
Adapting models to model checkers, a case study :
Analysing AADL using Time or Colored Petri Nets∗

Xavier RENAULT, Fabrice KORDON
Université Pierre & Marie Curie,

Laboratoire d’Informatique de Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05

xavier.renault@lip6.fr,
fabrice.kordon@lip6.fr

Jérôme HUGUES,
Institut TELECOM, TELECOM ParisTech, LTCI

46, rue Barrault, F-75634 Paris CEDEX 13
jerome.hugues@enst.fr

Abstract

The verification of High-Integrity Real-Time systems
combines heterogeneous concerns: preserving timing con-
straints, ensuring behavioral invariants, or specific execu-
tion patterns. Furthermore, each concern requires specific
verification techniques; and combining all these techniques
require automation to preserve semantics and consistency.

Model-based approaches focus on the definition of rep-
resentation of a system, and its transformation to equivalent
representation for further processing, including verification
and are thus good candidates to support such automation.

In this paper, we show there is a strong requirement to
automatically map high-level models to abstractions that
are dedicated to specific analysis techniques taking full ad-
vantage of tools. We discuss this requirement on a case
study: validating some aspects of AADL models using both
coloured and time Petri Nets.

1 Introduction

The increasing development of distributed real-time em-
bedded (DRE) systems requires the definition of dedicated
process to cope with multiple levels of concerns such as:
(i) resource dimensioning (processor, memory, time, band-
width, etc.), (ii) behavior expectation (causality of events,
correct processing of all events, safety, etc.), and (iii) cost
reduction. Furthermore, current systems now usually re-
quire multiple expertise from domain-specific engineers,
system integrators, quality and assurance teams.

In this context, Model Driven Engineering (MDE) is a
convenient approach to gather those concerns as a set of
combined but yet heterogeneous models. Current applica-
tion of MDE advocate for a clear separation of concerns

∗This work has been partially funded by the ANR Flex-eWare project.

that are expressed by means of a several of models (from
high-level specifications down to implementation models).
Although they aim at defining an “ideal process”, they sel-
dom address an important issue: how to combine models
and tools in order to ensure both consistency between speci-
fication levels and the mapping of specifications into refined
ones more suitable for analysis.

There is a need for “Verification Driven Engineer-
ing” (VDE): the careful choice of design patterns, com-
bined to Validation and Verification tools (V&V). In [15],
we note this usually requires engineers to fully understands
both benefits and drawbacks of V&V tools. This is crucial
to use them in the appropriate conditions and avoid pitfalls
like non-applicability of theory (such as schedulability anal-
ysis), or combinatorial explosion.

This paper shows how to take advantage of one nota-
tion, AADL to support VDE. AADL is a generic modeling
framework for designing real-time embedded systems. Our
goal is to automate, according to the system property to be
verified, the choice of both an appropriate tool and the cor-
responding mapping to a specification it may process. Such
an approach should increase the use of formal specifications
in software and thus the quality of produced systems with-
out increasing design time.

In particular, this work focuses on the behavioral anal-
ysis of AADL by means of Petri Net models, as an appli-
cation of VDE. It illustrates how to take advantage of Petri
Nets and their extensions for several types of properties to
be checked (deadlock detection, schedulability dimension-
ing). This allows a more efficient prototyping (or MDE)
approach in the development of real-time systems.

The next two sections present AADL and Petri Nets.
Then, section 4 details how we map an AADL model con-
taining time information into a Time Petri net and how we
can verify some important scheduling properties. Section 5
illustrates our approach on a simple example.

2 AADL and V&V

AADL [20] is an architecture description language ded-
icated to the design of DRE systems standardized by the
SAE. AADL is component-centric and allows to specify
both software and hardware parts of a systems. It allows
one to define consistent block interfaces, and to separate
them from block implementation.

An AADL model is made of components. Software
components (data, thread, thread group, subprogram,
process) are distinguished from execution platform com-
ponents (memory, bus, processor, device) and hybrid
components (system).

The behavior of a system (e.g. how functional blocks
interact) is fully defined in the standard by mean of “prop-
erties” (attributes with a dedicated semantics) to progres-
sively refine the semantics of a system, e.g. dispatching
invariants, communication patterns. Non-functional proper-
ties applied to each model element. Non-functional aspects
of components can be described within an AADL model
such as thread dispatching condition (periodic or sporadic),
interface specifications and how components are intercon-
nected. These have a deep impact on the system’s behavior.
Functional aspects (algorithmic specifications) are attached
separately as source code by means of AADL properties.
An introduction to AADL can be found in [6].

