From AADL architectural models to Petri Nets :
Checking model viability”

Xavier RENAULT, Fabrice KORDON
Université Pierre & Marie Curie,
Laboratoire d’Informatique de Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05
xavier.renault@lipé6. fr,
fabrice.kordon@lipé6.fr

Abstract

Modeling of Distributed Real-Time Embedded (DRE)
systems allows one to evaluate models behavior or schedu-
lability. However, assessing that a DRE system’s behavior
is correct in the causal domain is a challenge: one need to
elaborate a mathematical abstraction suitable for checking
properties like absence of deadlock or safety conditions (i.e.
an invariant remains all over the execution).

In this paper, we propose a global approach to build-
ing Petri Nets models from an architecture described using
AADL. We consider the semantics of interacting entities de-
fined by AADL, and show how to build corresponding Petri
Nets models. Based on a case study, we show how the veri-
fication process could be automated and parameterized.

1. Introduction

Complexity of current real-time systems, in both the em-
bedded and critical domains, call for new methods, pro-
cesses and tools. Model Driven Development approaches
are of interest because they focus on a consistent description
of systems, their functional and non-functional properties.

However, building multiple views of the same systems,
with potentially several formal notations is not an afford-
able solution, as it increases the number of artifacts to be
maintained and updated. Dedicated modeling frameworks
like MARTE [12] and AADL [14] provide a high-level for-
malism to describe a system, at both the functional and non-
functional levels. Tools exist to provide simple analysis like
Rate Monotonic Scheduling (RMA), but none of them ad-
dress the more complex challenge of testing or verifying the
behavior of a complete system.

*This work has been funded in part by the ANR Flex-eWare project

Jérdbme HUGUES,

Institut TELECOM, TELECOM ParisTech, LTCI

46, rue Barrault, F-75634 Paris CEDEX 13
jerome.hugues@enst.fr

When involved notations are formal, it is possible to rea-
son on the specification to check properties (from valida-
tion to verification). In-depth analysis of their behavior, i.e.
causality analysis of a system then becomes possible. How-
ever, the modeling and verification process remains difficult
to handle by engineers. There is a need to rely on high-level
notations such as MARTE or AADL.

MARTE provides a generic canvas to describe and ana-
lyze systems. This genericity requires the user needs to add
specific modeling artifacts to model the semantics of the
selected runtime (such as POSIX [2]) or uses an existing
profile specified as part of MARTE, like the AADL profile.

Compared to MARTE, the AADL language comes
stand-alone with a complete semantics, defined and en-
forced by a standard. This semi-formal semantics is defined
as hybrid automata to express thread’s behavior, and invari-
ants for dispatching, and communication time.

In this paper, we propose to bridge AADL specifications
with Petri Nets. This formal notation is well-suited to de-
scribe behaviors of concurrent systems and provide good
formal analysis capabilities [5] such as structural analysis
and model checking. The objective is to check that AADL
models are deadlock-free, livelock-free and bounded (i.e.
no buffer needs to be of infinite size).

Section 2 briefly presents Petri Nets and AADL. Then,
section3 describes the patterns ensuring correspondence be-
tween AADL and Petri Nets semantics. Section 4 illustrates
the use of these pattern on an example and show what type
of analysis can be performed on an AADL model.

2. Petri Net patterns For AADL
2.1 Introduction to Symmetric Nets

This section provides an informal presentation of Sym-
metric Nets. Formal definitions can be found in [1, 5].

Symmetric Nets are Colored Petri Nets enhanced with high-
level features: tokens can carry data. Therefore, a data type
is associated with each place, indicating the data type of
the tokens in that place. Only simple data and manipula-
tion functions are permitted, allowing for powerful analysis
techniques: finite enumerated types, intervals, tuples; and
the basic functions: predecessor, successor, selector (in a
tuple) and “broadcast” (generates one copy of each possible
value of a data type).

An example is shown in Figure 1. It represents two
threads asynchronously communicating by means of events.
Places Ready and Halted correspond to the event producer
while places Wait and Done describe event managers’ be-
havior. Marking indicates there are three threads able to
handle events. The number of event generator threads (ini-
tial marking M in Ready) depends on constant (). Events
are distinguished thanks to Queries’ id (value in color class
Query). Here, we represent the signal queue by means of a
place but a complete Queue design pattern [10] can be used
to reflect additional information on the system behavior.

