
Automated Controllability and Synthesis
with Hierarchical Set Decision Diagrams

Y. Zhang B. Bérard F. Kordon Y. Thierry-Mieg

Université Pierre & Marie Curie, CNRS-UMR7606 (LIP6/MoVe),
4 place Jussieu, 75005 Paris, France

Yan.Zhang@lip6.fr, Beatrice.Berard@lip6.fr,
Fabrice.Kordon@lip6.fr, Yann.Thierry-Mieg@lip6.fr

Abstract:
Computation of a maximally permissive controller in the Ramadge-Wonham framework promises a
general solution to automatically design a controller for a discrete event system, when it exists. However,
like for all similar model-checking approaches, the combinatorial explosion of the state space remains a
practical issue.
The work presented here investigates how to exploit both hierarchical modeling and a symbolic model-
checking engine to tackle this problem. This engine is based on a powerful class of Decision Diagrams
called Hierarchical Set Decision Diagrams combined with a framework called Instantiable Transition
Systems, in order to describe hierarchical models. To implement the controller activity, we propose to
store the set of safe states, computed offline, as a decision diagram in the controller software, allowing
to take decisions on-line.
We run a prototype tool on several benchmark examples, including a problem of automated guided
vehicles and a train crossing version with explicit discrete time. Results suggest good scalability,
although the procedure is computationally intensive.

Keywords: Controller synthesis, discrete event system, hierarchical set decision diagrams

1. INTRODUCTION

Context. Initiated in the eighties by Ramadge and Wonham
(1987) for discrete event systems, the problem of supervisory
control is the following: given a model of an open system
(the plant) and a specification, does there exists a controller
(or supervisor) such that the behavior of the supervised system
satisfies the specification? When the answer is positive, the next
problem is to synthesize a non-blocking maximally permissive
controller. This problem has also been seen as a two-player
game, where the controller plays against the environment. The
question is then reformulated as the existence of a winning
strategy for the plant.

Like for all verification problems, the combinatorial explosion
of the state space is one of the main practical issues making
it difficult to reach performances on an industrial scale. This
explains the large amount of work devoted to this question
during the last twenty years.

A first research direction to deal with this problem for con-
trollability has been concerned with the system architecture,
required to be distributed or hierarchical like in Schmidt et al.
(2008); Feng and Wonham (2008). Another important line of
work was oriented towards symbolic computation combined
with efficient state encoding techniques, for instance Binary
Decision Diagrams (BDD) in Gromyko and Pistore (2006);
Ma and Wonham (2008); Miremadi et al. (2008) and variants
like Integer Decision Diagrams (IDD) in Zhang and Wonham
(2001). In Bérard et al. (2008), another type of recently devel-
? This work has been partially supported by a Ph. D. grant from the Chinese
Scholarship Council and by project DOTS (ANR-06-SETI-003).

oped Decision Diagrams called Set Decision Diagrams (SDD)
was reported as showing a high performance in alleviating the
state explosion raised from the storage of all possible configu-
rations of a highway system.

Contribution. This work proposes a generalizable implementa-
tion of controllability and synthesis algorithms within a more
elaborated SDD-based framework called Instantiable Transi-
tion Systems (ITS) introduced in Thierry-Mieg et al. (2009).
This framework, built over a symbolic model checking engine,
provides an efficient way of computing state spaces for large
systems obtained by composition and hierarchy. Our approach
consists in restricting the system behavior within a desired
specification and producing a supervisor from the largest set
of safe states.

Of course, the control problem is more difficult than model-
checking, where the question asked is whether some system,
considered as closed, satisfies a given specification. However,
when the model is given as a transition system, looking for a
state-based controller can be viewed as: (i) generating the set
of reachable states as in model checking and (ii) computing
some particular backward reachability relation, from a subset
containing failure states. For this computation, we develop a
fixpoint operator on the backward transition relation, where
transitions are labeled either as environment moves or as con-
troller moves.

This answers the question of controllability. When the answer is
positive, we are thus able to extract a maximal winning strategy.
Our experiments on the examples of automated guided vehicles

(5AGV) and timed train crossing show the ability to describe
scalable models with good efficiency.

Outline. Section 2 recalls background elements from control
theory and SDD. The implementation of controllability and
control synthesis is described in Section 3 and applications
on case studies are presented in Section 4. In Section 5, we
conclude with summary and several aspects of future work.