AADL provides two major benefits for building DRE
systems. First, compared to other modeling languages,
AADL defines low-level abstractions including hardware
descriptions. These abstractions are more likely to help de-
signing a full system, close to the final product. Second,
hybrid system components help to refine the architecture as
they can be detailed later in the design process, allowing
for successive stages of modeling, from early requirements
down to executable models.

AADL tools support schedulability analysis [21], de-
pendability modeling [7] and automatic code genera-
tion [13]. Furthermore, numerous works explored the map-
ping of AADL semantics onto formal specifications for the
verification of behavioral properties. This has been per-
formed in multiple experiments from AADL to BIP [5],
LOTOS [10] or TLA [19]. However, these works con-
template only a case study, whereas we strive at defining
a generic mapping, automated in our OCARINA toolset.

3 Petri Nets and extensions

Petri Nets [9, 14] are a family of formal notations to de-
scribe the behavior of distributed and concurrent systems.
They offer several facets, we first present basic Petri nets
and then two extensions for analyzing AADL models.

Petri nets Petri Nets are composed with places that repre-
sent resources and transition that define constraints between
places. Places hold tokens that are consumed or produced
by transition according to a firing rule.

The firing rule is the following: if all precondition places
of a transition hold a sufficient number of tokens, the transi-
tion is fired. Corresponding tokens are removed from input
places and other tokens are produced in output places.

••

•••
parking_lots

get_outget_in outin_parkingready

Figure 1. Petri net example

Figure 1 shows a simple Petri net modeling cars in a
parking. In the initial state of the system, there are 3 to-
kens (cars ready to enter the parking) in place ready and 2
in place parking lots (2 lots availables).

Transition get in is enabled and may thus be fired (sev-
eral transition may be enabled at the same time and the in-
terleaving semantics is then used there to show all possible
execution of the system). When it fires, it consume one to-
ken from input places (ready and parking lots) and produces
one token in in parking. Then, ready contains only two to-
kens, parking lots 1 and in parking 1 token. From this new
state, both get in and get out can be fired.

Colored Petri Nets Colored Petri nets are Petri nets in
which tokens carry out information. This requires the dec-
laration of “color domains” (data types) to type places and
the marking they contain. The firing rule then not only re-
lies on the presence of tokens in input place; it may implies
some constraints on the token values.

Class
 Car is 1..3;
Var
 c, p in Cars;

parking_lots

<1>,<2>

get_outget_in [c=p]

out

in_parking

ready
<Car.all>

<p>

<c,p>

<p>

<c><c,p><c>

Figure 2. Colored Petri net example

Figure 2 shows a variation of the model of figure 1.
There we consider that parking lots (variable p in the model)
are associated to a given car (variable cin the model). Initial
marking of place ready contains 3 cars with their individ-
ual id (<card.all> represents tokens 1 to 3 according to the
color domain Car). There are two parking lots numbered
1 and 2. Then, according to the firing rule of colored Petri
nets, only cars 1 and 2 can enter the parking because there is

no lot for cars 3. This behavior is expressed by guard [c=p]
in transition get in.

We chose symmetric nets1 [4] (SN) for this work. SN is
a class of Colored Petri nets that takes advantages of sym-
metries in distributed systems.

Time Petri Nets Time Petri nets [2] (TPN) are Petri nets
where a time interval [a,b], with 0≤ a≤ b≤+∞ is associ-
ated with each transition. Thus, an implicit clock is associ-
ated with transitions : this clock is reset when the transition
is newly enabled. A transition cannot be fired until the clock
reaches a and must be fired before the clock reaches b. A
consequence of this firing rule is that the system reaches a
deadlock when time constraints are contradictory.

••

•••

parking_lots

get_out [1,5]get_in [0,0]

outin_parkingready

Figure 3. Time Petri net example

Figure 3 shows a new variation of the model of figure 1.
as soon as it is enabled, get in must fire immediately while
we consider cars to be parked between 1 and 5 time units
(the [0,+∞] interval is used to model Petri net transitions).

Clock values may be discrete or dense (for continuous
time). In this paper we only consider discrete time.

