
Design, Verification and Implementation
of MILS systems

Julien DELANGE, Laurent PAUTET

TELECOM ParisTech - LTCI UMR 5141
46, rue Barrault

F-75634 Paris CEDEX 13, France
delange@enst.fr, pautet@enst.fr

Fabrice KORDON

LIP6, Univ. P & M. Curie
4 place Jussieu

75252 Paris Cedex 05, France
fabrice.kordon@lip6.fr

Abstract—Safety-critical systems are used in many domains
(military, avionics, aerospace, etc.) and handle critical data in
hostile environements. These systems must protect data so that
only allowed entities can read or write information.

However, due to their increased number of functionalities,
safety-critical systems design becomes more complex ; this
increases difficulties in the design and the verification of security
functions.

The Multiple Independent Levels of Security (MILS) approach
introduces rules and guidelines for the design of secure systems.
It isolates data according to their security levels, reducing system
complexity to ease development. However, there is no approach
addressing the whole development of MILS systems from high-
level specification to the final implementation.

This paper presents our approach for the design of MILS
architectures. We describe security concerns using a modeling
language, verify security requirements and automatically imple-
ment the system using code generation.

I. INTRODUCTION

a) Context: Safety-critical systems are used in many
domains such as military, avionics or medicine. They perform
critical functions and contain classified data so that they must
be secure and reliable. As they operate in hostile environment,
they must prevent data theft and perform only authorized
actions.

Usually, safety-critical systems that operate in hostile en-
vironments are carefully verified using code analysis/review
and/or formal verification. It ensures absence of data leakage
and improves confidence in systems functions. However, as
requirements grow by the time, verification becomes more
complex, tedious and costly so that production costs increase
significantly to maintain confidence level.

Twenty years ago, the Multiple Independent Levels of
Security (MILS) approach [15] was defined to ease the design
of secure systems and address this complexity issue. The main
idea is to divide and isolate system components according
to their security levels to prevent unexpected interferences.
Thus, components are analyzed independently, easing their
verification and reducing development costs.

MILS classifies components according to their isolation
level and defines analysis rules to detect potential data leakage
(for example, deny communication between components that
do not share the same security levels). To enforce security at

execution time, MILS relies on a secure operating system that
isolates components and their communications.

b) Problem statement: Over the years, the approach was
refined [16] and several efforts were made to design MILS
systems. However, these improvements focus on specifications
analysis [20], [18] and runtime standardization [9] and do not
address the development problem from specifications to the
final implementation.

This is a major issue since security issues must be analyzed
at each step of the development process. Such a process would
verify MILS requirements at a specification-level (as defined in
[16]) and map them on a MILS operating system that provides
isolation services.

c) Solution overview: We propose a unified development
process for the modeling, verification and implementation of
MILS systems using a backbone modeling language. This
process, illustrated in figure 1, is supported by a common mod-
eling framework and focuses on three main steps: modeling,
validation and implementation.

Specifications

Verification

Description of system
architecture with security

concerns (step 1)

Verify MILS requirements and
detect security issues (step2)

Implementation

Generation system code and
configure security policy (step 3)

System binary

Automatically produces system that
enforces specifications requirements

Fig. 1. Development process for MILS systems development

System modeling (step 1) provides guidelines to specify
system architectures with their security properties and re-
quirements (such as security levels, communication channels,
etc.). To do so, we need a modeling language with an
appropriate abstraction level to specify security concerns as
well as a semantics suitable for system verification and models
processing. Our approach uses the Architecture Analysis and
Design Language (AADL) [17] because this language fulfills
our requirements (our motivations are detailed in III-A).

Verification (step 2) processes models and enforces MILS
requirements and potential security leakage. It inspects system
architecture as a whole, analyzes each component, looks for
security issues and reports them to system designers so that
errors can be found very early in the development process.
The National Institute of Standards and Technology (NIST)
reports that 70% of errors are introduced at design-level [10].

Implementation (step 3) automatically processes verified
specifications to generate executable code. It generates runtime
code to execute application-level functions as well as security-
related code, such as cipher functions that encrypt/decrypt
data.

