
Code Generation Strategies for Partitioned Systems

Julien DELANGE, Laurent PAUTET
TELECOM ParisTech - LTCI UMR 5141

46, rue Barrault
F-75634 Paris CEDEX 13, France

delange@enst.fr, pautet@enst.fr

Fabrice KORDON
LIP6, Univ. P & M. Curie

4 place Jussieu
75252 Paris Cedex 05, France
fabrice.kordon@lip6.fr

Abstract

Design and verification of Distributed Real-time Embed-
ded (DRE) systems are crucial because a failure or a secu-
rity problem may cause loss of life or the premature end
of a mission. Code for such systems must be verified to
avoid failures and errors. To improve dependability and
reliability, the concept of partitioned architecture has been
proposed. Partitioned architectures isolate partitions and
reduce failures propagation. However, system’s configura-
tion as well as application code remain hand-written, which
is error-prone, difficult to check and certify.

In this paper, we present an approach to automatically
generate and configure partitioned systems. We model par-
titioned systems using a language suitable for real-time em-
bedded systems. Then, we automatically generate code from
models. Generated code follows the semantics of the model
so it enforces specified requirements.

1 Introduction

Dependability and reliability are crucial topics for dis-
tributed, real-time and embedded (DRE) systems, espe-
cially when failures are mission or life-critical. These sys-
tems must be certified and verified.

Confidentiality, security and safety are also major top-
ics: safety and security policies must be enforced across the
system (from low to higher layers). We must ensure that
entities can read or write only some data (security enforce-
ment), perform only allowed operations and that failures are
not propagated across the system.

To address these issues, partitioned architectures [1, 9]
were introduced. They enforce isolation in term of space
and time between software components. Partitioned sys-
tems improve dependability and reliability. However, verifi-
cation of their requirements is made at run-time. Moreover,
most of code remains hand-written, which is prone of error
and makes system’s verification difficult.

This papier introduces a new process development (il-
lustrated in figure 1) that enables verification of system’s
security and safety requirements at design-time. At first,
system’s designer writes specifications and checks his/her
requirements enforcement (step 1). Then, configuration as
well as application code is automatically generated from the
specifications (step 2). Finally, underlying executive, gen-
erated code and application code (the functional part of the
system) are compiled together. The result is a functional
system that enforces specifications’ requirements.

AADL Model
Security & Safety

verifications (step 1)

Code generation (step 2)

Generated codePartitioned kernel
and middleware

Compilation (step 3)Binary

User code

Figure 1. Development process using model
and code generation

Such a design process must rely on a modeling lan-
guage to describe system’s architecture and properties. We
selected the Architecture Analysis and Design Language
(AADL), which is suitable to design DRE systems. Model-
ing and verification of safe and secure systems using AADL
(step 1) has been already explored [4, 8]. Consequently,
this work focuses on code generation from these models
(step 2).

Our code-generation process is automatic: kernel’s con-
figuration code is created according to the model as well as
application and configuration code for each partition. It au-
tomatically sets up kernel’s and partition’s services, config-
ures resources (priorities of tasks, scheduling policy, etc.),
which results in a more reliable and robust system.



2 Background

This section presents the AADL, the main principles of
partitioned architectures and related work.

2.1 AADL

AADL is a component-centric language to model both
software and hardware components. It focus on the defini-
tion clear block interfaces, and separates implementations
from these interfaces.

An AADL description is made of components: software
components (data, thread, thread group, subprogram,
process), execution platform components (memory, bus,
processor, device, virtual processor, virtual bus)
and hybrid components (system). The system component
is the topmost component in the model and aggregates other
subcomponents (process, processor, ...).

The interface of a component is called its type. It pro-
vides features (e.g. communication ports). Components
communicate by connecting their features.