2. CONTEXT

This section recalls the Ramadge-Wonham framework for con-
trollability and presents Hierarchical Set Decision Diagrams
(SDD) which we use to implement our solution.

2.1 Control Algorithm

Let us now recall how to apply the state based version of
Ramadge and Wonham algorithm for the Control Problem
(called CP in the sequel) on a transition system.
Definition 1. (labeled transition system). A labeled transition
system over an alphabet A of actions is a tuple T = (S,s0,∆,L),
where S is the set of configurations, s0 ∈ S is the initial configu-
ration, ∆⊆ S×A×S is the set of transitions and L is a mapping
from A into some set of labels.

In this framework, we consider the set of labels {e,c}: each
action with label e corresponds to an environment transition
and each action with label c represents a controlled transition.
Given a configuration s ∈ S, we denote by Succe(s) (respec-
tively Succc(s)) the set of successor configurations of s by
an environment transition (respectively a controlled transition):
Succe(s) = {s′ ∈ S | 〈s,a,s′〉 ∈ ∆ and L(a) = e} and Succc(s) =
{s′ ∈ S | 〈s,a,s′〉 ∈ ∆ and L(a) = c}.
Definition 2. (controller strategy). Given an initial subset Sfail
of S, of failure states, a controller strategy is a mapping f from
S \ Sfail into P (S) such that f (s) ⊆ Succc(s). Let Ssafe denote
the set of states that will never reach the states in Sfail. The
reachability space associated with strategy f is the set S f

reach(s0)
defined inductively by:

• s0 ∈ S f
reach(s0)

• If s ∈ S f
reach(s0) then ∀s′ ∈ Succe(s), s′ ∈ S f

reach(s0)

• If s ∈ S f
reach(s0)∩Ssafe then f (s)⊆ S f

reach(s0).

Algorithm CP. The algorithm CP solves the control problem
in the following sense: it terminates successfully if and only if
there exists a winning strategy i.e. S f

reach(s0)∩Sfail = /0.
This algorithm computes a subset Sbad of states by applying the
backward relations from Sfail as follows:

(1) Initially Sbad = Sfail, and the set is extended by the follow-
ing rules:
a) any configuration s for which an environment successor
is in Sbad (i.e. ∃s′ ∈ Succe(s),s′ ∈ Sbad) is added to Sbad,
b) any configuration s such that all controller successors
are in Sbad (i.e. ∀s′ ∈ Succc(s),s′ ∈ Sbad) is added to Sbad.
Let us note that if a controller state has no successor (the
controller is blocked), the corresponding state is added to
Sbad.

(2) The algorithm terminates either when s0 ∈ Sbad in which
case the system is not controllable, or when the rules

are no more applicable, in which case the system is
controllable. The algorithm returns the set Sbad.

Note that in the temporal logic CTL, a branching time logic
interpreted over labeled transition systems (see Clarke et al.
(2000) for instance), a formula of the form EXϕ expresses that
there is a path starting from the current state, on which the
next state satisfies ϕ. This is closely related, for the backward
transition relation, to step (1.a) of the algorithm. In a similar
way, formula AXϕ, which expresses that for all paths starting
from the current state, the next state satisfies ϕ, corresponds to
step (1.b), again for the backward transition relation.

In case of successful termination, Ssafe is obtained by removing
the saturated set of bad states from the set of reachable states:
Ssafe = Sreach \Sbad. The controller strategy is then obtained by
restricting the system moves to reach only safe states.

Of course, while the algorithm is polynomial in the size of the
system, the state space of the system is very large, so that we
need to use an efficient encoding for the state space.

2.2 Hierarchical Set Decision Diagrams

We now briefly describe Hierarchical SDD from Couvreur
and Thierry-Mieg (2005). SDD are shared decision diagrams
in which arcs are labeled by a set of values, instead of a
single value. This set may itself be represented by an SDD,
thus when labels are SDD, we think of them as hierarchical
decision diagrams. This hierarchical aspect allows to directly
exploit the structure of a specification, and offer significant
performance improvements over most BDD variants (Thierry-
Mieg et al. (2009)). In this paper we do not define SDD, the
interested reader can refer to Thierry-Mieg et al. (2009) for the
full definition. An SDD node δ represents a set of states of the
system, with /0 for the empty set, and we denote by S the set of
all SDD nodes.