R .
Class Q;zgy @ M=<I>+..+<Q> Wait
Query is 1..Q; <q>
Var GenQuery E,vik<q>+&<q> GetQuery
g in Query; <q> Signal <q>
Halted Query Done
Query Query

Figure 1. Example of a Symmetric Net.

From this model, one can generate all possible actions.
For example, the state space generated for Q = 5 (i.e. 5
requests) contains 232 nodes and 760 arcs and outline 10
possible deadlocks. None of them corresponds to the ter-
minal state of such a system where all tokens are in places
Halted and Done. This is due to the lack of tokens in place
Wait: the number of event handlers is not sufficient to pro-
cess all events. This specification can easily be corrected by
initially putting @) tokens in Wait.

Petri Nets allow for structural analysis (i.e. computation
of properties without computing the system’s state space).
For example, computation of structural bounds show that
place Signal may contain at most () tokens. Thus, dimen-
sioning of the system can be formally verified.

2.2 Introduction to AADL

AADL is an architecture description language, standard-
ized by the SAE. It has been specifically designed for DRE
systems. AADL is component-centric and allows the mod-
eling of both software and hardware parts of DRE systems.
It focuses on the definition of consistent block interfaces,

and separates implementation from interfaces. Both graph-
ical and textual syntaxes are defined in the standard.

The behavior of a system, e.g. how functional blocks in-
teract, is fully defined in the standard by mean of dispatch-
ing invariants, communication patterns. It is configured by
the set of non-functional properties applied to each model
element. Non-functional aspects of components can be de-
scribed within an AADL model such as thread dispatch-
ing condition (periodic or sporadic), interface specifications
and how components are interconnected. These have a deep
impact on the system’s behavior. Functional aspects (algo-
rithmic/behavioral specifications) are attached separately as
source code by means of AADL properties.

A model is made of components. The AADL distin-
guishes: software components (data, thread, thread
group, subprogram, process), execution platform
components (memory, bus, processor, device) and
hybrid components (system).

Components describe elements of the actual architecture.
Systems are bounding blocks to help structure the descrip-
tion. Subprograms model procedures. Threads model the
active part of an application (e.g. POSIX threads). AADL
threads may have multiple operational modes. Each mode
may describe a different behavior and property values for
the thread. Processes are memory spaces that contain the
threads. Thread groups are used to create a hierarchy
among threads. Processors model processors and the OS
scheduler. Memories model storage, buses support commu-
nication, devices are general hardware.

Components may be hierarchical, i.e.: components can
contain other components (called subcomponents in this
case). In fact, an AADL description is always hierarchical,
with the topmost component being an AADL system that
contains—for example—processes and processors, with the
processes containing threads and data, and so on.

The interface specification of a component is called its
type. It provides features (e.g. communication ports). Com-
ponents communicate one with another by connecting their
features. To a given component type correspond zero or
more implementations. Each of them describes the inter-
nals of the component: subcomponents, connections be-
tween these subcomponents, etc. An implementation of a
thread or a subprogram can specify call sequences to other
subprograms, thus describing the execution flows in the ar-
chitecture. Since there can be different implementations of
a given component type, it is possible to select the actual
components to be put into the architecture, without having
to change the other components, thus providing a conve-
nient approach to application configuration.

AADL defines the notion of properties that can be at-
tached to most elements (components, connections, fea-
tures etc.). Properties are name/value pairs that specify con-
straints or characteristics that apply to the elements of the

: Thread life cycle

b
A

> @ [«
o
performingThreadInitialization
h

suspendedAvaitingMode, f
a i

k

a i
C fthrea dHalted: Error management

i X
performingThreadFinalize
performingThreadActivation

1 m n

suspended AwaitingDispatch jP

f

a
L |

* performingThreadInitialization

T

h

el
m

c suspendedAvaitingMode

l\@
k performingThreadDeactivation 'y e2

performingThreadActivation

e4

e3
performingThreadFinalize 1 v n
oW
suspendedAwaitingDispatch
b

L AwaitDispatch Complete

performingThreadComputation had

Figure 2. Petri Net derived from the AADL thread automata and its associated state space

architecture: frequency of a processor, execution time of a
thread, bandwidth of a bus, etc. Some standard properties
are defined; but it is possible to define one’s own properties.
A detailed introduction to AADL can be found in [3].