The AADL defines the notion of properties that can be
added to most elements (components, connections, features
etc.). Properties are name/value pairs that specify con-
straints or characteristics to be applied to the system’s com-
ponents (execution time of a thread, bandwidth of a bus,
etc.) An introduction to the AADL can be found in [7].

Compared to other modeling languages (like UML and
its extensions[3]), AADL provides two major benefits for
building DRE systems. First, it defines low-level abstrac-
tions including hardware descriptions. Second, hybrid sys-
tem components help to refine the architecture as they can
be detailed later in the design process.

receive_ping.implsend_ping.impl

send_ping_process.impl receive_ping_process.impl

ppc.impl

partit ion.one partit ion.two

system.impl

Figure 2. Partitioned producer/consumer
system AADL

Partitioned architectures are modeled using virtual
processors and process components. Both model a spe-
cific runtime (mainly a scheduler supporting time isolation)
and a single address space (which corresponds to the space

isolation). Security layers are defined using the virtual
bus components. Security levels are declared for each com-
ponent and connection and can be used to check the system
against a security policy.

An example of AADL model is shown in figure 2. It
represents a simple system which has two partitions that ex-
changing data (one partition sends ping to the other). Each
process is bounded to a virtual processor. Virtual proces-
sors are part of the main processor (the physical one). We
enrich the model with properties to describe system’s be-
havior, defining safety and security requirements (schedul-
ing, isolation enforcement, etc.).

2.2 Partitioned kernels and middleware

In the last years, new kernels and middleware architec-
tures focusing on safety and security have been designed.
Isolating software components in term of space and time
is the main main concept elaborated for these architec-
tures [1, 9]. Pieces of software are isolated in an entity
called partition to avoid error or failure propagation among
partitions. Each partition has its own address space to store
its code or data, and a time budget (called timeslice) to ex-
ecute its threads. A partition can neither access to the other
partitions’ data nor consume more time than allocated. In a
partitioned system, isolation is achieved so each partition is
executed as if it was on a single computer.

Partitioned kernels are small to ease their verification.
Few services are provided: memory management (space
isolation), scheduling of partition (time isolation), and some
device drivers (such as clock driver for scheduling). These
services, as well as the resources contained in each partition
are created and allocated at initialization-time to avoid error
at run-time. In addition, device drivers are not included in
the kernel [6] to keep it as small as possible.

Partitioned middleware sends and receive data between
partitions. It enforces data separation among the partitions
and ensures isolation of communications.

2.3 Related work on code-generation

Many work has already been made on code generation,
using several modeling languages[5]. On our side, we al-
ready designed a code-generator that outputs Ada or C code
from AADL models [2]. This approach had many advan-
tages regarding the needs of embedded real-time systems
(reduction of dead-code, low memory footprint, etc.). Un-
fortunately, the underlying code-generation patterns neither
cared about safety and security issues nor relied on tradi-
tional kernels which provide no safety and security mech-
anisms. We base our current work on this approach and
design new code-generation patterns that meet these new
requirements.



3 Code-generation strategies

In this section, we describe the main guidelines of our
code generation patterns.

3.1 Partitioned architecture guidelines

Kernel and middleware services are configured accord-
ing to the AADL model to enforce safety and security re-
quirements. The code generator creates code to configure
kernel’s services for each partition. Moreover, it configures
each partition and generates its code. Our code generation
process is involved in kernel and partitions layers.

Partitioned kernel (static code)

Kernel configuration (generated code)

Runtime configuration
(generated code)

Runtime configuration
(generated code)

Partition runtime
(static code)

Partition runtime
(static code)

K
e

rn
e

l

Application code
(generated)

Application code
(generated)

P
ar

ti
ti

o
n

s

Figure 3. Architecture of generated code

Figure 3 shows the architecture of the application pro-
duced by our code generator. In the kernel layer, data struc-
tures are defined to configure kernel and middleware ser-
vices (scheduler, communication ports, etc.). In this layer,
resources are allocated for each partition and services are
configured to enforce security and safety requirements. For
example, we configure the inter-partition ports and generate
data that describe allowed operations on each port.