SDD natively offer support for set operations like union, in-
tersection, and set difference (∪,∩,\), using caches to have
complexity bounds related to the number of nodes in the de-
cision diagram rather than the number of states (paths), like in
standard BDD.

An important characteristic of SDD is the way operations
(e.g. a transition relation) are defined. Contrary to common
practice that uses a symbolic encoding of the next-state function
represented by a BDD, SDD define a notion of homomorphism
to capture operation semantics. A homomorphism is a mapping
Φ : S 7→ S satisfying Φ(/0) = /0. We denote by Id the identity
morphism (Id(δ) = δ for any δ∈ S), and through slight notation
abuse, we consider any δ ∈ S as a constant homomorphism.
A homomorphism is linear if it preserves the union operation:
∀δ,δ′ ∈ S,Φ(δ∪δ′) = Φ(δ)∪Φ(δ′).

Homomorphisms can be combined by composition (Φ◦Φ′)(δ)=
Φ(Φ′(δ)) or by addition (Φ+Φ′)(δ)=Φ(δ)∪Φ′(δ), yielding a
homomorphism. These compositions are linear by construction
if their operands are linear.

Non-linear compositions of homomorphisms are also possible,
for instance, intersection defined by (Φ ∗ Φ′)(δ) = Φ(δ) ∩
Φ′(δ), or set difference defined by (Φ−Φ′)(δ) = Φ(δ)\Φ′(δ).
The non-linearity of these constructions means that we cannot
decompose their evaluation as the union of evaluations on paths
(states) of the decision diagram. However they can still be
combined using ◦,+ . . . with other morphisms.

The transitive closure ? unary operator allows to perform a
fixpoint computation. For any homomorphism Φ and any node
δ∈ S, Φ?(δ) is evaluated by repeating δ←Φ(δ) until a fixpoint
is reached. In other words, Φ?(δ) = Φn(δ) where n is the small-
est integer such that Φn(δ) = Φn+1(δ). This operator is often
applied to (Id +Φ) instead of just Φ, allowing to accumulate
newly computed states in the result (i.e. perform a least fixpoint
computation). For instance, when s0 ∈ S is an initial set of
states, and Succ designates a transition relation, reachable states
are computed by the expression (Id+Succ)?(s0).

Finally, definition of the inverse Φ−1 of a homomorphism Φ

allows to obtain the predecessors by Φ of a set of states. Φ−1

can automatically be deduced from Φ if the user provides the
set of potential states (e.g. usually the set of reachable states).
The set of potential states is used to solve the problems due to
non reversible operations, that destroy information (for instance
assignment to a variable loses its previous value). This inverse
mechanism is used to build the backward symbolic transition
relation, which is necessary for CTL model-checking, or as
proposed in this paper, to solve the control problem.

Given this high-level operation definition framework and the
algorithms described in Hamez et al. (2008), the SDD library
is able to use rewriting rules to change the order of event
application transparently, to implement the saturation algorithm
for decision diagrams originally due to Ciardo et al. (2003).
This algorithm in many cases allows to bypass the ”peak
effect” of usual symbolic BFS fixpoint computation, where
some intermediate step in the computation is untractable. It
is typically two to three orders of magnitude more efficient
than BFS in both time and memory, when the system admits
asynchronous behaviors (e.g. for Petri net models, interacting
processes, etc.).

Indeed, with both automatic saturation and hierarchy, SDD
have been shown in Thierry-Mieg et al. (2009) to compare
favorably to other existing decision diagram packages.

3. IMPLEMENTING CONTROL SYNTHESIS WITH SDD

This section defines our symbolic process to build a controller
according to the definitions of Section 2.1.

Starting from a transition system T = (S,s0,∆,L) with la-
bels in {e,c}, we describe a control problem as a tuple P =
〈s0,Succc,Succe,bad〉, where s0 ∈ S designates an initial (set
of) configuration(s) represented as an SDD, Succc,Succe repre-
sent respectively the transitions associated with the controller
and the environment, represented as homomorphisms, and bad
is a system property expressed as a homomorphism. In simple
cases, encountered in most frequent situations, bad will be
a simple labeling function, i.e. a homomorphism that selects
paths (states) satisfying a given state property. But bad could
also be an arbitrarily complex expression, like a CTL property.