Then, it integrates produced code with a MILS operating
system that isolates components according to their security
levels. For that purpose, we design our own MILS operating
system, POK [2].

d) Outline: Our paper is organized through 7 main
sections. Section II gives an overview of the MILS approach.
Section III presents our modeling guidelines for MILS archi-
tectures specification while section IV details their associated
validation rules. Section V describes our code generation
process and presents our MILS runtime, POK. Finally, section
VI illustrates our approach through a case-study that defines a
distributed architecture with several nodes of different security
levels.

II. MILS OVERVIEW

This section introduces MILS concepts. First, we explain
the main principles and then, detail services required by a
MILS operating system to isolate security levels.

A. Security isolation concepts

MILS isolates security levels as much as possible, limits
security levels upgrade/downgrade (writing a data at a given
security level in a data classified at a different security level)
and avoids covert channels (operations that may break the
security policy).

Security levels isolation eases validation since we can
consider each security level independently to focus on critical
components.

In the security terminology, an object is a data classified
at a given security level (e.g. top-secret) whereas a subject
performs operations (read/write/execute) on objects.

A subject potentially manipulates several objects having
various security levels. Such a subject must be verified: they
can downgrade information from high to lower security levels.
A "safe" subject means that it enforces data flows separation
according to their security levels.

To distinguish components, MILS classifies them (subjects)
into three categories according to the isolation level they
provide on objects:

1) Single Level of Security (SLS) components contain
objects at one security levels.

2) Multiple Level of Security (MLS) components contain
objects classified at multiple security levels without
isolation. For example, an MLS component can be a

device driver that downgrade a data from a high security-
level (top-secret) to a lower security-level (unclassified).

3) Multiple Single Level of Security (MSLS) components
handle objects at different security levels and enforce
data flow isolation so that it does not downgrade/upgrade
data.

SLS (C2)
(TS)

SLS (C1)
(S)

MSLS (C3)
(TS + S)

MLS (C4)
(TS + S + U) SLS (C5)

(U)

TS

S

S S
S

TS TS
TS

U U

TS: Top-Secret
S : Secret
U : Unclassified

Downgrade

Fig. 2. Example of a MILS architecture

Figure 2 presents an exemple of MILS architecture. It
defines a data flow from two SLS components (C1 and C2)
at different security levels (top-secret and secret) to an SLS
component at the unclassified level (C5).

First, data are produced from two distinct SLS compo-
nents (C1 and C2) at different security levels. The receiver
component (C3) sends received data through two different
channels. As it enforces data flow separation, this component
is said to be MSLS. Then, component C4 merges received
data at different security levels in one communication channel
with the unclassified security level. This component does not
enforces security levels isolation and so, is said to be MLS.
Finally, the last component (C5) receives data at only one
security level (unclassified) and so, is considered as SLS.

To be compliant with the MILS guidelines, component C3
must be verified to check data flow isolation correctness.
In addition, if the downgrade operation of C4 is legal (for
example, a component that encrypts classified data before
sending them into an unclassified network), the downgrade
operation must be verified or certified (for example, using
formal methods).

To maintain isolation across components, MILS architec-
tures rely on a specific operating system whose characteristics
are presented in the next subsection.

B. MILS operating system

The main purpose of a MILS operating system is to enforce
resources partitioning between components that share different
security levels [19]. This partitioning policy prevents from
potential security leaks and covert channels.

e) MILS layers: A MILS system is divided in two main
layers:

1) The kernel layer enforces resources partitioning and
maintains isolation across components. This is the most
critical part of a MILS architecture as it contains isola-
tion services.

2) The partition layer contains resources and services
(runtime library, third-party functions, etc.) required by
components. A partition is isolated by the MILS kernel
and contains one or several components.

The figure 3 illustrates this architecture. It depicts a MILS
system containing 3 partitions: two are labelled as top-secret
while the last one is unclassified. The MILS kernel, which
runs on top of the hardware, enforces time isolation between
partitions and executes them in dedicated memory spaces.
In the figure, the kernel enforces security levels isolation by
connecting only partitions that share the same security level
(top-secret).

MILS isolation kernel

P
ar

tit
io

n
1

(t
op

-s
ec

re
t)

P
ar

tit
io

n
2

(t
op

-s
ec

re
t)

P
ar

tit
io

n
3

(u
nc

la
ss

ifi
ed

)

Hardware (CPU, memory, etc.)

Fig. 3. MILS execution platform layers

f) Kernel isolation services: The MILS kernel isolates
partitions in space and time. Space isolation means that each
partition has a memory space to store data and that com-
munications between partitions are monitored and explicitly
granted. So, partitions have an independent memory space
other partitions cannot access and no other channel than the
one allowed can be established.