We configure each layer and select required services
only. We also create and allocate resources at initialization-
time to fit with the requirements of partitioned architectures.

In the partition layer, we generate the application code
for each partition. This code is loaded in each partition’s
address space and contains required services and data struc-
tures (tasks, data, mutexes and so on). Generated code con-
tains all resources needed by the partition and initializes
them and set appropriate properties (priorities, locking pro-
tocols, etc.) at initialization-time.

All generated data and entities are deduced from the
AADL specification. The generation strategy avoids over-
head in the code and reduces both dead code and memory
footprint as much as possible. AADL models declare re-
quired resources and data so required allocated resources
can be determined. This property is of particular interest in
the embedded domain, where memory footprint is a major
concern.

3.2 Code-generation patterns

An AADL model describes a system’s architecture in-
cluding its properties and requirements. The topmost com-
ponent (system) represents the root of the model. It con-
tains process subcomponents, which model partitions.

For each partition, we generate code to configure and de-
ploy the system. We browse all partition’s components and
generate their code. For each kind of component, we apply
a code-generation pattern describing the tokens created in
the target language (functions, variables, etc.). These pat-
terns are summarized in table 1.

Component Code-generation pattern
System Create directory with code from subcomponents
Processor Configure runtime requirements of the kernel

(scheduling, execution platform, etc.)
Process Create a partition according to memory require-

ments
Virtual Processor Configure runtime internals of the partition
Thread Create stub functions and declare the thread in

the partition.
Connection Declare communication ports in the contained

component (port type, timing requirements, etc.)
Data Declare a new type and create mutexes accord-

ing to their scheduling requirements in case of a
protected data

Table 1. Code-generation patterns

For each system, we look for process and processor.
The processor component configures scheduling and run-
time requirements of the node (algorithm that schedules
partitions, middleware functionnalities, etc.).

For each process component and its associated
virtual processor we instanciate a new partition ac-
cording to its requirements. We also create configuration
code associated with the partition to set up its address space,
the timeslice for the execution of its threads and all its re-
quirements (scheduling algorithm for its tasks, etc.).

For each thread inside the partition, we instanti-
ate a task and create its associated resources (mutexes,
semaphores, intra-partition communication, etc.). If the
thread communicates with other entities, we generate the
appropriate function (also known as stub or skel) to send/re-
ceive data. These stubs or skels call functional code pro-
vided by the developer (shown as user code in figure 1).

For each data component, a new type is created. This
type is mapped to a new one suitable for the underlying
platform. In case of protected data, we automaticallu create
mutexes and set up its appropriate scheduling requirements
such as priority or ceiling protocol.

Finally, we inspect connections between components
and generate their instantiation as well as their configura-
tion. We also set up timing properties associated with them
(deadline, refresh period, etc.).



3.3 Case study, metrics and results

So far, most of the code-generation patterns are imple-
mented in our AADL toolsuite [10]. Some features (such as
inter-partition communication) are still in development.

Two examples have been used to validate our approach
as a proof of concept. The first one ("basic") defines two
partitions that periodically output a message. It shows that
the generated code enforced model’s requirements (for ex-
ample, tasks’ periods are correct). The second one ("ping")
defines a single partition with intra-partition communica-
tion (a threads sends a message to another thread located in
the same partition). It demonstrates that communication re-
sources are well allocated as well as messages sending and
receiving. Other kinds of tests are still in development, such
as the verification of partitions against failures and attacks.

Two kind of metrics could be used to demonstrate the
correctness of our approach: the conformance of the gener-
ated code with the model and its compliance with embed-
ded requirements. Some experiments demonstrate the cor-
rectness of our approach regarding usual requirements for
embedded software.