Verification Capabilities Petri nets offer both structural
analysis (computing from the model structure without hav-
ing to generate the state space) and model checking (prop-
erties computed on the state space generated by “execut-
ing” the Petri net). Model checking on Petri nets allows to
deduce safety properties (e.g. detection of a state having
a given profile) or temporal properties (causal relation be-
tween events in the system). For example, a deadlock is a
safety property while a livelock is a causal properties.

The advantage of SN is that we can use token values
to follow more precisely the execution of the system. In
our example, we can identify a given car and thus demon-
strate that car 3 cannot fire get in. However, color introduce
complexity in the system that can be overcome by various
techniques like a set-based representation of states that may
reduce complexity by an exponential factor [4].

The advantage of TPN is that time can be inserted in
properties to be verified. For example, traditional temporal
logic such as CTL and LTL have been extended to consider
time. Once again, this capability introduce more complexity

1Symmetric Nets were formerly known as Well-Formed Nets, a subclass
of High-level Petri Nets. The new name was chosen in the context of the
ISO standardisation of Petri nets [11].

that can be overcome by means of techniques like polyno-
mial representation [8] or the region graph [22].

Such properties are of interest to analyze AADL spec-
ifications. SN allows to detect properties such as dead-
lock, livelock while TPN are useful to check for potentially
missed deadlines.

4 Generic Time Petri Net patterns for AADL

Qualitative properties verified in [18] thanks to SN are
of interest to check if the system is safe. However, SN are
not suitable for the verification of real-time properties such
as deadline missed, or buffers overflow. In this paper, we
propose to extend this work using TPN.

In AADL, behavior is mostly represented by Threads
and their interactions. This section details the translation
pattern of these elements into TPN. It is important to note
that, at this stage, we focus on periodic threads in systems
that are not preemptive (i.e. the Preemptive Scheduling
is set to false in the AADL model).

Exploited AADL properties For each thread, the follow-
ing properties are analyzed and used as input parameters for
the TPN pattern:

• Period: used to set Period Event transition interval.

• Compute Execution Time specifies the amount of
time that a thread will execute after a thread has been
dispatched, before it begins waiting for another dis-
patch. It is used to set the Complete transition interval.

• Compute Deadline specifies the maximum amount of
time allowed for the execution of a thread’s compute
sequence. This is used to compute the WCET of a
thread, and to set the WCET transition interval.

• Priority allows to compute which thread has a lower
priority than another: if two threads may be dis-
patched, the one with the higher priority will be. Those
priority relations are translated into priority arcs be-
tween Compute Entrypoint threads transitions.

• Dispatch Protocol decides which pattern is used for
the model transformation. In this paper, we only focus
on periodic threads.

An AADL specification presenting all these properties
can be found in Figure 9.

TPN Pattern for AADL threads Our approach relies on
a main pattern representing the thread life-cycle and de-
rived from its modeling in the latest version of the AADL-
standard [20]. Figure 4 depicts this pattern, derived from
the SN one. We show how to complete it with time.

Send [0,0]

Receive [0,0]
Wait_Complete

ComputeDispatchedCompute_Entrypoint [0,0]

Complete [0,0]

Wait_For_Dispatch

Initialization_Dispatch [0,0]

Halted
•

Figure 4. TPN Pattern for Thread Lifecycle

As shown in the figure 4, the thread life-cycle begins in
an Halted state. Then, initialization can be processed and
the thread waits for its dispatch. Since we focus on periodic
threads, the dispatch is a clock event. Once dispatched, it
collects data from its input ports (if any), processes these
data, and potentially generates some event or data to other
system thread via its output ports. Finally, once its task
completed, the thread waits for another dispatching.

In the pattern, Compute Entrypoint transition is the
thread’s dispatch interface: any incoming event (clock for
example) will be linked to it.

Transitions are immediate (i.e. interval set to [0,0],
meaning firing occurs as soon as possible), since related
time consumption is not relevant in the model compared to
time consumption of the Send, Compute, Receive sequence
in the thread lifecycle. This sequence could be expanded
into subprogram calls.

The pattern In the presented lifecycle, no mention of pe-
riodicity is done. To achieve this goal, we need to introduce
two places and one time transition in the pattern.

Figure 5 shows the enriched model. Transition Pe-
riod Event generates a token in place Clock: it means that
the related thread must be activated.