AADL provides two major benefits for building DRE
systems. First, compared to other modeling languages,
AADL defines low-level abstractions including hardware
descriptions. These abstractions are more likely to help de-
signing a full system, close to the final product. Second, the
hybrid system components help refine the architecture as
they can be detailed later on during the design process, al-
lowing for different stages of modeling, from early require-
ments down to executable models.

Different analysis exist for AADL: schedulability [15],
error modeling [4], but also code generation [9]. In this pa-
per, we focus on the behavioral analysis of Petri Net models,
as an application of our approach.

3 From AADL to Symmetric Net

This section is dedicated to the definition of patterns han-
dling transformation of AADL into Petri Nets that handle
verification of complex systems like a middleware in [8].

We aim at qualitative analysis of AADL specifications.
Therefore, we selected Symmetric Nets [5]. They are suit-
able for a deep analysis of causal property in distributed
systems. This enables verification of safety properties (e.g.
a dangerous states of a system cannot be reached) and re-
quires a deeper modeling of AADL patterns, compared for
instance to stochastic analysis ([13]), or timed verification.

3.1 AADL Thread Automata

In AADL, behavior is mostly represented by Threads
Components and their interactions through “features”:

event or data ports. These interactions are thus represented
by communication places in the Petri Net to trigger asso-
ciated actions when AADL threads receive new data (Petri
Net tokens). Other components type like system, processes
simply define bounding boxes.

Figure 2 shows the Petri Net modeling the AADL thread
automata defined in the standard' (left) and the associated
state space (right). Guards of the standard are discarded: we
only specify the possibility of any event to occur.

This model is the main pattern to which sub-Petri
patterns describing local behavioral descriptions are con-
nected. With one token in threadHalted (i.e. the initial state
of an AADL thread), we produce a state space equivalent
to the original automata depicted in the standard as shown
in figure 2. It reaches the same states for the same input
events, showing equivalence between both models (the au-
tomata from the standard is not presented here due to space
concerns but it has exactly the same structure, which is not
surprising considered the translation schema).

This automata is divided in three parts: i) the Thread
life cycle that handles dispatching, initialization and com-
pletion, ii) the Thread execution that corresponds to the exe-
cution of computation-defined code and, iii) the Error man-
agement that handles potential errors during the execution.

Transitions Complete and AwaitDispatch are interfaces
of both Thread life cycle and Thread execution of the au-
tomata. Transformation rules presented in this section gen-
erates sub-Petri Nets that are connected to these transitions.

To cope with the AADL namespace concept, we pre-
fix Petri Net elements with the identifier of the enclosing
AADL entity (e.g. process,thread). This ensures traceabil-
ity of elements. This is important to provide relevant diag-
nostics after analysis of generated Petri Nets.

lFigure 5 of section 5.4.1 in [14].

3.2 Transformation Rules

We now detail the transformation rules generating sub-
Petri Nets connected to the model of Figure 2. As some
rules are parameterized, we first define the following types:

e T (Type) denotes a (T'ype)-typed element, e.g.
T_AADL_Port defines an AADL Port Type;

e L_(Type) denotes a list of (T'ype)-typed elements;

o L T AADL (Type) get(Type) (T_AADL_System)
returns all (T'ype)-entities of a given system

In AADL, port contains the following informations:
T _Direction to distinguish between an input or an output
port and T'_Kind for data, event or event data port.

3.2.1 Main Transformation Rule

Let us consider a given AADL System specification, and
translate it into the PN _System model.

So far, we consider only AADL threads, as they hold the
description of behavior. So, any AADL component (Sys-
tem, Process) will be assimilated to their owned AADL
Threads. At this stage, we do not take care of devices and
buses because they provide deployment information only.
We assume that deployment is considered later in the de-
sign process. The global generation algorithm is a recursive
descent as shown in Algorithm 1.

Algorithm 1 global generation algorithm

foreach T' € getThreads(System) loop
processThread(T, PN _System)
processThreadPorts(T, PN _System)
processComputation (T, PN _System)
processPN _Thread_Assembling(PN _System)
end loop

processThread rule (see algorithm 2) produces the Petri
Net corresponding to the Thread life cycle part in Figure 2.

processThreadPorts rule (see algorithm 3) finds out in-
teraction points for a given thread: it carries information
such as type (event or data), and checks if a given port is
involved in the thread dispatch. This is related to both Com-
plete and AwaitDispatch transitions from Figure 2.

processComputation rule (see algorithm 5) generates the
“glue” between ports, for example inside a given subpro-
gram call. It sets input ports (to parameters) and output
ports (to results). In our approach, we consider inout ports
(as defined in the AADL standard) as two distinct ports: one
in and one out.

processPN_Thread_Assembling rule (see algorithm 6)
generates the “glue” between sub-Petri Nets generated by
the previous rules. It merges interfaces transitions and set
default marking.