3.1 SDD Homomorphisms for Controllability.

The first step is to build the set of reachable states, defined
as Sreach = (Succc + Succe + Id)?(s0). This least fixpoint is
efficiently computed using the built-in automatic saturation
algorithms of SDD and scales relatively well. Once this set of
potential states is obtained, we can compute the inverse of Succc
and Succe denoted respectively by Predc and Prede.

The initial set of bad states can be computed as Sbad = Sfail =
bad(Sreach). The construction procedure then needs to perform
a least fixpoint by adding to the set Sbad:

• Predecessors by an uncontrolled event of a bad state,
according to step (1.a) of CP algorithm: Prede(Sbad). This
is just like evaluating EXe(bad) in CTL, using backward
transition firing.

• States from which any move of the controller leads to a
bad state, corresponding to step (1.b) of CP algorithm:
Predc(Sbad) \ Predc(Sreach \ Sbad). This is like backward
evaluation of AXc(bad) in CTL, and is handled using the
usual translation to ¬EX(¬bad).

To allow expression of this least fixpoint using the ? closure
operator of homomorphisms, we slightly rewrite these terms as
homomorphisms, essentially replacing Sbad in these definitions
by Id and switching to homomorphism composition operators
rather than set-theoretic SDD operations. We thus obtain:

Sbad = (Prede +(Predc−Predc ◦ (Sreach− Id))+ Id)?

◦bad(Sreach)

This slightly complex expression is passed in this form to
the SDD library, which optimizes its evaluation using various
rewriting rules and strategies.

The final step is to check if s0 ∩ Sbad = /0. This answers the
controllability problem: if s0 is contained in Sbad then no
winning strategy exists, i.e. there is no maximally permissive
controller. The computation also allows us to exhibit Sbad and
through the complement in Sreach the set Ssafe of safe states.

3.2 Strategy Synthesis.

The synthesis problem then consists in building a controller that
does not let the system evolve outside of the safe states. In the-
ory, the controller could be implemented directly by building a
finite automaton with one state per good state, and synchroniz-
ing it with the system, so that the system cannot evolve outside
of the identified good states. However, in practice, the number
of states of the system makes this approach prohibitively ex-
pensive when using explicit data structures.

We propose to implement the controller directly using the
same symbolic data structures. We embed Sbad directly in the
controller software, stored as an SDD. When the system is
running, from any given state where the controller should take
a decision, we build the (single path) SDD that represents
this state, apply a single step Succc to it to obtain immediate
successors, then remove from the resulting states any state in
Sbad. All the complexity of these operations are quite low, as
Sbad can often be compactly represented as an SDD.

In fact we can simply store only the ”border” of safe states,
Sborder, that is, bad states that have a predecessor in Ssafe. Or
with a slight variation of the algorithm, we can also store the
safe states in the controller instead of bad states.

The choice of which of these to use is done offline, where time
can be spent deciding which of these three choices has the
smallest SDD representation, and heuristically trying to reduce
their representation size by reordering variables in the decision
diagram. Note that in SDD, as in most variants of BDD, the
representation size is not directly linked to the number of
elements contained in the set, and thus the ”border” states

approach is not necessarily more effective than the full bad
states one.

4. CASE STUDIES

This section presents two illustrative case studies, 5AGV and
Train Crossing, the latter integrating explicit discrete time, to
test the capability of our approach. In addition, experiments on
two benchmarks from WODES’08 are shown in the end: Cat
and Mouse Tower (CMT) and Dining Philosophers (DP).

The examples are given as compositions of labelled Petri nets
(with discrete time in the Train example), modelled using the
ITS framework, a formalism built to exploit the characteristics
of SDD for model-checking problems.

ITS, introduced in Thierry-Mieg et al. (2009), is a hierarchical
and compositional modelling framework, that uses label syn-
chronization to compose behaviors. ITS define notions of type
and instance: one can use elementary types such as labeled
(Time) Petri nets or any kind of labeled transition system, or
one of several variants of a built-in composite type that contains

Fig. 1. Petri Net model for 5AGV

instances. The instances in a composite type can be of elemen-
tary or composite nature, allowing hierarchical modeling.

The hierarchical nature of the model is then mapped to a hier-
archical state representation using SDD, and a homomorphism
representation of the transition relation.