Time isolation means that each partition are executed during
a fixed amount of time. A partition cannot consume more
or less time than allowed so that an attacker cannot infer
information based on partitions execution time.

In the MILS terminology, these requirements are said to be
NEAT [18]:

• Non-Bypassable: partitions cannot choose to use security
functions (i.e: a covert channel).

• Evaluatable: security functions must be amenable for
verification/certification.

• Always-Invoked: security functions are invoked every-
time.

• Tamperproof: security functions as well as data cannot
be modified.

The kernel layer contains only few services and does not
contain device drivers as in traditional operating systems. This
would introduce additional code that may break isolation ser-
vices. Instead, devices are handled by one or several partitions,
through a direct access to the hardware. By doing so, kernel
remains small and prone to verification.

C. Related Work
We distinguish two different kinds of existing work: one

about components analysis and classification and one about
MILS operating systems. For this reason, we present these
works separately.

g) Architecture analysis: Several approaches were de-
signed about MILS architectures analysis and refinement.
Among them, [22] proposes to reduce the amount of com-
ponents that share different security levels. This significantly
reduces verification needs and associated development costs.

Several approaches for the design and verification of MILS
architectures use modeling languages such as AADL [7], [8].
AADL models are evaluated against MILS requirements, vali-
dating security isolation enforcement. This integrates MILS
in existing modeling languages and eases designer work,
avoiding use of different formalisms.

However, the implementation is not verified against the
specification so that there is no proof system execution would
enforce properties checked on the model. That is the reason
why although model validation is of particular interest, it is
necessary to automatically produce the implementation from
these validated models.

h) MILS operating system: A MILS protection profile
is currently being written [16] for the Common Criteria [1].
This document describes the services of a MILS-compliant
operating system. However, a protection profile for separation
kernel [9] exists but this is not specific to MILS.

These solutions define services for security isolation, but
do not ease their analysis. In particular, we need to abstract
security concepts and MILS services for verification purposes.
Next sections present our approach that proposes such an
abstraction of MILS services and automatically generates
MILS systems from architectural models.

III. MODELING MILS ARCHITECTURES WITH THE AADL
This section motivates the choice of AADL as a modeling

language. It presents the core language and describes our
modeling guidelines to specify MILS requirements.

A. Motivations for choosing AADL
Several modeling languages exist to represent systems ar-

chitectures. Popular ones are UML and its associated MARTE
profile [12] or its security-specific [14] extensions, SysML [11]
or AADL [17].

Our reasons for using AADL are the following:
• Components and their associated properties are strongly-

typed which clarifies architecture concerns.
• Its syntax and semantics are clear and avoid disambigua-

tions. This characteristic is especially important for model
analysis support.

• Users can extend the language by adding properties or
annexes to the core language.

Despite the advantages of other approaches, the main prob-
lem resides in the semantics: many languages use several
annexes to refine or extend their semantics. However, there
may be inconsistencies between different annexes so that their
use in the same model lead to a semantics leakage.

B. AADL overview

AADL is a component-centric language for the modeling of
software and hardware concerns. It focuses on the definition
of block interfaces and separates implementations from their
interfaces. The standard proposes both graphical and textual
representations.

The AADL standard defines software components (data,
thread, thread group, subprogram, process), execution
platform components (memory, bus, processor, device,
virtual processor, virtual bus) and hybrid components
(system).

Components describe elements of the architecture. Subpro-
grams model application code. Since it is not an architectural
element, it is reduced to a reference to another external piece
of code. Threads model the active part of an application (such
as POSIX threads). Processes model address spaces containing
threads.

Processors model micro-processors and a minimal operating
system. Virtual processors model a part of a processor. It could
be understood in different ways: part of a physical processor,
virtual machine, etc.

Memories model hard disks, RAMs. Buses model networks,
wires. Virtual buses are not formally a hardware component,
they are bounded to connections in order to describe their
requirements. They can be used for several purposes (modeling
protocol stacks, security layers, etc.) Devices model sensors or
actuators.

Systems represent composite components that are made
up of hardware components or software components or a
combination of the two. For example, a system may represent
a board with multiple processors and memory chips.