Halted

Initialization_Dispatch [0,0]

Wait_For_Dispatch

Complete [0,0]

Compute_Entrypoint [0,0]
Dispatched Compute

Wait_Complete
Receive [0,0]

Send [0,0]

Hyperperiod_Bound
H

Clock

Period_Event [P,P]

•

Figure 5. Thread Lifecycle + periodic dispatch

Period Event is a time transition parameterized from the
related thread period. Considering a P periodic thread (i.e.
a thread with a P time units period), then Period Event time
interval is [P , P]. It means, that, each time the Pe-
riod Event transition is enabled, it will fire at after exactly P

time units. Its firing generates one token in Clock and thus
enables a dispatch.

H tokens are initially set in Hyperperiod Bound to
bound the total number of dispatch and avoid state-space
explosion during verification. Value of H is computed in
order to let the system work for a complete hyperperiod.
For example, in a system with two periodic threads of re-
spectively 5 and 15 time units, H should be set to 3 for the
5-periodic thread and to 1 for the 15-periodic thread. Of
course, if only one thread is considered, as in Figure 5, then
the marking is 1.

Handling multi-threaded systems Since multi-threaded
systems share resources (at least the processor), a dedicated
pattern must be added to the previous one.

Let us show this pattern for the processor (figure 6). It is
then modeled by means of a place with as many tokens as
there are cores. Presence of a token in this place (Processor
in figure 6) means that the corresponding core is idle.

Then, execution of any actions requires a processor core
to be available. Thus, the Processor place is a precon-
dition of several transition in the following way. Com-
pute Entrypoint and Complete only check availability of the
processor. Receive get the core for a computation that may
take some time until Send is fired (when this dispatched
event is treated) and release the token in place Processor.

Halted

Initialization_Dispatch [0,0]

Wait_For_Dispatch

Complete [0,0]

Compute_Entrypoint [0,0]
Dispatched Compute

Wait_Complete
Receive [0,0]

Send [0,0]

Hyperperiod_Bound
H

Clock

Period_Event [P,P]

Processor
•

•

Figure 6. TPN thread pattern and processor

Using priorities between transitions: The TPN formal-
ism allow us to specify priorities between transitions in the
model. Then, we can potentially force a firing order when
several are simultaneously enabled.

This is of interest for our mapping strategy to model
scheduling policies, such as Rate Monotonic Scheduling
(RMS): priority is indicated by setting up priorities between
each thread Compute Entrypoint transition of the system.
Such information is picked up from the AADL model.

Note that we could expand the Compute place into more
complex subnets, modeling different subprograms calls,
consuming the processor resource.

At this stage, our patterns contains all the basic features to
model the behavior of an AADL system.

Scheduling properties are verified by means of the ob-
server technique [1]. Let us describe the way we apply this
technique for two useful properties in real-time systems.

Checking potentially missed deadlines To detect missed
deadlines, the grey subnet is added (Figure 7) to the pat-
tern. The place Working gets a token when the correspond-
ing thread is dispatched (i.e. transition Compute Enrypoint
is fired). This creates a race between transitions WCET and
Complete. WCET time interval is set to [W,W] where W is
the worst case execution time.

Working Missed_Deadline

WCET [W,W]

Halted

Initialization_Dispatch [0,0]

Wait_For_Dispatch

Complete [0,0]

Compute_Entrypoint [0,0]
Dispatched Compute

Wait_Complete
Receive [0,0]

Send [0,0]

Hyperperiod_Bound
H

Clock

Period_Event [P,P]
Processor

•

•

Figure 7. Missed deadline TPN pattern

When the computation meet the thread deadlines, Com-
plete fires first, thus consuming the token in Working. Oth-
erwise, WCET is fired and marks Missed Deadline. Let us
note that Complete priority must be over WCET priority to
cope with the case where W time units is reached. This is
graphically noted with the dotter arc in figure 7 and an or-
ange arc in figure 9 (following TINA’s tool convention).

Thus, if there is no way to have a token in all the
Missed Deadline places in the system state space, there is
no way for the system to miss any deadline. Note that pri-
ority relations are represented with dotted arrows.

Checking potentially missed activations To detect
missed activations, we add a place and a transition to
the pattern (grey subnet in Figure 8). Transition Activa-
tion Time is immediate, and has to be fired if the current
thread is still working when a new Clock event is produced
(i.e. a token in the Clock place). This transition races with
Compute Entrypoint but the later has a higher priority.