4.1 5AGV

Problem. The five Automated Guided Vehicles (5AGV) prob-
lem from Krogh and Holloway (1991) describes a factory floor
which consists of three workstations w1, w2, and w3 which
operate on parts, two input stations, input1 and input2, one
output station output, and five AGVs, agv A, agv B, agv D, agv
E, and agv F, which move parts from one station to another.
The corresponding Petri Net model of this system is described
in Fig. 1 from Lakos and Petrucci (2004). The gray rectangles
denote the dangerous zones where collision may occur between
multiple AGVs. Blackened transitions represent controllable
events, while the other events are uncontrolled.

in

out

z4 z4

agv F
AGV F

AGV B

z1

z2

z3

agv B

in

out

z1

z2

z3

w2

take

produce

workstation

AGV A

in

out

z2

z2

agv D produce

workstation

take

w1

input2
IO

io

IO
input1 agv A

z1AGV A

in
z1

out

W3

produce

take2

take1

w3

AGV E in agv E

z3 z3

z4z4

out

io

output

IO

bad
z1

bad

z2

z2

bad

io

z4

z1

z4

z3

environment

controller

dangerous zone

synchronization

z3

bad

Fig. 2. ITS model for 5AGV

Model. The ITS model for 5AGV is shown in Fig. 2. This is
a composition of several ITS instances for the system, where
instances which have the same structure are instances of the
same type. For example,w1 and w2 have the same type work-
station, input1, input2, and output have the same type IO. The
controlled transitions are labeled by controller and represented
as black rectangles, while the other transitions are labeled by
environment. Each AGV component defines its danger zone(s)
as a state in which either of the two places in the zone are
marked (e.g. “z1”,”z2”. . .). A bad state for the AGV system
is then when two AGVs are occupying the same zone, as repre-
sented by a synchronization (circle with “bad” label in Fig. 2,
like for the synchronization of “z1” in agv A and agv B).

4.2 Train Crossing

Problem. This benchmark from Berthomieu and Vernadat
(2003) is given as a set of (Time) Petri Nets. It represents a
section of a railway protected by a gate; trains approach the
gate nondeterministically, with some constraints on the time
they take to traverse the danger zone. When they get close to the
gate, they trigger a sensor “App”, detectable by the controller.
Then, in 3 to 5 time units they reach the actual crossing zone
which they occupy for 2 to 4 time units depending on the speed
and length of the train. Finally they trigger an “Exit” sensor
when they leave the danger zone.

The controller can act on the single gate of the system, itself
time constrained. It can send a signal to “open” or “close” the
gate any time a sensor is triggered. It then takes 1 to 2 time
units to open or close the gate. A mechanism is built in the gate
so it can switch from opening to closing directly, without fully
opening the gate. A state is labeled as bad if a train is on the
crossing while the gate is open.

The original model includes a controller implementation (de-
fined for verification purposes), that essentially counts train in
the danger zone, sends an order to close the gate when the
first train approaches, and sends an order to open the gate only
when the last train in the danger zone leaves it. The controller
has been suppressed in our model since we wish to synthesize
it. This benchmark model widely used in the timed model-

bad

on

open

open

doOpen

raising

gOpen

leaving

coming

closed

doClose

lowering
rclose

[1,2]

[0,0] [1,2]
[0,0]

close

open

environment

sensor

controller

Gate
gate

gClose
[0,0]

Train Group

Exit

Appenter

[2,4]
leave left

faron

close

[0,0]

[0,¥[[3,5]

Train

train1

Exit

Appenter

[2,4]
leave left

faron

close

[0,0]

[0,¥[[3,5]

Train

train2

tg

Fig. 3. ITS model for Train Crossing

checking literature can be scaled up by increasing the number
of trains.

Model. The ITS model of train crossing is illustrated in Fig. 3,
for the case with two trains.

The time Petri net is interpreted over discrete time in the ITS
model, so that it remains a discrete event system. We thus have
a special action 1, which represents a duration of one time unit,
and on which all components must synchronize 1 . The 1 action
is considered unobservable by the controller in this experiment.