Table 2 summarizes the size of code in term of lines of
code and object files size. We used GCC and stripped bi-
naries. For each example, we take metrics on each soft-
ware component involved in our development process (fig-
ure 1): application code (provided by the developer), gener-
ated code, partition runtime and kernel.

Test Component SLOCs .o size (Kbytes)
Basic Application 12 0.097
Basic Generated code 31 1
Basic Partition runtime 2171 27.3
Basic Kernel 4933 35
Total Basic 7147 63.397
Ping Application 10 0.632
Ping Generated code 180 2,5
Ping Partition runtime 2171 29
Ping Kernel 5629 35.7
Total Ping 7990 67.832

Table 2. Size of generated code and underly-
ing executive for each test

Memory footprint is quite small, which is suitable for
embedded hardware. The size of the kernel and partition
runtime may vary, depending on included functions, but dif-
ferences are not significant. On the contrary, the size of ap-
plication and generated code depend on the AADL model’s
size. Tests presented here are small, but as soon as models
will be bigger, size of generated code will grow significantly
up. However, it will remain acceptable for embedded de-
vices : in both examples, we set a single partition with two
threads. Even with several partitions, the size of generated
code would be acceptable and stay under few kilobytes.

4 Conclusion and future work

This article presents an approach to automatically gen-
erate code from AADL models targetting partitioned archi-
tectures. Both kernels and partition’s code are automatically
produced, configured and deployed.

Our code generator is based on transformation patterns
that preserve security and safety requirements of the model.
It improves reliability and system’s robustness.

This work remains in a work-in-progress state and exper-
imentation must be performed to improve our strategies and
evaluate the impact of code generation on larger examples.

To increase the confidence on the generated code, we can
use AADL specifications to generate testsuites. These could
then be used as a first testbench for the final application.

We also plan to prove the correctness of our code gener-
ation patterns to ease the certification of generated applica-
tions. To do so, code generation patterns could be adapted
to produce formal specifications for verification purpose.

Acknowledgement: This work has been funded in part
by the ANR Flex-eWare project.

References

[1] ARINC. Draft 3 of Supp 1 to ARINC Specification 653:
Avionics Application Software Standard Interface, 2003.

[2] J. Delange, J. Hugues, L. Pautet, and B. Zalila. Code Gener-
ation Strategies from AADL Architectural Descriptions Tar-
geting the High Integrity Domain. In 4th European Congress
ERTS, Toulouse, 2008.

[3] P. Feiler, D. de Niz, C. Raistrick, and B. Lewis. From pims to
psms. Engineering Complex Computer Systems. 12th IEEE
International Conference, pages 365–370, July 2007.

[4] J. Hansson, P. H. Feiler, and J. Morley. Building secure sys-
tems using model-based engineering and architectural mod-
els. Crosstalk, pages 10–14, September 2008.

[5] S.-W. Lin, C.-H. Tseng, T.-Y. Lee, and J.-M. Fu. Vertaf:
An application framework for the design and verification
of embedded real-time software. IEEE Trans. Softw. Eng.,
30(10):656–674, 2004.

[6] J. Mason, K. Luecke, and J. Luke. Device Drivers in Time
and Space Partitioned Operating Systems. 25th Digital
Avionics Systems Conference, pages 1–9, Oct. 2006.

[7] D. P. G. Peter H. Feiler and J. J. Hudak. The Architecture
Analysis and Design Language (AADL) : An Introduction.
Technical report, February 2006.

[8] A.-E. Rugina, K. Kanoun, and M. Kaaniche. An
architecture-based dependability modeling framework using
aadl. In 10th IASTED International Conference on Software
Engineering and Applications (SEA’2006), 2006.

[9] J. Rushby. Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance. NASA Contractor Re-
port CR-1999-209347, NASA Langley Research Center,
June 1999.

[10] B. Zalila, J. Hugues, and L. Pautet. Ocarina user guide -
http://aadl.enst.fr/ocarina. TELECOM ParisTech, 2008.


