figure 4 shows the controller representing type t. The value
of the discriminant (A or B) changes the variables on the
following arcs. The variable domains differ for y1 and y2 even
though they are on the same edge.

〈t,{A},x1〉

〈t,{B},x2〉

〈x1 ,B,y1〉

〈x2 ,B,y2〉

〈y1 ,B,τ〉

〈y2 ,N,τ〉

t

Figure 4. Controller for a union type in a BDD way

In most DD categories, the domains of y1 and y2 would
raise a problem, as only one domain can be set for each edge.
Two solutions exist. The first one is to create longer paths. It
requires a controller with six vertices (one for each variable
plus τ) as if the type was a tuple, like the controller in Figure 2.
The second one extends the domain of y1 to the largest one on
the edge: N, the domain of y2. In both cases, some DD nodes
and values are in fact useless. The “Don’t Care” reduction rule
is defined to remove them.

Let us now consider the following type:
type u = A of { z:bool }

| B of { x:bool ; y:bool }

It is impossible to encode type u in the way we did for t.
In fact, this is a limitation of the DD categories where all the
paths have the same length.

Figure 5 presents the controller for type u. The value of the
discriminant (A or B) changes the length of remaining paths,
thus introducing more flexibility in the DD encoding of data.
This encoding strategy is inspired from the one of DDDs [11].

4) Recursive Types: Union handling enables the represen-
tation of recursive types, such as lists. Terminal case (Nil)



〈u,{A},z〉

〈u,{B},x〉 〈x,B,y〉 〈y,B,τ〉

〈z,B,τ〉
u

Figure 5. Controller for a union type in a DDD way
is distinguished from the recursive one (Cons) to ensure finite
recursions.
type l = Nil

| Cons of { x:bool ; n:l }

Figure 6 shows the controller for type l. A cycle is manda-
tory to represent type recursion, as an unfolded controller
would be infinite. Introduced by DDDs, it allows to encode
unbounded data structures such as lists or FIFOs. This kind
of DD still represents finite structures, unbounded means
here that we cannot fix the bound in advance. Of course,
truly infinite structures cannot be represented, as in most
programming languages.

〈l,{Nil},τ〉

〈l,{Cons},x〉

〈x,B, l〉
l

Figure 6. Controller for a recursive type

The DD of Figure 7 is compatible with the controller of
Figure 6. As the represented functions are total, every DD of
a recursive controller is infinite: here lists of unbounded length
are represented. A reduction, called Vanishing Representatives,
presented in section IV-B1, removes some nodes and edges
so as to leave only a finite part. The node labeled by “. . .”
represents the infinite part of this DD, where all paths lead
to terminal value 0, as for DDDs. The following lists are the
only data for which the represented function returns 1:
[ 1 ], [ 1; 1 ], [ 1; 0 ], [ 0; 0 ], [ 0 ;1 ]

l x

l x

l x . . .

l x
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Figure 7. A DD compatible with the controller in Figure 6 (the representation
of infinite paths, here with “. . . ”, is seen in Section IV-B1)

5) Hierarchical Representation: Sharing amount in DDs
depends on the variable order, but finding the optimal order
is NP-Complete [17], [18], [19]. In practice, when the paths
lengths increase, finding a good variable order is harder and
sharing decreases. Some DDs such as SDD [12] or ΣDD [6]
allow hierarchical encoding of complex structures in order
to increase the sharing of common parts. Hierarchy requires
ternary edges in controllers, and is represented by the
arrow tip.

Figure 8 represents a hierarchical controller associated with
type l. It is composed of two parts: the list with a recognizable
loop, and the list content (a Cons and a Boolean). The
hierarchical edge is labeled by a triplet of variables. The
first and last one have the same meaning as for flat edges,
whereas the second variable is the initial one given to the
hierarchy, here c. It means that only DDs compatible with the
corresponding root can label the hierarchical DDs arcs.

〈l,{Nil},τ〉

〈c,{Cons},x〉 〈x,B,τ〉〈l,c, l〉
l

Figure 8. Controller for a hierarchical encoding of l à la SDD

The encoding in Figure 8 has two levels of hierarchy: a
level for the list with unbounded path length, and a level for
its stored data with a fixed path length. Figure 9 shows an
alternate hierarchical encoding of type l, closer to the one
proposed by ΣDDs in [6]. It contains only one level, with
a recursive hierarchy. Here paths lengths are all fixed, but
hierarchy depth is unbounded.