Alternator

conTurn envTurn

sensor

controller

environment

alt

Fig. 4. Alternator for Train Crossing

Let us consider the controller can take a control action each
time a train triggers one of the sensor actions “App” or “Exit”.
This behavior is achieved by synchronizing the system descrip-
tion with an alternator component depicted in Fig. 4: when in
the state “envTurn”, any uncontrolled action (i.e. white transi-
tion in Fig 3), including the 1 action, can be fired. Firing an
observable action (i.e. sensor actions in Fig 3) switches the
alternator state to “conTurn”. The controller can then take a
single control action (send “open” or “close” to the gate, or do
nothing) and the alternator switches back to “envTurn”.

4.3 Experimental Results.

Table 1. Experimental Results

n time mem
Sreach Ssafe Sbad Sborderk sec MB
5 AGV Specification

–
0.06 2.3

3.10×107 1.66×107 1.44×107 1.02×107

– (47) (141) (166) (190)
Train specification

n=5
14.3 17

1.54×107 9.09×106 6.27×106 9.19×105

– (380) (525) (467) (342)
n=10

257 130
8.44×1012 5.30×1012 3.14×1012 3.30×1011

– (540) (810) (712) (512)
n=20

3446 859
1.44×1024 9.26×1023 5.09×1023 3.95×1022

– (860) (1380) (1202) (852)
CMT Specification

n=535
207 3099

7.2×106 7.2×106 3.8×103 3.8×103

k=1 (10704) (12841) (7496) (7496)
n=11

2888 2859
8×1023 6.7×1022 7.3×1023 2×1023

k=11 (7934) (12795) (18250) (313026)
n=1

16260 2066
5.6×108 6.6×103 5.6×108 1.2×104

k=25 (3408) (162) (3407) (267)
DP Specification

n=2×107
561 6.5

N/A N/A N/A N/A
k=1 (305) (440) (87) (87)

n=104
0.52 3.34

7.7×104364 7.7×104364 1.4×101505 1.4×101505

k=1 (133) (187) (44) (44)
n=200

207 1109
4.6×10129 4.6×10129 8.3×10107 8.3×10107

k=3 (105) (140) (37) (84)
n=10

1119 1317
8.4×1014 1.4×1014 7×1014 1.1×1014

k=30 (49) (62) (23) (48)

Table 1 reports experimentation results from our prototype
tool, run on a 2.6 GHz PC with 4 GB of memory. The first
column gives the values of parameters for the models which are
scalable, i.e. the number of trains in the train example, number
1 Provided the time bounds are closed (i.e. [3,5] inclusive and not [3,5[), it has
been shown that the reachable states (up to clock values) are the same in dense
or discrete settings in Popova (1998).

of floors and cats for CMT and number of philosophers and
intermediate steps for DP. Time is given in seconds and memory
consumption in MB. We then present the size in both number
of states (with quite large values) and number of SDD nodes in
the final representation (between parenthesis, representative of
the memory occupation) for all reachable states (Sreach), the set
of safe states (Ssafe), the set of bad states (Sbad) and the set of
border states Sborder (see section 3.2).

The AGV model is solved very easily, and is not scalable. This
classic literature example is handled in 0.06 seconds using 2.3
MB of RAM. The train crossing model is more difficult, due
to the time constraint management, but still scales relatively
well: we can solve the control problem for up to 20 trains.
The CMT benchmark example scales well in number of floors,
but more poorly in number of cats. Similarly the DP example
scales very well in number of philosophers, but not in number
of intermediate steps. The very large number of philosophers
in the first line uses a recursive encoding that exploits problem
symmetry and provides logarithmic complexity to the solution.
The storage requirement is small but the number of states,
denoted as N/A (not available) could not be computed due to
the overflow of the GNU big-numbers library. However, the
introduction of intermediate steps breaks this symmetry when
computing Ssafe, producing a peak effect common to BDD
approaches.

As discussed in section 3.2, the relative representation sizes of
Sbad, Ssafe and Sborder depend on the model. For example, for
AGV storing Ssafe in the controller is the best choice, while
Sborder is the best choice for the train example.

5. CONCLUSION

This paper has shown an approach developed for solving con-
troller synthesis for discrete event systems, possibly enriched
with explicit discrete time. To cope with industrial size systems,
we elaborated a general implementation based on the Instan-
tiable Transition Systems (ITS) framework and Hierarchical
Set Decision Diagrams (SDD). The two associated techniques
have proven excellent scalability for model checking, which is
a related problem.