Components hierarchy of an AADL model is composed of
several components and sub-components. The topmost com-
ponent is an AADL system that contains processes, processors
and other architecture components.

The interface specification of a component is called its type
and provides communication functions through features. Com-
ponents communicate by connecting their features (the con-
nections section). Each component describes their internals:
sub-components, connections between these sub-components,
etc.

AADL allows properties to be associated with AADL model
elements. Properties are typed and represent name/value pairs
that represent characteristics and constraints. Examples are
the period and execution time of threads, the implementation
language of a subprograms, etc. The standard includes a
predeclared set of properties, users can introduce additional
properties through property definition declarations. For inter-
ested readers, an introduction to the AADL can be found in [4].

1) Example of an AADL model: A sample AADL model
is depicted in figure 4. It represents a producer/consumer
architecture: one process (prs_sender) executes a thread
(thr_sender) that produces data (communication ports are
represented by arrows). Data is sent to another process
(prs_receive) and received by a thread (thr_receiver). It

is then by the receiver thread to execute application-level code
(not illustrated on the figure).

Deployment concerns are shown on this model: connections
are bound to buses, process to processors and memories. In this
example, readers can notice that both processes are bound the
same memory component, meaning that they share a common
memory address space. This could be potentially a problem
from a security point of view if these processes share different
security levels.

thr_sender thr_receiver

prs_sender prs_receiver

linux.rt memory.ram

producer_consumer.example

ethernet bus

Fig. 4. AADL producer/consumer

C. Modeling MILS requirements

We define an additional AADL property set as well as
predefined AADL components (with the namespace POK and
poklib) for MILS modeling. Both are available in the Oca-
rina [21] toolset.

1) Security levels modeling: a MILS security level is de-
scribed with a virtual bus component. It represents both the
security-level (using the POK::Security_Level property) and
its associated mechanisms (for example, cipher algorithms).

Security mechanism implementations are specified in a
"component box" (an abstract component) that contains its
required components (data, subprograms, etc.). This abstract
component is associated with the virtual bus component
using the Implemented_As property and contains all resources
required for the implementation (data, subprograms, etc.)

Listing 1 illustrates the modeling of a security layer (called
topsecret). Property POK::Blowfish_Key represents the key
used by the cipher algorithm (assuming the use of blowfish)
and Implemented_As property points to a component that
contains all subprograms and data required to implement this
cipher mechanism.

Components inheritance and extension allow users to design
a hierarchy of security layers. For example, they can define
a basic virtual bus associated at a given security level
with several implementations, each of them providing different
security mechanisms to protect the data (different cipher
algorithms or cipher keys).
subprogram implementation blowf ish_send . i
properties

Source_Name => " pok_pro toco ls_b lowf ish_marsha l l " ;
end blowf ish_send . i ;

subprogram implementation b lowf i sh_ rece ive . i
properties

Source_Name => " pok_pro toco ls_b lowf ish_unmarsha l l " ;

end b lowf i sh_ rece ive . i ;

data implementation b lowf ish_data . i
properties

Type_Source_Name => " pok_pro toco ls_b lowf ish_data_ t " ;
end b lowf ish_data . i ;

abs t r ac t implementation vbus_blowfish_wrapper . i
subcomponents

send : subprogram blowf ish_send . i ;
rece ive : subprogram b lowf i sh_ rece ive . i ;
marsha l l ing_ type : data b lowf ish_data . i ;

end vbus_blowfish_wrapper . i ;

v i r t u a l bus implementation t opsec re t . i
properties

POK: : Secur i t y_Leve l => 3;
POK: : Blowfish_Key => " c ipher key " ;
Implemented_As => c l a s s i f i e r (vbus_blowfish_wrapper . i) ;

end t opsec re t . i ;

Listing 1. Top-secret layer modeling with the AADL

2) Kernel modeling: a MILS kernel is specified using
the processor component. It models both hardware and the
associated software to isolate partitions.

3) Partitions modeling: a MILS partition is specified using
virtual processor and process components. A virtual
processor models a partition runtime and its properties (such
as the scheduling protocol used to schedule partition tasks).
The process component models partition contents (threads,
data, etc.) and communication interfaces.

4) Time isolation modeling: time isolation of the MILS
kernel is described with the POK::Slots (time slots allocated
for partitions execution) and the POK::Slots_Allocation
property (allocation of slots across partitions).