〈l,{Nil},τ〉

〈l,{Cons},x〉
〈x,B,y〉

〈y, l,τ〉
l

Figure 9. Controller for a hierarchical encoding of l à la ΣDD

6) Generalizing Edge Labels: The current representation of
edge labels is not satisfactory since:

• it may describe non deterministic controllers which pre-
vents a sound definition of reductions and operations;

• it may lead to long enumerations, difficult to handle.

To be deterministic, the triplets on an edge label must
correspond to a partial function f : variable×value→ variable
for flat edges or f : variable× variable→ variable for hierar-
chical ones. In the graphical representation, these functions are
defined extensionally (as with triplets) or intentionally (with
functions, using 7→).

As variables and their domains are not enumerated, they
can be left as parameters. A controller with an intentional
description can thus define a whole category, not only a type.

The controller in Figure 10 represents a list of increasing
domains. As there is no bound for the list depth, it would
require an infinite number of triplets on the edge labels.
Intentional description is more powerful than enumeration.
The formalization in Section III-B, which is based on an
extensional description, does not depend on the finiteness of
edge labels. Thus it handles intentional descriptions too.

To our knowledge, no existing DD category can precisely
handle the DDs of the controller in Figure 10. They either re-
quire a bound on variable domains as in MDDs, or unbounded
ones as in DDDs. It shows part of the value added by polyDDs.

(ω ∈ N,Nil) 7→ τ

(ω ∈ N,σ ∈ {Cons}) 7→ ω

(ω ∈ N,σ ∈ {1..ω}) 7→ ω+1
1

Figure 10. Controller for a parameterized list of increasing domains.
The variables are integers. The domain associated with a variable ω ∈ N
is {1 . . .ω}. Starting from variable 1, there is no predefined bound to the
recursion depth.

B. Controller definition

A controller C = 〈Ω,Σ,V,E, I〉 is a graph with binary (flat)
or ternary (hierarchical) labeled edges. We give its formal
definition in the remainder of this section.



1) Variables (Ω): The set of variables is Ω. It is a non
empty discrete set, but can be infinite. It contains at least
the special terminal variable, τ ∈ Ω. We denote ω,ωi, . . . its
variables.

2) Values (Σ): The set of edge values is Σ. It can be finite
or infinite, discrete or continuous, but must be non empty. We
denote σ,σi, . . . values in this set.

3) Vertices (V ): The set of controller vertices is V . It is non-
empty and finite. A root is composed of two parts: a controller
vertex and its initial variable. The set of possible roots is thus
defined as R =V ×Ω.

4) Initial roots (I): A subset I ⊆ R of the roots is chosen
as the initial roots of the controller.

5) Edges (E): There are two kinds of edges in a controller:
flat ones and hierarchical ones. We replace the usual use of
vertices in graph edges definition by roots. Flat edges are given
by the set E f ⊆ R×Σ×R and hierarchical edges by the set
Eh ⊆ R×R×R. The set of edges is E = E f ∪Eh.

6) Determinism: A controller is deterministic. This prop-
erty is given by predicate det(C). From each vertex, all edges
have disjoint values or hierarchical roots.

det(C)⇔∀r ∈ R,∀x ∈ Σ∪R, |{r′ | 〈r,x,r′〉 ∈ E}| ≤ 1

Labels in graphical representation are partial functions of
type Ω×Σ→Ω for flat edges, or Ω×Ω→Ω for hierarchical
ones. Edges are relations in their formal definition, but the
required determinism ensures that they are functions.

For a given controller C, the set of paths Path(C) collects
all sequences of variables and values leading to a terminal that
appear on controller edges.

When following a path, some clearly useless edges,
like 〈τ,B,x〉 are permitted by this definition. Even if they
cannot be followed, these edges are not an error. Sometimes,
they are useful to model compactly a controller. Consistency
rules given in Section IV-A3 remove these useless paths.

C. Reductions definition

Two kinds of reductions are usually defined for DDs. The
first one (vanishing terminals) removes a default terminal
value. The second one (transparent domains) removes edges
labeled by a default set of values. Whereas most DD categories
define reversible reductions, some (like DDDs) do not and thus
lack some operations. In polyDDs, the reductions are defined
to be reversible. Each one requires some annotations on the
controller. Thus, we enhance the controller definition with two
annotations Φ and Ψ that define the reductions to apply, so
now a controller with reduction is: C = 〈Ω,Σ,V,E, I,Φ,Ψ〉.

1) Vanishing terminals (Φ): The vanishing terminals re-
duction has first been defined for BDDs. It has spread to
many other categories. Vertices such that all paths lead to a
default terminal value (usually 0) are removed from the DDs.
Edges leading to these vertices or to the default terminal are
also removed. This reduction is optional for most of the DD
categories, but mandatory for DDDs and derived: each of these
DDs would be infinite or non-deterministic otherwise.