3.2.2 Transformation Rules for the Thread Life Cycle

This section shows the principles of our transformations
into Petri Nets that are derived from the AADL standard.

Principle #1 Each Petri Net Thread has a set
of local places Place_Set and local transitions
Trans_Set, describing its state evolution. These sets
are used by procedures which append nodes into them:
append_places, append_transitions.

Principle #2 Each Petri Net thread may interact, as de-
scribed in the AADL specification, with other components.
Since each AADL component is described into a mono-
lithic Petri Net (for data components for example) or into
an assembly of sub-Petri Nets (for Threads), these interac-
tion points are translated into Petri Net Transition synchro-
nization. A component interface is a (set of) transition (s),
synchronized with another component interface if needed.

Hence, each Petri Net Thread has a set of transition in-
terfaces L_PN Trans Dispatch Itf, T_PN _Trans Com-
plete_Itf, etc.

Principle #3 Dispatch and Complete interfaces are re-
lated to (respectively) “AwaitDispatch” and “Complete”
transitions (Figure 2)%. Thread error states may be handled
by adding places and transitions to the pattern, but are not
presented for sake of clarity. From these rules, Figure 3
presents the resulting Petri Net

Algorithm 2 integrates these principles in the pro-
cessThread rule (invoked in algorithm 1). This algorithm
generates a Petri Net like the one of Figure 3.

Algorithm 2 processThread

declare PN _Thread : PT

append_places(Halted, W ait_For_Dispatch) to PT
append_transitions(Initialization_Dispatch,
Compute_Entrypoint, Complete) to PT
append_Dispatch_It f (Compute_Entrypoint)
set_Complete_It f(Complete)

set_Init_It f(Initialization_Dispatch)
append_Thread(PT) to PN _System

Class Var
thread_id is low..high; xin thread_id;

Halted
thread_id ®<x> 4’[’*0‘
Initialization_Dispatch

Complete
<x>4p>[

Wait_For_Dispatch

thread_id

Compute_Entrypoint
<x>

ey

\

Figure 3. Thread Life Cycle pattern

280 far, we do not consider AADL modes.

3.2.3 Transformation Rules for Thread Communica-
tion points

Ports are interaction points between components. They
model communication channels. For Threads, incoming
dispatch-events arrive from these ports, as well as data (pa-
rameters).

Principle #4 Ports may handle data, event or data/event
messages. We define a Petri Net Class to type ports:
Interaction_Type = {undef,event,data}. A Petri Net
Port has two transitions interfaces: Push and Pop. “undef”
is the default marking for a port, before any messages have
been received.

Principle #5 For data port, AADL standard states that
no queuing is supported. If no new data value has been
received, then the old value remains. This pattern consists
of a “Storage”-named place, connected to both Push and
Pop transitions (there are two data ports in Figure 7).

Algorithm 3 integrates these principles in the pro-
cessThreadPorts rule (invoked in algorithm 1).

Algorithm 3 processThreadPorts

foreach P € getPorts(T_AADL _Thread T') loop
case Kind (P)
when Data => processDataPort
when Event => processEventPort
end case
end loop

Principles #6 Data carried by events are not of inter-
est for behavioral verification. Therefore we process event
ports and event data ports the same way. The standard states
that both can have an associated queue. By default, the in-
coming event ports and event data ports of threads, devices,
and processors have queues. The default port queue size is
1 and can be changed by (declaration of a Queue_Size prop-
erty association for the port). Other properties can be set to
represent “event fetching” and “history policies” of AADL.

Transformations rules for event ports differ from data
ports rules. We must manage FIFOs and overflow poli-
cies. For overflow, we introduce another interface (transi-
tion) for event ports, named from its policy. Policies are
defined thanks to the following functions:

e DequeueProtocol(T-AADL_Thread) returns
{Oneltem, MultipleItems, AllItems}

e Over flowPolicy(T-AADL_Thread) returns
{DropOldest, DropN ewest, Error}

e Direction(T_AADL Thread) returns {In, Out}
Algorithm 4 integrates these principles in the processEv-

entPort rule (invoked in algorithm 3). This algorithm gen-
erates a Petri Net like the one of Figure 4.