Both properties are defined on the processor component
(the MILS kernel) and reference its partitions. For this reason,
we specify a virtual processor (partitions runtime) as a
subcomponent of the processor (MILS kernel).

The kernel, specified in listing 2, contains two partitions:
the first one is executed during 500ms while the second one
is executed for 1s. By default, we assume the runtime executes
partitions with a cyclic round-robin scheduling protocol.
v i r t u a l processor implementation topsecre t_ run t ime . i
properties

Provided_Vir tual_Bus_Class => (c l a s s i f i e r (topsec re t . i) ,
c l a s s i f i e r (sec re t . i)) ;

end topsecre t_ run t ime . i ;

process t o p s e c r e t _ p a r t i t i o n
features

t hepo r t : in data port the type
{ Al lowed_Connect ion_Binding_Class =>(c l a s s i f i e r (topsec re t . i)) ; } ;
end t o p s e c r e t _ p a r t i t i o n ;

process implementation t o p s e c r e t _ p a r t i t i o n . i
subcomponents

athread : thread th r_producer . i ;
end t o p s e c r e t _ p a r t i t i o n . i ;

processor implementation mi ls_kerne l . i
subcomponents

r t 1 : v i r t u a l processor topsecre t_ run t ime . i ;
r t 2 : v i r t u a l processor topsecre t_ run t ime . i ;

properties
POK: : S lo ts => (500ms, 1000ms) ;
POK: : S l o t s _ A l l o c a t i o n => (reference (t o p s e c r e t _ r t 1) ,

reference (t o p s e c r e t _ r t 2)) ;
end mi ls_kerne l . i ;

memory implementation ram_mapping . i
subcomponents

seg1 : memory segment . i ;
seg2 : memory segment . i ;

end ram_mapping . i ;

system implementation mils_system . i
subcomponents

kerne l : m i l s_ke rne l . i ;
p1 : t o p s e c r e t _ p a r t i t i o n . i ;
p2 : t o p s e c r e t _ p a r t i t i o n . i ;
ram : memory ram_mapping . i ;

properties
Actual_Memory_Binding =>(reference (ram . seg1)) applies to p1 ;
Actual_Memory_Binding =>(reference (ram . seg2)) applies to p2 ;
Actual_Processor_Binding =>(reference (ke rne l . r t 1)) applies to p1 ;
Actual_Processor_Binding =>(reference (ke rne l . r t 2)) applies to p2 ;
end mils_system . i ;

Listing 2. Modeling a MILS kernel with two topsecret partitions

5) Communication channels modeling: MILS security
levels (virtual bus) are bound to partitions (virtual
processor) with the Provided_Virtual_Bus_Class
property. The security level of each commu-
nication interface (port) is specified with the
Allowed_Connection_Binding_Class property. That
associates a port with a security level (virtual bus).

Listing 2 shows the binding of security levels and partitions.
It defines partitions that provide top-secret and secret security
levels with one incoming data port that communicates at the
topsecret security level.

6) Memory isolation: MILS memory isolation is specified
by binding each partition to one dedicated memory segment.
To do so, process components are associated to a memory
component (using the Actual_Memory_Binding property).

Listing 2 defines a main memory (ram_mapping) divided
in two memory segments. Each one is associated with one
partition. This one-to-one binding ensures space isolation
between partitions.

IV. VERIFICATION OF MILS REQUIREMENTS USING
AADL MODELS

The AADL model allows the validation of MILS require-
ments from its specification prior to implementation efforts. To
do so, we rely on REAL [6], an AADL-dedicated constraint
language. Requirements are expressed through theorems that
are validated thanks to a dedicated tool.

A. Security layers conformity

First, we verify that security layers that having different
security levels use distinct protection mechanisms. For that
purpose, our theorems browse security layers (virtual bus
components) and check that they use distinct cipher algorithms
and configurations.

B. Security levels usage

Validation theorems check that two communicating par-
titions share the same security level (virtual bus). This
ensures security consistency by checking that sending and
receiving interfaces are using the same security mechanisms
(same cipher key, etc.). In addition, theorems also enforce
that security levels used by these interfaces are provided by
partitions.

C. Space isolation

Theorems check space isolation, ensuring that each AADL
process (MILS partition) is associated to a single memory
component. If two processes share the same memory com-
ponent, they must be of the same security levels.