Annotations on controller vertices give the default terminal
values, by attaching a Boolean value (or nothing) to any vertex.
The total function Φ : V → B ∪ {⊥} returns the vanishing
terminal value for each vertex, or the value ⊥ if none is
defined. In fact, vanishing annotations are only useful for
vertices which can take τ as input variable. To be valid, all
the paths through controller cycles must lead to a vanishing
terminal. This constraint is formalized in Section IV-B1.

Figure 11 shows two controllers with vanishing terminal
annotations: 11(a) for a controller of BDDs and 11(b) for a
controller of lists. The vanishing terminal annotation is given
inside the vertices (⊥ is not represented). In Figure 11(a), all
paths leading to terminal value 0 disappear in the BDDs.

Figure 11(b) is a controller for lists. Given an infinite
set L of all lists, partitioned in two subsets L1 and L2, a
DD representation is possible only when L1 or L2 is finite.
All the DD paths for the infinite part must lead to the
vanishing terminal, whereas the paths for the finite part have
no constraint. Notice that we do not require 0 to be the
vanishing terminal: it is chosen by the user. In the figure, the
controller is adapted when representing an infinite number of
lists, with a finite complement. All terminal vertices do not
require a vanishing terminal value. For instance, We specify
no vanishing terminal in the hierarchy.

0

〈x,B,y〉,〈y,B,z〉,〈z,B,τ〉

x

(a) From Fig-
ure 3(b)

1
〈l,{Nil},τ〉

〈c,{Cons},x〉 〈x,B,τ〉〈l,c, l〉
l

(b) From Figure 8 (the DDs will represent the finite
complement of an infinite number of lists)

Figure 11. Vanishing terminal annotations for two controllers

2) Transparent domains (Ψ): The transparent domains
reduction is found in several DD categories, under several
names. For instance, BDDs use the “Don’t Care” rule, whereas
ZDDs use the “Zero-Suppressed” one. We generalize these
rules in the transparent domains reduction.

This reduction removes DD nodes if they have only one
successor, that can be reached uniquely through a default
domain. It requires optional annotations on controller edges
to define the default domains. For flat edges, a subset of the
edge domain is given. For hierarchical ones, it is replaced by
a default DD (which represents a default domain, too).

We do not describe the hierarchical transparent domains
here, as DDs are defined later, but there is no dog chasing
its tail as the reduction is not mandatory to build DDs. As for
vanishing terminals, transparent domains are given by a set:
Ψ ⊆ R× Σ×R. We do not formally require the transparent
domain to be a subset of the edge domain. However, other
cases do not enable the reduction and are thus useless.

Graphically, we add another domain to the edge labels
where this reduction is defined (after the real edge domain,
before the output variable). By doing so, we handle cases
where Ψ⊆ E. They are sufficient to define useful transparent
domains, and are readable. In this article, we use triplets on
controller edges when transparent domains are not relevant,
and quadruplets otherwise. Figure 12 shows these annotations
on already seen controllers.



0

〈x,B,B,y〉,〈y,B,{0},z〉,〈z,B,∅,τ〉

x

(a) From Figure 3(b)

0

〈l,{Nil},{Nil},τ〉

〈l,{Cons},∅,x〉

〈x,B,B, l〉
l

(b) From Figure 6

Figure 12. Transparent domains for two controllers

The transparent domains (Ti) for a given controller C must
respect one condition, tr(C). There must be at least one empty
transparent domain in each cycle to be able to count the cycles.
Otherwise, the reduction is not reversible.

tr(C)⇔∀r1
D1 ,T1−−−→ . . .−→ rn

Dn ,Tn−−−→ r1 ∈ Path(C),∃i ∈ {1 . . .n},Ti =∅

For example, the controller in Figure 13 does not follow
this rule. It contains a cycle labeled by 〈l,{Cons},{Cons},x〉
and 〈x,B,B, l〉 that contains no ∅ transparent domain.

0

〈l,{Nil},τ〉

〈l,{Cons},{Cons},x〉

〈x,B,B, l〉
l

Figure 13. Erroneous transparent domain annotations

IV. POLYDD: POLYMORPHIC DECISION DIAGRAMS

A controller describes the DDs of a given type. The re-
lationship between the controller and its compatible DDs in
our approach can be compared to words and their recognition
by a DFA. A controller recognizes DDs, which are not linear
sequences of letters like words but hierarchical graphs. The
recognized language is thus the set of compatible DDs.

polyDDs are hierarchical DDs with parameterized variable
domains and Boolean terminals. They share a lot with SDDs
and ΣDDs that are the only hierarchical DDs. But the com-
plement (vanishing part) of a DDD or an SDD cannot be
represented as a DD (see [11]). In polyDDs, as the controller
is deterministic, we can define the vanishing part, even if it
is infinite. Because of this potential infiniteness, we do not
provide an inductive definition as for SDDs. We rather define a
polyDD as the result of graph transformations on its controller.
When applying them, we progressively reach one of the DDs
compatible by construction with the controller.