Algorithm 4 processEventPort
declare I'_PN _Event_Port : P
for i in 1..Queue_Size loop
add_FIFO_stage(P)
end loop
append_transitions
(Owver flowPolicy(AADL_Port)) to P
set_Ovf_Itf (Over flowPolicy(AADL_Port))
make_arcs (DequeueProtocol(AADL_Port))
make_arcs (Over flowPolicy(AADL_Port))
append_Port(P) to PN _Thread

Class Domain
thread_id is low..high; message is <thread_id, interaction>
interaction is [data | event | undef]; Var
x,y in thread_id;
m, m1, m2 in interaction;

DropOldest
<X event <X,M>
<x,m> <X m1>
<0,undef> P
op
<X, event> Slot1 message message Slot2 <xm>

<X, m>

Empty2

Figure 4. Event Port Pattern (Dequeue:
Oneltem, Overflow: DropOldest)

3.2.4 Transformation Rules for Thread Execution

Once dispatched, a thread receives, computes and sends
data. Algorithm 5 generates a Petri Net like the one of Fig-
ure 5. In this Petri Net pattern, transitions Dispatch and
Done are interfaces to be merged with AwaitDispatch and
Complete in the model of Figure 2.

Algorithm 5 processComputation
declare T_PN _Computation : C
append_places(Dispatched, Wait_Complete,
Computation) to C

append_transitions

(Dispatch, Send, Receive, Done) to C
set_Comp_Dispatch_Itf(Dispatch)
set_Comp_Send_Itf(Send)
set_Comp_Receive_It f(Receive)
set_Comp_Done_It f(Done)
append_Computation (C) to T

3.2.5 Threads composition and assembly

Once all sub-Petri Nets for a given thread are generated
thanks to the previous transformation algorithms, we as-

Class Dispatch %‘ Computation l?‘Done

thread_id is low..high; thread_id <x>
Var Dispatched é Wait_Complete
xin thread_id; thread_id thread_id
<x>
<x>
Send Y < D Receive

Figure 5. Thread Execution Petri Net Pattern

semble them.

Principles #7 The assembling process consists in inves-
tigating all ports for all threads and perform the appropriate
connections. The resulting Petri Net is flat. Variant of Petri
Nets may consider hierarchy, but this is not relevant as the
generated model is not to be seen by designers.

Principles #8 AADL states that all threads are synchro-
nized during the initialization. So, we merge all initializa-
tion transitions into a “Global _Initialization_Dispatch” one.

Algorithm 6 integrates these principles in the processEv-
entPort rule (invoked in algorithm 1). This algorithm gen-
erates a Petri Net like the one of Figure 7.

Algorithm 6 processPN_Thread_Assembling

forall T € getThreads(PN _System) loop

merge_it f(Complete_Itf(T), Com_Done_Itf(T))

merge_it f (Dispatch It f(T), Com_Dispatch_Itf(T))

forall P € getPorts(T) loop

if Direction (P) = In then
if Has_Entrypoint(P) then

duplicate_it f (Dispatch_ It f(T))toD_Dup
merge_it f (Pop_Itf(P), D_Dup)

else
merge_it f(Pop_Itf(P), Receive_Itf(T'))
end if
else//OutKind
merge_it f(Push_Itf(P), Send_Itf(T))
ifK'ind (T') = Ewvent then
add_it f(Over flow_Itf)toT
merge_it f(Ovf_Itf(P), Overflow_Itf(T))
end if
end if
end loop
merge_it f (Init_Itf(T),
Global_Initialization(PN _System))
end loop

3.2.6 Customization for Verification

We need to parameterize the Petri Net generator in order
to tune the verification process of a given property. This is
needed to select the appropriate way to check a property.
We present a way to adapt specification generation accord-
ing to two types of verification:

case Property To -Verifyin
when Deadlock | Livelock =>
Nothing to add
when T'emporal Logic Formula on Messages =>
Add Stamping mechanism for Requests
end case

This is developed in the next section.