D. Time isolation

Theorems check that MILS partitions (virtual
processor) are executed by the kernel at least one
time during a scheduling cycle. This ensures that partitions
will have time to execute their task. In addition, this execution
time must be fixed to avoid security threats (some attacks
could rely on an analysis of partitions of tasks execution
time).

To do so, our validation theorem inspects processor com-
ponents and verify that, for each partition contained in that
processor, a scheduling slot is allocated. As a result, it ensures
that each partition is executed at least one time in each
scheduling cycle.

E. Other validation related to AADL models

Verification of AADL architectures is a wide topic and
several verifications were issued for different purposes. By
using AADL as modeling language, regular validation tools
(such as task scheduling [3] or flow latency [5]) can be issued
on MILS systems, checking various system requirements and
increasing the reliability of the development process.

F. Benefits of AADL models validation

Contrary to the initial MILS formalism which uses its
own abstract representation of the system (as in figure 2),
AADL models also specify configuration and deployment
informations.

In our context, this deployment information indicates the
security levels used by each partition, describing which level
is isolated from the others. Thanks to this precise description
of security levels and information sharing, we are able to
make a finer analysis and isolate security concerns according
to partitions isolation.

Finally, the use of a standardized modeling language as
AADL for the description of MILS architectures provides the
ability to use them with a wide-range of tools, from model
validation (as described in IV-E to code generation (described
in next sections).

V. AUTOMATIC IMPLEMENTATION

The implementation process is divided in two main parts,
illustrated in figure 5:

1) The code generation process (supported by Oca-
rina [21]) which creates partitions and kernel code
(illustrated with dashed boxes in figure 5)

2) The MILS operating system (POK [2]) which provides
isolation services (solid boxes in figure 5)

Next subsections detail each step of this process.

AADL models

Code generator

execution & configuration

Partition services

Partition 1

Isolation configuration Isolation services

Pa
rt
it
io
n

la
y
e
r

K
e
rn
e
l

la
y
e
r

execution & configuration

Partition services

Partition 1

Fig. 5. Detail of our implementation process

A. Code generation

1) Code generation patterns for partitions: The code gen-
erator creates code that instantiates/configures partition re-
sources and services. This code is created from AADL compo-
nents modeling partitions: process, threads, data and their
features (communication ports).

For partition resources, generation patterns create tasks,
shared data and communication channels. It also generates
tasks from AADL threads that receive data, execute applica-
tion function (such as Ada/C code) and send outputs.

From a security-side, the code generator configures cipher
algorithms and automatically encrypt/decrypt data when an
interface (AADL port) uses a security layer.

Automatic configuration of cipher algorithms ensures data
encryption according to the specification. It avoids potential
security threat potentially introduced by developers who can
introduce errors in the usage of these security mechanisms.
As a result, the automatic configuration ensures that data will
be crypted before sharing them over an unsecured bus (such
as an ethernet network).

2) Code generation patterns for kernels: The code genera-
tor automatically configures kernel isolation services. This is
the most critical part of the code since an error can break
the security policy. This is a particular interest since the
automatic code generation avoids errors generally introduced
by traditional development methods.

Generation patterns analyze AADL components that model
isolation requirements (processors, memories and partitions
features) and create code that:

• Configure space isolation, ensuring that each memory
segment is isolated and allocated to a partition.

• Configure communication channels by connecting par-
titions interfaces so that the kernel precisely knows which
partitions can communicate together.

• Allocate partitions resources (tasks, channels, etc).
Generated code is then integrated to our MILS operating

system in order to create the final implementation. Next
subsection presents our MILS O/S implementation, POK.

B. POK, a libre MILS Operating System

POK is a MILS-compliant operating system functions re-
leased under the BSD licence. We detail its architecture
(shown in figure 6) through the next paragraphs.

Hardware abstraction

Fault
handling

Time
management

Memory
management

Time
isolation

Space
isolation

Inter-partitions
communications

P
O

K
 K

er
ne

l

Kernel
interfacing

Tasking
services

Intra-partition
communications

Maths functions libc POSIX ARINC653

Cipher algorithms Device drivers

P
ar

tit
io

n
ru

nt
im

e
(li

bp
ok

)

Fig. 6. POK architecture

1) Kernel layer: Our design guidelines lead us to keep it as
small as possible to be amenable to certification/verification.
At this time, its size is less than 3000 Source Line Of Code
(SLOC), including the architecture-dependent code (which
handles low-level concerns).