DDs are acyclic subgraphs of their controller. Moreover,
their arcs are labeled only by a value or a domain, and their
terminals are given a Boolean value.

First, the controller is unfolded to create the “shape” of
a DD (Section IV-A). Then, it is transformed to a real DD
in Section IV-B, by removal of its remaining cycles and
binding of the terminals. Then hierarchical parts are defined
and identical nodes are merged to enable sharing. Finally,
reductions are applied in Section IV-C to optimize the DD.

A. Unfolding

From user defined controllers, unfolding generates a set of
possible equivalent controllers (in the sense of Section III-A).
An unfolding builds a pattern of Decision Trees, reduced later
into a Decision Diagram in Section IV-B5. It is composed
of two transformations: vertex splittings (Section IV-A1) then
edge splittings (Section IV-A2). Each one is applied a bounded
number of times, not necessarily until a fixpoint is reached. A

consistency rule applied between all transformations removes
dead paths (Section IV-A3). When a special condition on
unfolding is met (Section IV-A4), DD generation can continue
to the next steps (Section IV-B), but also do more unfoldings.

1) Vertex splitting: This first transformation creates vertices
with only one incoming edge. It is mainly used to unfold
controller cycles, but is also useful for edge splitting, as it
requires that the destination vertex has only one incoming
edge.

Transformation rule 1 (Vertex splitting). A vertex with
incoming edges or initial variables can be split in several
vertices. The transformed vertex is removed.

a

f2

f1

=⇒
a1

a2

f1

f2

Figure 14 shows a vertex splitting on the controller for lists
of Figure 6. The initial root (leftmost vertex) is split. The
first created vertex takes the initial root as input, whereas the
second created vertex takes 〈x,B, l〉. Output edges are copied
for both vertices.

〈l,{Nil},τ〉

〈l,{Cons},x〉

l

〈x,B, l〉

〈l,{Cons},x〉

〈l,{Nil},τ〉

Figure 14. Result of a vertex splitting on the controller of Figure 6

2) Edge splitting: This transformation splits an edge in two
parts. By doing so, it creates separate paths, that can be later
bound to different terminal values.

Transformation rule 2 (Edge splitting). An edge can be split
in two parts, if and only if it is the sole incoming edge of
its destination vertex. The destination vertex is duplicated and
edges are created from the source vertex to the newly created
ones. The original edge and the original destination vertex
are removed. Labels on new edges differ between flat and
hierarchical edges:
• for flat edges, the function on original edge is partitioned

in two parts ( f = f1∪ f2∧ f1∩ f2 =∅),
• for hierarchical edges, the function is kept the same for

the two new edges ( f = f1 = f2).

a b
f

=⇒ a

b1

b2

f1

f2

A controller edge can be split in several ways, and the
resulting controller can usually be unfolded again. Figure 15
shows two different edge splittings of a controller. Notice that
each one can be split again.

Hierarchical edge splitting differs from flat edge splitting,
because the hierarchical link is not a domain that can be split.
It represents a domain, that is later instanciated by a DD. A
condition given in Section IV-B4 ensures later that hierarchical
domains on hierarchical DD arcs are disjoint.



i a

b1

b2

t

〈x,B,y〉

〈x,{A,B},z〉

〈i,B,x〉
〈y,B,τ〉,〈z,B,τ〉

〈y,B,τ〉,〈z,B,τ〉

i a

b1

b2

t

〈x,{0},y〉,〈x,{A},z〉

〈x,{1},y〉,〈x,{B},z〉

〈i,B,x〉
〈y,B,τ〉,〈z,B,τ〉

〈y,B,τ〉,〈z,B,τ〉

Figure 15. Two different edge splittings (with named vertices, not vanishing

annotations) for i a b t
〈i,B,x〉 〈x,B,y〉

〈x,{A,B},z〉

〈y,B,τ〉

〈z,B,τ〉

3) Path consistency: Transformation rules may generate
controllers with dead paths, where the special variable τ cannot
be reached. They are dead paths in the initial controller too, but
are usually handy to define the controller. Applied iteratively,
the consistency rules given below remove all dead paths.