4. Assessment Using a Toy Example

This section presents an application of our transforma-
tion rules to a small example: a producer-consumer appli-
cation. We present the AADL model, the corresponding
Petri Net and some analysis.

4.1 The Producer-Consumer case study

Figure 6 shows the AADI model. It is composed of two
processes: A and B. Each one contains two threads, a pro-
ducer and a consumer. The producer in process A com-
municates with the consumer in process B, and vice-versa.
Each thread is periodic and has either one input or one out-
put data port.

Data ports are connected to these threads as shown in the
figure. This graphical model is a high-level representation
of a complete AADL model. For sake of clarity, we do not
detail all data types properties that are defined in this model.

@ _Processpr A _ < :) Processpr B _
- Thread Producer hread Consume,
/ (_Produce_Spg /
4 /

Figure 6. Producer-consumer example

The transformation algorithm (see algorithm 1) gener-
ates the Petri Net in figure 7. The upper part in the Petri
Net refers to the process pr_A, while the lower part refers to
the process pr_B. Each block (outlined in grey in the figure)
corresponds to a thread.

As depicted in Figure 6, there are two data port. Data
ports are easily identified as the only places outside blocks.
The Figure 6 depicts the most complex generated Petri Net,
the one suitable for checking LTL formulae on messages
(see section 3.2.6).

Class pr_A_Producer_Halted Th_Ids ,
Th_ds is 0.4; O T
Req_Ids is 0..4;

pr_A_Producer_Wait_For_Dispatch Th_Ids .
x1>

Interaction_Type is
[undef,data,event];
Domain
Message is <Req_lds,

r<x2

<x2>

<x1> <x1>

:'*jpr_A_Pmducer 'ompute_Entrypoint
pr_A_Producer_Complete

<> Opr,A,ResulLConsumer,Halted Th_lds
= <2>

pr_A_Result_Consumer_Wait_For_Dispatch 7Th_Ids

<X2>
pr_A_Result_Consumer_Complete

Iil pr_A_Result_Consumer_Compute_Entrypoint

Th_Ids, Interaction_Type>; <x1>) N
Var <xI> <x2>
il i ; A_Prod ispatched 7h_Id; es sumer Dispatche
W(\)O,r;lhzmg \n4|_“til:clf(;°.",TYPel pr_A_Producer_Dispatched Th_Ids pr_A_Result_Consumer_DispatcheTh_Ids pr_A_Result_Consumer_Wait_CompleteT);_Ids
X0x1,x2,x3,x41n Th_lds; pr_A_Producer_Wait_Complete <x0>
10,1112 in Req_Ids; <x0> TI_1ds 3
pr_A_Producer_Send_Data pr_A_Result_Consumer_Send_Data <x0> .)
<t0> <x0> <X()>pr A_Producer_Receive Data 0 pr_A_Result_Consumer_Receive_Data
rlx1,ml> \;O_qo)_ﬂ__t_, == - = X0> <
<t0.x0.data> . pr_A_Result_Consumer_Computation 7h_Ids
s pr_A_Producer_Computation 7h_Ids 0x3.m0 <r0,x2,m0>
<r0.x2.m0>
pr_A_Producef_Data_Source_Req_Stamp Req_lds Process A/Producer — _ _|.|) _P_mcessA/Consumer 10X
Req_lIds.all> ! 1
)pr_A_Producer_Data_Source_Storage Message : EZEZ]Glo:bal_lnilialization_Dispalch f— pr_A_Result_Consumer_Data_Sink_Storage Message
0410 * <0,0,undef> 1 & X2 m2> <0,0,undef>
<OXEMO> 0 x1,m0> Process B/Consumer S\ <r0.x0.data>

pr_B_Consumer_Receive_Data
pr_B_Consumer_Computation Th_Ids
T O—<0> pr_B_Consumer_Send_Data
pr_B_Consumer_Wait_Complete |Th_Ids
<x0>