It provides time and space isolation services:
• Space isolation: it stores partitions code, data and re-

sources in separate address spaces.
• Time isolation: it schedules partitions according to a

cyclic scheduling protocol with fixed time slices.
The kernel also provides inter-partitions communication

service, which is responsible to enable data sharing across par-
titions. This functionnality ensures that only allowed partitions
can communicate, avoiding covert channels.

2) Partition runtime: Due to its lower criticality, this layer
contains more services than the kernel. The core layer (services
depicted at the bottom in figure 6) provides tasking, intra-
partition communication functions.

On top of this core layer, compatibility layers supports
several standards (such as POSIX or ARINC653) to ease
application portability. These are independent and rely only
on the core layer.

It also includes cipher algorithms to crypt data. They are
then used by the generated code to crypt/uncrypt data before
sending/receiving them.

Finally, this layer provides device drivers. In POK, drivers
are executed in partitions, implementing them in the kernel
could potentially break isolation services.

VI. CASE STUDY

A. Case study overview

Our case study, illustrated in figure 7 defines a system
that share data at top-secret, secret and unclassified security
levels. Data classified at these levels are transfered through an
unclassified channel, which is a typical case-study when we
share classified data over a network.

SLS components in S1, S2 and S3 are subprograms that
produce integers at a given rate (for example, 100 ms). SLS
components in R1 and R2 print received data.

To send classified data at an unclassified security level, we
downgrade/upgrade data security-level. Data sent or received

SLS
(Top-Secret)

SLS
(Secret)

SLS
(unclassified)

network sender

SLS
(unclassified)

MSLS
(Top-secret + secret)

SLS
(unclassified)

network recv

SLS
(unclassified)

MLS
(TS + S + Unclassified)

MLS
(Top-Secret + Unclassified)

MLS
(Secret + Unclassified)

MSLS
(Top-secret + unclassified)

MSLS
(Secret + unclassified)

MSLS
(TS + S + unclassified)

(S1) (S2)

(S3)

(S4)

(R1) (R3)
(R2)

Fig. 7. Overview of our case study

by SLS components S1, S2 or R1 is modified by MLS com-
ponents. To ensure data protection, components that handle
classified data encrypt/decrypt it before/after sending/receiving
to/from unclassified entities.

SLS components S4 and R3 represent software that manages
network hardware. It is responsible to send/receive packets on
the network. They are not verified and so, transport data only
at an unclassified security level.

We map this abstract architecture in AADL using our mod-
eling rules (cf. figure 8). It is a distributed system deployed
on two nodes sharing classified information on an untrusted
network:

1) The sender node isolates components S1, S2, S3 and S4
in partitions that runs on the same processor

2) The receiver node isolates components R1, R2 and R3
in partitions on another processor.

This model defines the security layers by means of virtual
bus components. It associates appropriate security layers to
partitions and communication interfaces: the top-secret secu-
rity layer is associated to partitions R1 and S1, secret layer
to S2 and R1 and the unclassified layer to S3 and R2. When
a partition or a communication port is not associated to a
security layer, it is bound to the unclassified security layer by
default (no encryption mechanism is used).

Ocarina [21] automatically generates code for nodes from
this architecture model. This code is then integrated with
POK [2], our MILS O/S to produce a final implementation.
Next section reports our results, showing encryption correct-
ness as well as compliance with safety-critical system needs.

B. Validation

We first validate our architecture against our REAL the-
orems (cf. section IV). No error was reported, showing the
specification preserves security isolation.

Then, we check for correctness of the security implementa-
tion. For that purpose, we execute generated applications in an
emulator connected through a virtual ethernet bus. We capture
the network traffic produced by each partition and inspect each
ethernet frame using the wireshark [13] tool. The tool reports

Network Driver
(unclassified)

Top-secret + Secret

Unclassified

partition
unclassified

partition
TS + S

partition
unclassified

Network Driver
(unclassified)

Unclassified Secret Top-Secret

partition
unclassified

partition
Secret

partition
Top-Secret

partition
unclassified

network

(S1)(S2)(S3)

(S4)

(R1)
(R2) (R3)

unclassified
secret

top-secret

Fig. 8. AADL architecture

that captured data exchanged across partitions was encrypted,
so that an attacker could not read it. In addition, partitions that
receives data print expected results, showing that uncryption
mechanisms are also well implemented.