Transformation rule 3 (Inconsistent paths). Edges that match
one of the patterns below are removed. Notice that the
incoming edges are either an initial root or an edge from
another vertex. The label shown in the patterns is then its
output variable.

〈y,B,z〉
u

v

〈τ,B,x〉 〈x,B,y〉

Unreachable nodes ( pattern) are also removed.

After all the unfolding transformations, we get a flat-
deterministic controller where all finite paths end with the
special variable τ and start with an initial variable. All along
the paths, output variables can be taken as input by the
successor vertices. Some cycles may remain in the controller,
even with no reachable ending variable τ. They are removed
in Section IV-B when possible.

Theorem 1 (Flat-determinism preservation). From a con-
troller which is deterministic for flat edges, unfolding gen-
erates equivalent flat-deterministic controllers.

unfold(C) = {C1 . . .Cn} s.t. ∀Ci,Ci ≡C

Proof Idea: No new outgoing edges are added to existing
vertices by splitting. Outgoing edges added to an existing
vertex by unfolding are disjoint.

Of course, vanishing terminal and transparent domain anno-
tations must be taken in account in unfolding. When a vertex is
duplicated, its vanishing terminal annotation is copied to each
created vertex. When an edge is split, so are the transparent
domain annotations on it.

4) Roots uniqueness: A controller vertex can take several
variables as input, whereas a DD node has exactly one
variable. Thus, we define a property on controllers: a controller
C has unique roots (predicate ru(C)) if and only if each vertex
is associated with only one variable. Such a controller may be
transformed to DDs (Section IV-B gives other constraints).

ru(C)⇔∀i,o ∈V, |{vi | 〈〈i,vi〉,x,〈o,vo〉〉 ∈ E}| ≤ 1

B. From controller to polyDD

We define polyDDs from unfoldings of a controller, starting
with an initial root. A polyDD is a DAG D = 〈C, i,N,A,M〉,
where C is its unfolded controller, i∈ I one of its initial roots,

N is the set of labeled nodes, A=A f ∪Ah the set of labeled arcs
and M : N → R is a mapping from nodes to controller roots.
As in controllers, arcs are flat (A f ⊆N×Σ×N) or hierarchical
(Ah ⊆ N×N×N). Once a controller C with the DD shape is
obtained from the user controller Cu, C ∈ Unfold(Cu) (with
usually less sharing than in the final DD), several steps are
required. They are described in this section, in order.

1) Vanishing representatives: This step removes the re-
maining controller cycles, to transform the graph into a DAG.
To do so, we identify vertices belonging to a cycle. They
are replaced by new vertices, called vanishing representatives,
wthout successors.

A root is said vanishing-reachable (predicate vr(r)) if and
only if a path exists from this root to a vertex ending with
variable τ. Moreover, every terminal reachable from the vertex
must be labeled by a vanishing terminal annotation.

vr(r1)⇔ ∃r1
D1 ,T1−−−→ . . .−→ rn

Dn ,Tn−−−→ 〈o,τ〉 ∈ Path(C)

∧ ∀r1
D1 ,T1−−−→ . . .−→ rn

Dn ,Tn−−−→ 〈o,τ〉 ∈ Path(C),Φ(o) 6=⊥

All roots belonging to cycles in the unfolded controller
(a vertex and its input or initial variable), must be vanishing-
reachable. If a controller does not obey this rule, it is invalid
and no compatible DDs exist.

Figure 16 shows several valid and invalid controllers. 16(a)
is valid, as all the paths from the loop can reach the vanishing
terminal 0. As this is not true in 16(b), the latter is invalid.
16(c) is valid, as the constraint only applies on cycles. Fig-
ures 16(d) and 16(e) show invalid controllers, because some
paths through cycles do not lead to a vanishing terminal.

0

〈x,B,x〉

〈x,{Nil},τ〉
x

(a) Valid
〈x,B,x〉

〈x,{Nil},τ〉
x

(b) Invalid (no vanishing
terminal annotation)

0

〈x,{End},τ〉

〈x,{Nil},τ〉x

(c) Valid

0

〈x,B,y〉
〈y,B,z〉

〈z,B,y〉

〈x,{Nil},τ〉x

(d) Invalid (vanishing terminal is not al-
ways reachable from cycle)

0

〈x,B,x〉 〈x,{End},τ〉

〈x,{Nil},τ〉x

(e) Invalid (terminal without
vanishing annotation)