Then, when the thread must be dispatched but missed
its activation deadline, then Activation Time is fired and
Missed Activation is marked. Thus, if there is no way to
have a token in all the Missed Activation places in the sys-
tem state space, then the system miss no activation.

•

Activation_Time [0,0]

Missed_Activation

Working Missed_Deadline

WCET [W,W]

Halted

Initialization_Dispatch [0,0]

Wait_For_Dispatch

Complete [0,0]

Compute_Entrypoint [0,0]

Dispatched Compute

Wait_Complete
Receive [0,0]

Send [0,0]

Hyperperiod_Bound
H

Clock

Period_Event [P,P]
Processor

•

•

Figure 8. Missed activation TPN pattern

5 A Case Study

This section presents an application of our approach.

The AADL model and its TPN translation In Figure 9,
we consider two periodic threads running on a single pro-
cessor, with a FIFO Within Priorities scheduling policy.
Those two threads interact through their ports. The sender
thread sends a message to the receiver thread each time it is
dispatched. This model is simple, yet insightful as it shows
how to combine multiple verification.

Analysis on the SN model In [18], we have presented the
analysis of SN generated from AADL with CPN-AMI [17].
It shows that typical qualitative analysis such as deadlock
detection or evaluation of temporal logic formulae (causal
analysis) provides precious information to system design-
ers. We experimented both deadlock and livelock detec-
tion, as well as the verification of communication capabili-
ties such as the dimensioning of buffers.

Such analysis is useful when checked properties are ver-
ified. Yet, qualitative analysis relies on all possible behavior
while sometimes, timing constraints suppress some “patho-
logic” execution. In other words, the SN model may gen-
erate a greater state space than the TPN one for qualitative
properties. Thus, such properties may not be verified on the
SN model but are, in fact, true on the time model (“patho-
logic” executions are suppressed due to timing constraints).

So, SN-based analysis is of interest because it does not
require timing information and thus provide useful hints to
designers at an early stage of system design. Later, when
time information is available, TPN-based analysis brings in-
terest: 1) for time properties, 2) for qualitative analysis of
properties that could not be verified on the SN model and
could be verified on the TPN specification.

Finally, let us note that state-space explosion is also con-
cern since no technique such as symbolic representation of

sender_Halted Initialization_Dispatch

[0,0]

receiver_Halted

receiver_Wait_For_Dispatch

sender_HyperPeriod

3

receiver_HyperPeriod

sender_Period_Event[5,5]

sender_Clock

sender_Compute_Entrypoint

[0,0]

sender_Complete

[1,1]

sender_Wait_For_Dispatch

receiver_Compute_Entrypoint

[0,0]

receiver_Complete

[1,1]

receiver_Working

receiver_Period_Event [1,1]

receiver_Clock

sender_Dispatched sender_Wait_Complete

sender_Receive [0,0]

sender_Send

[0,0]

receiver_Dispatched

receiver_Receive

[0,0]

receiver_Send

[0,0]

receiver_Wait_Complete

receiver_Computesender_Compute

sender_Working

bus

singleProcessor

sender_WCET

[2,2]

receiver_Activation_Time

[0,0]

receiver_WCET

[3,3]

sender_Activation_Time

[0,0]

sender_Missed_Deadline

sender_Missed_Activation

receiver_Missed_Deadline

receiver_Missed_Activation

thread implementation SenderThread.impl
 properties
 Period => 5ms;
 Compute_Execution_Time => 1ms .. 1ms;
 Compute_Deadline => 2ms;
 Dispatch_Protocol => (Periodic);
 Priority => 2;
end SenderThread.impl ;

thread ReceiverThread
 features
 inPort : in event port {Queue_Size => 1);
end ReceiverThread ;

thread implementation ReceiverThread.impl
 properties
 Period => 1ms;
 Compute_Execution_Time => 1ms .. 1ms;
 Compute_Deadline => 3ms;
 Dispatch_Protocol => (Periodic);
 Priority => 1;
end ReceiverThread.impl ;

system CaseStudy
end CaseStudy;

system implementation CaseStudy.impl
 subcomponents
 singleProcessor : processor DefaultProcessor.impl;
 singleProcess : process DefaultProcess.impl ;
properties
 Actual_Processor_Binding =>
 reference singleProcessor
 applies to singleProcess.sender;
 Actual_Processor_Binding =>
 reference singleProcessor
 applies to singleProcess.receiver;
end CaseStudy.impl