We encoded several case studies to show the flexibility of our
framework. In particular, we selected an example with time
constraints (train) to assess the possible enrichment. Experi-
ments show good performances and scalability with minimal
implementation costs, thanks to the framework and the involved
techniques.

Another advantage of our approach is to provide several ways
to implement the controller. Then, one can choose the most
efficient one (e.g. in terms of memory).

Our next step is to deal with larger and more complex specifica-
tions such as the automated freeway presented in Bérard et al.
(2008). To bridge the gap from the high level view of a system
designer and the formal model used in the tool, we propose to
rely on a Domain Specific Language (DSL) to define the system
semantics in a way that allows automatic translation into SDD.
A further goal would be to elaborate distributed controllers.

REFERENCES

Bérard, B., Haddad, S., Hillah, L., Kordon, F., and Thierry-
Mieg, Y. (2008). Collision Avoidance in Intelligent Trans-
port Systems: towards an Application of Control Theory.

In Proceedings of the 9th International Workshop on Dis-
crete Event Systems (WODES’08), 346–351. IEEE Press,
Göteborg, Sweden.

Berthomieu, B. and Vernadat, F. (2003). State class construc-
tions for branching analysis of time petri nets. In 9th Int.
Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2003), volume 2619 of LNCS,
442–457. Springer.

Ciardo, G., Marmorstein, R., and Siminiceanu, R. (2003). Satu-
ration unbound. In Tools and Algorithms for the Construction
and Analysis of Systems, 379–393. LNCS 2619.

Clarke, E., Grumberg, O., and Peled, D. (2000). Model Check-
ing. MIT Press.

Couvreur, J.M. and Thierry-Mieg, Y. (2005). Hierarchical
Decision Diagrams to Exploit Model Structure. In Formal
Techniques for Networked and Distributed Systems - FORTE
2005, 443–457.

Feng, L. and Wonham, W.M. (2008). Supervisory control
architecture for discrete-event systems. IEEE Transactions
on Automatic Control, 53(6), 1449–1461.

Gromyko, A. and Pistore, M. (2006). A tool for controller
synthesis via symbolic model checking. Proceedings of the
8th International Workshop on Discrete Event Systems, 475–
476.

Hamez, A., Thierry-Mieg, Y., and Kordon, F. (2008). Hierar-
chical Set Decision Diagrams and Automatic Saturation. In
ICATPN 2008, volume 5062 of LNCS.

Krogh, B. and Holloway, L. (1991). Synthesis of feedback con-
trol logic for discrete manufacturing systems. Automatica,
27(4), 641–651.

Lakos, C. and Petrucci, L. (2004). Modular analysis of systems
composed of semiautonomous subsystems. In ACSD’04:
Proceedings of the Fourth International Conference on Ap-
plication of Concurrency to System Design, 185–194. IEEE
Computer Society, Washington, DC, USA.

Ma, C. and Wonham, W.M. (2008). STSLib and Its Application
to Two Benchmarks. In Proceedings of the 9th International
Workshop on Discrete Event Systems (WODES’08), 119–
124. IEEE Press, Göteborg, Sweden.

Miremadi, S., Akesson, K., Fabian, M., Vahidi, A., and
Lennartson, B. (2008). Solving two supervisory control
benchmark problems using supremica. In Proceedings of
the 9th International Workshop on Discrete Event Systems
(WODES’08), 131–136. IEEE Press, Göteborg, Sweden.

Popova, L. (1998). Essential States in Time Petri Nets.
Informatik-Berichte, 96.

Ramadge, P. and Wonham, W. (1987). Supervisory Control of a
Class of Discrete-Event Processes. SIAM Journal of Control
and Optimization, 25(1), 206–230.

Schmidt, K., Moor, T., and Perk, S. (2008). Nonblocking
hierarchical control of decentralized discrete event systems.
In IEEE Transactions on Automatic Control, volume 53,
2252 – 2265.

Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., and Kordon,
F. (2009). Hierarchical set decision diagrams and regular
models. In Tools and Algorithms for the Construction and
Analysis of Systems, 15th Int. Conference, TACAS 2009,
volume 5505 of LNCS, 1–15. Springer.

Zhang, Z. and Wonham, W. (2001). STCT: An Efficient
Algorithm for Supervisory Control Design. In Symposium
on Supervisory Control of Discrete Event Systems, 249–261.