Figure 16. Vanishing reachability for some controllers

Figure 17 shows a DD that would be compatible with the
controller of Figure 16(e), if it were valid. Defaults parts that
can be inferred from vanishing terminal annotations are dotted.
This DD is still infinite, because there is no default terminal
value for all paths through End. It represents instances of
type t = End | Nil | bool * t that do not contain Nil (all the
DD paths through Nil lead to terminal 0).

x x x

0 0 0
1 0 1

. . . . . .
Nil Nil Nil

End End End

B B B

Figure 17. Infinite DD that cannot be made finite, compatible with the
controller of Figure 16(e)



As vanishing reachability ensures that all cycles lead only
to vanishing terminals, their vertices can be replaced by van-
ishing representatives. They are vertices with no successors.
Each one represents the infinite vertex unfolding of the cycle
where all paths lead to vanishing terminal values only. This
transformation creates orphan vertices, that can be safely
removed.

Figure 18 shows the vanishing representatives for an un-
folding of the list controller given in Figure 6. Vanishing
representatives are (here only) marked with double circles to
distinguish them from other vertices. Each vanishing represen-
tative represents the empty set of lists. So, the DDs compatible
with the controller represent lists of at most one element.

0

l

〈l,{N},τ〉

〈l,{C},x〉 〈x,B, l〉

〈l,{N},τ〉

〈l,{C},x〉 〈x,B, l〉

〈l,{C},x〉

〈l,{N},τ〉

0

l

〈l,{N},τ〉

〈l,{C},x〉 〈x,B, l〉 〈l,{C},x〉

〈l,{N},τ〉

Figure 18. Vanishing representatives for an unfolding of Figure 6 (C is used
for Cons and N for Nil to get a compact figure)

2) Vertices and edges relabeling: After the vanishing repre-
sentatives transformation, the controller is a DAG. We change
its vertex and edge labels to be those of a DD. Each vertex is
labeled by a root, and each edge by a domain.

Theorem 2 (Node to root mapping). Every DD node corre-
sponds to exactly one controller root.

Proof Idea: Unfolding operations (Section IV-A) create new
vertices by copying controller ones, or remove unused edges
or vertices. Edge labels or initial roots are kept or split. DD
transformations (Section IV-B) remove some edges. They also
change labels, but this change is syntactical.

As there is now only one initial root, and the controller has
unique roots (as stated in Section IV-A4), this transformation
is not ambiguous. Because of these changes, we rename the
vertices and edges: they are now called nodes and arcs, as in
the usual DD terminology.

Figure 19 shows the relabeling of the controller in Figure 18.
Vertex labels are taken from the input edges. We show here
only the variable part of their labels (which are roots), as in
usual DD representations. Edge labels are the domains on
the controller edges. The orphan node is shown but can be
removed (and is removed in the remaining sections).

l x l x l τ

l

{Nil}

{Cons} B {Cons}

{Nil}

Figure 19. Vertex and edge relabeling for the controller of Figure 18

3) Terminal binding: The next step is to set a terminal
Boolean value for each node labeled by the terminal variable τ.
Figure 20 shows the result of this transformation for the
controller of Figure 19. Notice that we do some additional
(and optional) edge splittings to get two distinct terminals.
The vanishing terminal 0 is not yet removed. It is used until
now only to remove cycles.

l x

l

l

x

x

0

1

1{Nil}

{Cons}

{0}

{1}

{Cons}
{Nil}

{Cons}
{Nil}

Figure 20. Terminal bindings based on the controller of Figure 19
4) Hierarchy: Hierarchical edges are instanciated: each

hierarchical root is replaced by a DD compatible with it. There
can be no cycle through the hierarchical arcs, as flat ones.

The canonicity constraints given in [12] apply: hierarchical
DDs on the outgoing arcs of a node must be disjoint and their
union must be the full DDs (where all paths lead to terminal 1).
No empty DD (where all paths lead to terminal 0) is allowed
to label an arc.

5) Unicity: As usual with DDs, each node must be unique.
Thus, all nodes that are identical are merged. Two nodes are
identical if and only if they have the same variable label, and
have the same successor nodes for the same edge domains.
When two nodes are merged, the labels on their input arcs
from the same source node are also merged. The algorithm
can again be found in [12] or other DD articles.

C. Reductions
Reductions, like removal of the 0 terminal and “Don’t Care”

or “Zero-Suppressed” are applied on the DD. In polyDD,
we ensure their reversibility: the original structure can be
recovered, knowing the reduced one and the controller. This
is not the case in all DD categories that have been defined.
For instance, even the (infinite) complement cannot be de-
rived from a DDD because the missing parts are ambiguous.
Moreover, DDDs (and derived) cannot define the transparent
domains reduction, because of their lack of order specification.