<x0>
<x0>

<x3> pr_B_Consumer_Dispatched Th_Ids

pr_B_Result_Producer_Recei

Process B/Producer pr_B_Result_Producer_Send_Data

<x0> <r0> pr_A_Result_Consumer_Data_Sink_Req_Stamp Req_Ids
<x0> <Req_Ids.all>

ve_Data
\;|<——<x0> pr_B_Resul{_Producer_Computation Th_Ids

<x0> pr_B_Result_Producer_Dispatched Th_Ids

pr_B_Result_Producer_Wait_Completd 7h_Ids

pr_B_Consumer_Complete <x3> <x4>
<x3> B Ei i <XA>pr B_Result_Producer_Complete
<x3> O Mate ntrypoint - = <x4>4>!J_—Ipr_B_Result_Producer_Cnmpule_Enlrypoint
B pr_B_Consumer_Wait_For_Dispatch 7h_Ids <x4>
<X3>— ~———<xd> pr_B_Result_Producer_Wait_For_Dispatch Th_Ids
Opr_B_Cnnsumer_Hnlted Th_Ids 3> J 4 Opr_B_Result_Pmducer_Hﬂlted Th_Ids
<3> <4>

Figure 7. The producer-consumer Petri Net deduced from the AADL model in figure 6.

4.2. Analysis

We have implemented a Petri net generator in Ocarina
[16]. This section deals with the generated Petri Nets. We
are looking for: /) deadlocks in the system, 2) that a mes-
sage sent by a producer is always received and processed by
the consumer.

Most of these properties are verified thanks to model
checking. This technique is of interest because it produces
counter example when a property is found to be violated.

Checking for deadlocks To check for deadlocks, we use
the Petri Net generated with the deadlock policy (see sec-
tion 3.2.6). Compared to the model of figure 6, places lo-
cated in the two square boxes are not generated (no stamp is
necessary for messages since we seek for a global property).

The state space we obtain for this example is quite large
and shows there is no deadlock. However the use of struc-
tural reductions on Petri Nets [7] does not impact the be-
havior of the system (from the deadlock point of view) and
greatly reduces the state space. Statistics showing that such
an approach should scale up are provided in the table below.

Petri Net State Reduced State
Space Petri Nets Space
Nodes || 24 places & | 577 10 places & | 5 states
21 trans. states 5 trans.
Arcs 64 2305 24 17

Since the reduction can be automated, a complete pro-
cess going from an AADL model to a reduced Petri Net
should allow one to perform first checks.

Checking an LTL formula We want to verify the follow-
ing property: for a given producer thread, if it produces a
data through a stamped message X, then this data will be
read and processed by the targeted consumer.

Such a property is expressed by an LTL formula refer-
encing AADL entities:

F (pr_A.Send(To = pr_B_Consumer)) =
F (pr_B.Receive(From = pr_A_Producer))

There is a correspondence between AADL entities and
the generated Petri Net (thanks to the traceability provided
by the association to name spaces as explained in sec-
tion 3.1). So, this formula is transformed into the following
one that refers to Petri Nets entities:

F (pr_A_Producer_Send_Data[r0 = (z)] =
F pr_B_Consumer_Receive_Data[r0 = (z)])

where (x) refers to any request stamp and
r0 refers to the arc valuation from place
pr-A_Producer_Data_Source _Req_Stamp and transition

pr-A_Producer_Send_Data, in figure 7. GreatSPN [6]
in CPN-AMI [11] is able to check the property for any
stamped message. Analysis shows this formula is verified.

To check this property, we use the Petri Net generated
with the Temporal Logic Formula on Messages policy (see
section 3.2.6). So, the generated Petri Net contains the two
places in a square (figure 7). These are required to provide
an track id for requests.

State space analysis is made of two strongly connected
components. Each one represents the sub-state space of one

producer-consumer couple. Thus, to verify our LTL for-
mula, we only consider one component, thus, we only con-
sider half of the generated Petri Net.

Considering one of this component allows to suppress
the Global_Initialization transition, since it is generated to
cope with the AADL runtime. For the properties we want
to verify here, this transition is not meaningful.

The state space we obtain for this example and this prop-
erty is very small, as we could expect on a simple example.
Once again, structural reductions on Petri Nets [7] can be
applied but they cannot involve transitions that are refer-
enced in the LTL formula. The table below shows some
statistics for the reduced (full) Net and when we consider
only one producer-consumer couple (“Half Reduced PN”).

Reduced State Half Redu- | State

Petri Net Space ced PN Space
Nodes || 12 places & | 6562 4 places & 2 | 33

5 trans. states trans. states
Arcs 26 39853 9 85

Structural Analysis Petri Nets also allow to compute
structural properties [5]. These are computed on their struc-
ture, and do not require to compute the whole state space.