-- Description of a processor to execute the threads
--
processor DefaultProcessor
end DefaultProcessor ;

processor implementation DefaultProcessor.impl
 properties
 Scheduling_Protocol => (RMS);
 Preemptive_Scheduler => False;
end DefaultProcessor.impl;

-- A process containing two threads
--
process DefaultProcess
end DefaultProcess ;

process implementation DefaultProcess.impl
 subcomponents
 sender : thread SenderThread.impl ;
 receiver : thread ReceiverThread.impl ;
 connections
 bus : event port sender.outPort
 -> receiver.inPort ;
end DefaultProcess.impl ;
--

-- Description of the periodic threads

thread SenderThread
features
 outPort : out event port;
end SenderThread ;

Figure 9. A case study: two periodic threads interacting

states is available for TPN to provide compact state-space
storage in memory (gain can be exponential for real sys-
tems as shown in [12]). So, when combinatorial explosion
cannot be fought for very large systems with TPN, it usually
remains at a reasonable level on the SN specification.

Analysis on the TPN model Let us now focus on
time analysis with TPN with TINA [3, 16]. It al-
lows to compute the reachability graph but for TPNs.
The state space for the model of figure 9 contains 22
states and 21 arcs. It shows that the model contains 4

dead transitions (i.e. transitions which are never fired):
sender WCET, sender Activation Time, receiver Complete
and receiver Activation Time.

The receiver Complete transition belongs to the thread
lifecycle. If this transition is dead, then the receiver thread
does not achieve its cycle. We detect an error in the schedul-
ing parameters of our system since, as mentioned in the pre-
vious section, place receiver Missed Deadline is marked.

Another dead marking was expected: since the system is
bound to one hyperperiod to master complexity of the state
space, it corresponds to the end of the hyperperiod.

Checking model resources: The TPN generated models
allow to check another interesting property: are the com-
munication channel bounded ? Is any message lost (i.e. the
channel has already reached its maximum capacity) ?

To do so, we use the Queue Size AADL property, ap-
plied to the input port of the receiver thread (and, in a gen-
eral manner, to any input port in an AADL specification).

We then use the following LTL formula: [](bus ≤ X),
where X is the Queue Size value. In our example, its value
is 1, so the formula becomes [](bus≤ 1). Note that [] symbol
stands for “always”: the formula could be read as “In all
execution state, bus marking is always lower than 1”.

For the case study, the SELT model-checker in TINA re-
turns FALSE, with a counter example where the bus place
marking is equal to 2: the queue capacity is not big enough.

Deduced corrections: From those results, the engineer
have to correct its specification: the system is not schedula-
ble and threads period or WCET have to be corrected.

For communication channel, changing the Queue Size
from 1 to 2 is sufficient: the formula [](bus≤ 2) is TRUE.

6 Conclusion

MDE is now becoming a standard development ap-
proach. In that context, it is of interest to exploit models
for verification purpose in order to detect early misconcep-
tions as well as violated expected properties. This is called
Verification Driven Engineering (VDE) in [15].

This paper extends our previous work on the mapping of
AADL onto Symetric Nets [18] to Time Petri nets, allow-
ing the verification of time-based properties such as missed
deadline or missed thread activation in a real-time system.
SN patterns are revisited and observers are defined to check
for such properties. We apply these patterns, and use model
checkers to illustrate the benefits of our approach.

This work shows that it is of interest to use a high-level
and well defined notation as a basis for the formal verifica-
tion of various “typical properties” of real-time embedded
systems. Since no formal notation fits all needs, each prop-
erty is verified thanks to the most appropriate transforma-
tion (here, SN and TPN).

This is a first and important step to provide automated
mechanisms that help designers to verify properties on their
systems. With appropriate tools implementing the pre-
sented strategies, engineers will not need a deep knowledge
of formal methods to formally verify their models. OCA-
RINA already includes such tools as prototypes.

Future work will focus on the generation of LTL formu-
lae from some high-level properties described by the de-
signer at the AADL level.

References

[1] B. Alpern, B. Alpem, F. B. Schneider, and F. B. Schnei-
der. Verifying temporal properties without temporal logic.
ACM Transactions on Programming Languages, 11:147–
167, 1989.