1) Vanishing terminals: The vanishing terminal annotations
are used in Section IV-B1 to remove cycles in the controller.
But a lot of other categories with linear controllers, like BDDs,
use them to reduce the DD size. Figure 21 shows a BDD
controller (taken from Figure 3(b)) with vanishing terminal 0
(as usual for this category), and a DD compatible with this
controller (taken from Figure 1) with dotted vanishing parts.

This rule is defined in three parts, applied recursively from
the terminals to the root:
a) a terminal is vanishing if and only if it is labeled by the

vanishing terminal annotation of its controller vertex or it
is a vanishing representative;

b) an arc is vanishing if and only if it is labeled by the domain
on its controller edge and leads to a vanishing node or
terminal; on hierarchical arcs, the full domain is the DD
where all paths lead to terminal 1;

c) a node is vanishing if and only if all its outgoing arcs are
vanishing.

All vanishing terminals, arcs and nodes can be safely
removed from the DD. As several terminal vertices can exist
in the controller, each one can be associated with its vanishing
value. To our knowledge, polyDD is the only DD category able
to mix several vanishing terminals.

Theorem 3 (Vanishing terminals reversibility). The vanishing
terminals reduction is reversible.



Proof Idea: The controller defines edge domains. Moreover,
it is deterministic. As there is a mapping between DD nodes
and controller vertices, this reduction is reversible: we can
build the missing parts of the DD.

0

〈x,B,y〉,〈y,B,z〉,〈z,B,τ〉

x 0

1

z

z

y

y

x

B

0
1

0

1

B

0

1

Figure 21. Example of vanishing terminals reduction

2) Transparent Domains: Transparent domains reduction
removes some nodes in the DD when they have only one
remaining successor, after the vanishing terminals reduction.
If a node has only one successor and the arc domain to this
successor is the transparent domain of the corresponding con-
troller edge, then the node and its outgoing arc are removed,
and all its input arcs are linked to its successor.

Figure 22 shows the steps of this reduction on the BDD
of Figure 21. The transparent domains here depend on the
variables. They can be adjusted by the user to enhance the
DD compactness. For instance, we mix the BDD (B) and
ZDD ({0}) patterns.

0

〈x,B,{0},y〉,〈y,B,B,z〉,〈z,B,{0},τ〉

x

1z

y

y

x
0

0

B

0

1

1z

y

y

x
0

0

B

0

1 1

y

y

x
0

B

0

1 1

y

x
0

0

1

Figure 22. Example of transparent domains reduction (mixed BDD and ZDD
patterns)

Theorem 4 (Transparent domains reversibility). The transpar-
ent domains reduction is reversible.

Proof Idea: When a cycle appears in the controller, the
reversibility condition given in Section III-C2 ensures that the
original DD can be recovered unambiguously. Without this
restriction, we would not know how many occurrences of the
cycle have disappeared. In acyclic controllers, this reduction
is always reversible.

Recently, “identity” patterns have been proposed in [9].
These patterns are a special kind of transparent domains: the
domain on a controller edge depends on the values seen on
the following DD arcs. To be generalized, this pattern requires
more complex transparent domain annotations. However, the
reduction proposed in this article generalizes already most of
the patterns found in DD categories.

D. Ensuring Canonicity

The most important property of DDs is canonicity. It states
that, from a user specified controller and a data to encode, at
most one DD exists for its representation. Some data cannot
be represented.

Theorem 5 (Canonical representation). Given a controller,
polyDD offer a canonical representation of data.

Proof Idea: As polyDDs keep most of their properties from
SDDs [12], the proof given for them is almost valid. But we
replace one of their specific rules (every node with arcs only to
terminal 0 is itself equivalent to this terminal) with vanishing
representatives. The vanishing terminals reduction gives an
equivalent behavior to polyDDs. As reductions are reversible
and not ambiguous, they do not break canonicity.

E. Manipulation

The DDs considered in this article represent total functions
with Boolean results only. Binary operators ∪,∩,\ can be
defined for polyDDs as they are for SDDs. They are inter-
nal operations i.e. union of DDs compatible with the same
controller root is itself compatible with the same root.

As all reductions are reversible, the worst case is to build the
non-reduced DDs and apply the operator to them. Algorithms
for these operations in other DD categories, like ZDDs or
MDDs, are optimized to benefit from the reductions. Because
we generalize the usual reductions, most of these optimizations
can be reused.