A relevant property for DRE systems is boundness. It
means that the marking of a place is always bounded, that
can be of interest for the subNets representing communica-
tions mechanisms and buffers. In the current model, com-
munications are performed by means of data port, so this
property is not relevant (no message is stored).

5. Conclusion

In this paper, we propose a mapping of the behavioral
semantics of AADL models into Petri Nets for verification.

To do so, we propose a set of transformation rules and
we detail the corresponding algorithms. Our transformation
focuses on threads and their interaction through “ports”.

We then show on an example how typical properties can
be formally computed on a system. For sake of place, we
only present these rules on an small example. However,
we show that an appropriate use of Petri Net theory allows
to keep the complexity of model checking at a reasonable
level. Investigated properties are deadlock detection, mes-
sage flow analysis and communication boundness.

This process is automated in a prototype tool. So, verifi-
cation is performed automatically through connection with
Petri Net model checkers (deadlock); or by defining relevant
safety properties expressed in LTL. LTL formulae are writ-
ten using AADL identifiers (e.g. name of threads, ports)
and translated to be applied on Petri Nets. This allow a
transparent use at the AADL level.

This work is integrated in our AADL tool-suite Oca-
rina [16] associated to the CPN-AMI platform [11].

References

(1]

(2]

(3]

(4]

(3]
(6]
(7]

(8]

(9]

(10]

(1]
[12]

(13]

(14]

[15]

[16]

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Had-
dad. Stochastic well-formed colored nets and symmetric
modeling applications. [EEE Transactions on Computers,
42(11):1343-1360, 1993.

S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Ter-
rier. First experiments using the uml profile for marte. In
ISORC °08: Proceedings of the 11th IEEE Symposium on
Object Oriented Real-Time Distributed Computing, pages
50-57. IEEE Computer Society, 2008.

P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architec-
ture Analysis & Design Language (AADL): An Introduc-
tion. Technical report, 2006. CMU/SEI-2006-TN-011.

P. H. Feiler and A. Rugina. Dependability Modeling with the
Architecture Analysis & Design Language (AADL). Tech-
nical Report CMU/SEI-2007-TN-043, 2007.

C. Girault and R. Valk. Petri Nets for Systems Engineering.
Springer Verlag - ISBN: 3-540-41217-4, 2003.

GreatSPN. Petri nets suite: http://www.di.unito.
it/~greatspn.

S. Haddad and J.-F. Pradat-Peyre. New efficient Petri nets
reductions for parallel programs verification. Parallel Pro-
cessing Letters, 16(1):101-116, Mar. 2006.

J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middleware
Behavioral Properties. In Proceedings of the 9th Interna-
tional Workshop on Formal Methods for Industrial Critical
Systems (FMICS’04), Linz, Austria, Sept. 2004.

J. Hugues, B. Zalila, L. Pautet, and F. Kordon. Rapid Pro-
totyping of Distributed Real-Time Embedded Systems Us-
ing the AADL and Ocarina. In Proceedings of the 18th
IEEE International Workshop on Rapid System Prototyping
(RSP’07), pages 106—112, Porto Alegre, Brazil, May 2007.
IEEE Computer Society Press.

W. E. Kaim and F. Kordon. H-COSTAM : a Hierarchi-
cal Communicating State-machine Model for Generic Pro-
totyping. In Proceedings of the 6th IEEE International
Workshop on Rapid System Prototyping (RSP 1995), number
95CS8078, pages 131-137. IEEE Computer Society, 1995.

MoVe-Team. The CPN-AMI Home page, url:
http://www.lip6.fr/cpn—ami.

OMG. A UML profile for MARTE, Beta 1. Technical Re-
port ptc/07-08-04, OMG, 2007.

A.-E. Rugina, K. Kanoun, and M. Kaéniche. The adapt
tool: From aadl architectural models to stochastic petri nets
through model transformation. CoRR, abs/0809.4108, 2008.
SAE. AADL Standard, V2. Technical report, Society of
Automotive Engineers, approved in Nov. 2008.

F. Singhoff, J. Legrand, L. Nana, and L. Marc. Scheduling
and memory requirement analysis with aadl. In A. Press,
editor, proceedings of the ACM SIGADA International Con-
ference, volume 25, pages 1-10, 2005.

T. Vergnaud and B. Zalila. Ocarina: a Compiler for the
AADL. Technical report, Télécom Paris, 2006. available
athttp://ocarina.enst.fr.