[2] B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time petri nets. IEEE Trans.
Softw. Eng., 17(3):259–273, 1991.

[3] B. Berthomieu, P. Ribet, and F. Vernadat. The tool TINA
– Construction of Abstract State Spaces for Petri Nets and
Time Petri Nets. Int. Journal of Production Research,
42(14):2741–2756, 2004.

[4] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Had-
dad. Stochastic Well-Formed Colored Nets and Symmetric
Modeling Applications. IEEE Transactions on Computers,
42(11):1343–1360, 1993.

[5] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Trans-
lating AADL into BIP - Application to the Verification of
Real-time Systems. In Model Based Architecting and Con-
struction of Embedded Systems, 2008.

[6] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architec-
ture Analysis & Design Language (AADL): An Introduc-
tion. Technical report, 2006. CMU/SEI-2006-TN-011.

[7] P. H. Feiler and A. Rugina. Dependability Modeling with the
Architecture Analysis & Design Language (AADL). Tech-
nical Report CMU/SEI-2007-TN-043, 2007.

[8] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. Romeo:
A Tool for Analyzing Time Petri Nets. In 17th International
Conference on Computer Aided Verification, volume 3576
of LNCS, pages 418–423. Springer Verlag, 2005.

[9] C. Girault and R. Valk. Petri Nets for Systems Engineering.
Springer Verlag - ISBN: 3-540-41217-4, 2003.

[10] I. Hamid and E. Najm. Real-Time Connectors for Determin-
istic Data-flow. In Proceedings of RTCSA’07, 2007.

[11] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PN stan-
dardisation : a survey. In 26th International Conference
on Formal Methods for Networked and Distributed Systems
(FORTE’06), volume 4229 of LNCS, pages 307–322, Paris,
France, September 2006. Springer Verlag.

[12] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middle-
ware Behavioral Properties. In Proceedings of the 9th Inter-
national Workshop on Formal Methods for Industrial Criti-
cal Systems (FMICS’04), Linz, Austria, Sept. 2004. TO BE
PUBLISHED.

[13] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. Rapid Pro-
totyping of Distributed Real-Time Embedded Systems Us-
ing the AADL and Ocarina. In Proceedings of the 18th
IEEE International Workshop on Rapid System Prototyping
(RSP’07), pages 106–112, Porto Alegre, Brazil, May 2007.
IEEE Computer Society Press.

[14] K. Jensen. Coloured Petri nets: basic concepts, analysis
methods and practical use, vol. 1, vol. 2 et vol. 3. Springer-
Verlag, London, UK, 1995.

[15] F. Kordon, J. Hugues, and X. Renault. From model driven
engineering to verification driven engineering. In 6th IFIP
WG 10.2 International Workshop on Software Technologies

for Embedded and Ubiquitous Systems, volume 5287 of
LNCS, pages 381–393. Springer Verlag, 2008.

[16] LAAS. The TINA Home page, url:
http://www.laas.fr/tina/description.php.

[17] MoVe-Team. The CPN-AMI Home page, url:
http://www.lip6.fr/cpn-ami.

[18] X. Renault, F. Kordon, and J. Hugues. From AADL ar-
chitectural models to Petri Nets: Checking model viability.
In 12th IEEE International Symposium on Object-oriented
Real-time distributed Computing (ISORC’09), pages 313–
320, Tokyo, Japan, March 2009. IEEE CS.

[19] J.-F. Rolland, J.-P. Bodeveix, D. Chemouil, M. Filali, and
D. Thomas. Towards a formal semantics for AADL execu-
tion model. In European Congress on Embedded Real-Time
Software (ERTS), Toulouse, 29/01/08-01/02/08, 2007.

[20] SAE. Architecture Analysis & Design Language V2
(AS5506A), jan 2009. available at http://www.sae.org.

[21] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Scheduling
and memory requirement analysis with aadl. In A. Press,
editor, proceedings of the ACM SIGADA International Con-
ference, volume 25, pages 1–10, 2005.

[22] I. Virbitskaite and E. Pokozy. A Partial Order Method for the
Verification of Time Petri Nets. In 12th International Sym-
posium on Fundamentals of Computation Theory, volume
1684 of LNCS, pages 547–558. Springer Verlag, 1999.