V. SPECIFYING A STRUCTURE DEDICATED TO A PROBLEM

T

L R

B

plugs

rotation

Let us consider a modular robotic
problem extracted from [7] (CK-
Bot). A modular robotic system is
composed of several modules having
the same shape and deploying the
same software. A module has three
fixed sides (L, T, R) that can plug to another module. The
fourth side (B) also has such a plug. Moreover, it can rotate
from −90◦ to +90◦ around an axis. In this simplified model,
no other rotation is defined.

We aim to enumerate all possible configurations for a
system embedding N CKbots. For that purpose, we define a
dedicated representation using dedicated DDs parameterized
with a controller. To do so, we first model the system using
types, as in Section III-A (warning: they are not valid ML
syntax but close to it), and then produce the corresponding
controller. The model checking part as well as a discussion on
the controller quality are out of the scope of this paper.

A. Data types

As DDs heavily rely on dynamic programming and sharing,
we define data types that enhance sharing. Storing module
positions is thus clearly not a good idea. We rather define them
from an origin module and encode the rotation of the mobile
part and the position of other modules using the orientation
of their top face. All modules build a connected graph.

We first define module identifiers: type id = 1 .. N.
Each module has an orientation in space (24 states: 6 for

the top face orientation and 4 rotations around the top axis).
type orientation = ( PlusX | PlusY | PlusZ

| MinusX | MinusY | MinusZ )
* ( 0, 90, 180, 270 )

We need to encode the state of the rotating part:
type rotation = -90 | 0 | +90



The states of all modules are grouped in an array. Orienta-
tion of the origin module never changes.
type modules = { m1 : (PlusX , 0) * rotation

; m2 : orientation * rotation
... ; mN : orientation * rotation }

As two unlinked modules can be side-by-side, we need to
encode the plug state. This is done via a list of records storing
the identifier of plugged modules:
type plug = { fst : id ; snd : id }
type plugs = Nil | { current : plug ; next : plugs }

Module orientations are sufficient to retrieve the plugged
sides so we do not need to store this information. As plugs
are symmetric, we can of course sort them, and for instance
always store the lowest identifier in fst. This is relevant for
operations, not for the type description.

So, the full system is encoded with the following type:
type ckbots = { ms : modules ; ps : plugs }

B. Controller

The controller of ckbots is presented in Figure 23. Its
construction follows the rules defined for Figure 10. The edge
labeled by 1,(PlusX,0)7→1 specifies a constraint that cannot be
expressed using other DD categories. As there is a cycle for
the plugs, a vanishing terminal is required.

0
modules, 1 7→ plugs plugs, Nil 7→ τ

ω ∈ {2..N}, σ ∈orientation 7→ ω

1, (PlusX,0) 7→ 1

ω ∈ {1..N−1}, σ ∈rotation 7→ ω+1

N, σ ∈rotation 7→ τ fst, σ ∈id 7→ snd snd, σ ∈id 7→ τ

plugs, fst 7→ plugs

Figure 23. Controller for the CKBot problem (plugs list)

Figure 24 shows another way to encode ckbots. Here, the
plug list is replaced by a Boolean N×N matrix. The vanishing
terminal is no more required, but we keep it to reduce the DDs.
The plugs matrix is expected to be very sparse, so we choose
the BDD pattern (B) for transparent domains.

0
modules, 1 7→ plugs

ω < N2 ,σ ∈ B,B 7→ ω+1

N2 ,σ ∈ B,B 7→ τ
ω ∈ {2..N}, σ ∈orientation 7→ ω

1, (PlusX,0) 7→ 1

ω ∈ {1..N−1}, σ ∈rotation 7→ ω+1

N, σ ∈rotation 7→ τ

Figure 24. Controller for the CKBot problem (plugs matrix)

So far, the only ways to specify a DD were: a linear order
(that does not exist for Figure 23), a DD example (for DDDs
and SDDs), or the full definition of a new category (ΣDDs).
polyDD provides a formal and graphical specification suitable
for complex DD descriptions.

VI. CONCLUSION

This article introduces polyDD, a category of DDs gener-
alizing a wide range of existing ones. By defining general
principles and through examples, we show polyDD covers the
features of most existing DD categories (i.e. vanishing termi-
nals, transparent domains, and the sharing of representations).

By lack of space, we focus our explanations on the data
structure itself and only provide hints concerning the as-
sociated operations. We deliberately use an informal style,

concentrating our explanation on the power of the polyDDs
and their principles.

polyDD opens several important issues concerning: i) the
required DD-engineering to evaluate for instance controllers
efficiency (i.e. efficiency of a variable order) and ii) the gener-
alization of optimizations developed for some DD categories.

This work is a first step towards a more complete gener-
alization encompassing multi-terminals and multi-valued DD
categories.
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