VII. CONCLUSION

This article presented a framework for the design, validation
and implementation of MILS architectures. As far as we know,
this is the first rapid prototyping approach of MILS systems.

Our modeling patterns dedicated to MILS and their asso-
ciated validation rules detect security issues at a specification
level. This is of particular interest because it ensures security
levels isolation in a distributed architecture and check for their
implementation correctness. Specification and validation steps
report errors before implementation, thus increasing reliability
of produced systems.

In addition, automatic code generation (with the Ocarina
code generator and the POK MILS O/S) ensures a conformant
implementation. This avoids errors related to hand-made code.

A. Further work

This work could also be improved in several ways. In
particular, if we want to extend our validation framework and
validate architecture models using other security policies.

In addition, we plan to evaluate encryption mechanisms with
other security mechanisms. During our current experiments,
we only use symetric cipher algorithms but it can be extended
with asymetric ones.

ACKNOWLEDGMENTS

POK is an open-source partitioned kernel developped by
many actors from different schools and companies. We would
like to thank every contributor of POK.

REFERENCES

[1] “Common Criteria for Security Evaluation –
http://www.commoncriteriaportal.org.”

[2] J. Delange, POK user guide - http://pok.gunnm.org.
[3] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and

F. Kordon, “Validate, simulate, and implement ARINC653 systems using
the AADL,” Ada Lett., vol. 29, no. 3, pp. 31–44, 2009.

[4] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The Architecture Analysis
and Design Language (AADL): An Introduction,” Tech. Rep., 02 2006.

[5] P. H. Feiler and J. Hansson, “Flow Latency Analysis with the Architec-
ture Analysis and Design Language (AADL),” SEI, Tech. Rep., 2007.

[6] O. Gilles and J. Hugues, “Validating requirements at model-level,” in
Ingénierie Dirigée par les modèles (IDM’08), Mulhouse, France, jun
2008, pp. 35–49.

[7] J. Hansson, P. H. Feiler, and J. Morley, “Building secure systems
using model-based engineering and architectural models,” Crosstalk,
September 2008.

[8] J. Hansson and A. Greenhouse, “Modeling and Validating Security and
Confidentiality in System Architectures,” CMU/SEI, Tech. Rep., 2008.

[9] Information Assurance Directorate, “U.S. Government Protection Profile
for Separation Kernels in Environments Requiring High Robustness,”
2007.

[10] National Institute of Standards and Technology (NIST), “The Economic
Impacts of Inadequate Infrastructure for Software Testing,” Tech. Rep.,
2002.

[11] Object Management Group (OMG), “Systems Modeling Language
(SysML),” 2007.

[12] OMG, A UML Profile for MARTE, Beta 1. OMG Document Number:
ptc/07-08-04, Aug. 2007.

[13] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce, Wireshark & Ethereal
Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security).
Syngress Publishing, 2006.

[14] A. Rodriguez, E. Fernandez-Medina, and M. Piattini, “Security
requirement with a UML 2.0 profile,” 2006. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1625372

[15] J. Rushby, “The design and verification of secure systems,” in Eighth
ACM Symposium on Operating System Principles (SOSP), Asilomar,
1981, pp. 12–21, (ACM Operating Systems Review, Vol. 15, No. 5).

[16] ——, “Separation and Integration in MILS (The MILS Constitution),”
SRI International, Tech. Rep., 2008.

[17] SAE, Architecture Analysis & Design Language v2.0 (AS5506), Septem-
ber 2008.

[18] G. Uchenick and M. Vanfleet, “Multiple Independent Levels of Safety
and Security: High Assurance Architecture for MSLS/MLS,” in Military
Communications Conference, 2005. MILCOM, IEEE, Ed., 2005.

[19] W. M. Vanfleet, J. A. Luke, R. W. Beckwith, C. Taylor, B. Calloni,
and G. Uchenick, “MILS:Architecture for High-Assurance Embedded
Computing,” Crosstalk, 2005.

[20] WW Technology Group, “EDICT Tool Suite -
http://www.wwtechnology.com/.”

[21] B. Zalila, J. Hugues, and L. Pautet, Ocarina user guide, TELECOM
ParisTech.

[22] J. Zhou and J. Alves-Foss, “Architecture-based refinements for secure
computer systems design,” 2006.

