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Abstract. The definition and construction of complex computer-based systems
require not just software engineering knowledge, but also many other domain-
specific techniques to ensure many system’s functional and non-functional prop-
erties. Hence, there is a trend to move away from programming languages to
models on which one can reason: model-driven engineering. Yet, this remains
a complex task: one need to master many techniques. In this paper, we claim
that MDE is incomplete: it is “just” an implementation framework to support
advanced model-based techniques, verification of systems non-functional prop-
erties, code generation, etc. There is a conceptual gap to fill to know “what” to
do with models. We propose to switch from MDE to VDE: Verification-Driven
Engineering, so that the user knows how to model a system to analyze it. We sum
up existing techniques and their relevant application domains.

1 Introduction

Industry-critical applications are facing multiple dimensions challenges: increasing in-
teraction patterns from traditional one-to-one to large scale peer-to-peer interaction;
support for multiple level of assurance like security, reliability, timeliness. A synthesis
of these challenges is faced by ubiquitous-like systems, which increase complexity due
to their massively parallel execution and the variety of participants (infrastructure, ser-
vice provider, user peers, etc). The notion of quality is therefore hard to define and must
reflect both the notion of service provided, and corresponding level of support to meet
user expectations in terms of cost and criticality such as mission or life-critical.

There is a trend to extend classical development methods to reduce such complexity.
Model Driven Engineering (MDE) proposes a first step to reach that goal by using
models (specifications) at every stage of the software life cycle [54]. This approach is
also called MDD for Model Driven Development [55]. Development becomes “model
centric”. Eventhough this idea seems appealing, some issues are raised.

In a MDE setting, the engineer first models a system, implements and validates it.
Testing distributed programs cannot be done easily due to the interleaving of several
instruction flows. Some more adequate abstraction is needed to perform reasoning on
the system and deduce undesired behavior or situations. As such, exploitation of models
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in a MDE approach means nothing if the underlying techniques to process the model
are not efficient enough, or even non-existent.

It is now well accepted that traditional simulation approaches are not satisfactory
when applied to models: it is impossible to compute properties or systematically detect
unexpected situations. There is a need for formal methods to reason on specifications.

However, using formal methods is more difficult that one could expect [29], even if
maturity in that domain grows (industrial tools are now available such as Atelier-B [5] or
SCADE [26]). There is still a methodological issue for engineers who are not specialists
of formal methods but want to use them to validate some aspects of their system. The
key challenge is to know how to select techniques, to determine when these techniques
are relevant and what benefits we can expect from the existing tools.

Hence, we propose to move from MDE (Model Driven Engineering) to VDE (Verifi-
cation Driven Engineering). In this context, we claim that one need to consider Model-
Driven Engineering as a generic framework in which verification plays a specific role at
several points in the development, from early validation phase up to in-depth analysis,
with benefits to quality of system to certification.

One key guideline is to provide verification facilities to system designers. Since there
is no “silver bullet”, we must also provide enough information to help picking up the
correct technique and tools. Hence, the formal method community must provide a clas-
sification of verification techniques, and a methodological framework so that designer
can select the appropriate techniques to verify model. Finally, one must find a way to
ease the use of these appropriate notations (e.g. automata, lemmas, etc.), probably by
using some dedicated language(s).

The objective of this paper is first to sum up existing formal verification techniques,
discuss their trade-off and see how and when they can meet engineering needs. Section 2
presents existing elements in MDE to be considered for VDE and section 3 proposes
our vision of VDE.

2 Building Blocks from MDE

In this section, we list existing methods and processes one can apply to build complex
systems. Through MDE, one may process its model and analyze it, generate code on
testbed or final hardware. Still, the question of building a processable model remains.

2.1 From Models to Model Driven Engineering

The use of models is a typical step in many engineering domains, e.g. civilian engineer-
ing use models for building bridges. Surprisingly, it expanded through the software do-
main only recently through OMG’s UML. It becomes of particular benefits for complex
software because it helps to understand a complete problem and its potential solutions
through different levels of abstraction.

As authors in [55] advocate: Model-driven development methods were devised to
take advantage of this opportunity, and the accompanying technologies have matured
to the point where they are generally useful. A key characteristic of these methods is
their fundamental reliance on automation and the benefits that it brings. However, as
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with all new technologies, MDD’s success relies on carefully introducing it into the
existing technological and social mix.

The base concept of MDE is the model itself, built upon a meta-model which defines
guidelines and constraints on valid models: allowed components, composition of com-
ponents and related semantics checks. This view expands from the compiler-vision of
programs based on a Backus-Naur formalism.

A model is nothing but a set of well-formed entities. To process the model and per-
form verification, one need to extract information required to perform a specific analy-
sis. MDE, as a process, provides methods and tools to automate this analysis. It relies
on implementation artifact (MOF and QVT frameworks, XML representation) to ease
interoperability between tools, and to support easy construction of tools in a uniform
framework like Eclipse. Yet, MDE is an implementation framework for model-based
tools: one need to reflect on concepts conveyed by models to build analysis tools on top
of this framework.

2.2 Formal Methods and Other Analysis Techniques

Mathematical analysis are interesting as they allow one to reason on a model based on
formal grounds. Through different theories (sets, automata, stochastic, . . . ), engineers
have access to a large panel of methods. In this section, we list some of them.

Algebraic Approaches. such as Z [1] or B [3] allow to describe a system using ax-
ioms and then, prove properties of this specification as a theorem to be demonstrated
from these axioms. These methods allow one to check for the consistency of interfaces
through a complete type checking mechanism, or even to go further and prove theorems
(lemmas, invariants) on a set of interface.

These are of particular interest because the proof is parametric and abstract ; for
instance a property can hold for a number of entities taken in the natural range. How-
ever, theorem provers that help elaborating the proof are difficult to use and still require
highly skilled and experienced engineers.

Model Checking. [14] is the exhaustive investigation of a system’s state space. A
designer express a property to be tested on a model, using a logic formula expressing
a possible behavior of the system. This formula is compared with all the paths in the
system’s state space. If there is a path that does not satisfy the property, then the property
does not hold and the returned path exhibits a counter-example to the property.

The main advantage of this technique is that it is now fully automated. Yet, results are
obtained for a particular set of resources (e.g. N threads), and can be generalized. Be-
sides, it is theoretically limited by the combinatorial explosion and can mainly address
finite systems. However, recent techniques based on so called symbolic techniques1 al-
low to scale up to more complex systems. More recent studies also investigate model
checking of infinite-state systems [45]. Other extensions contemplate the verification of
time-related or probabilistic properties on a model.

1 The word symbolic is associated with two different techniques. The first one is based on state
space encoding by means of decision diagrams and was introduced in [10]. The second one re-
lies on set-based representations of states having similar structures and was introduced in [12].
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Analytical Techniques. defines a set of formulae that can be applied on a well-formed
model. Typical example is the Rate Monotonic Analysis [43] that provides such tech-
niques. These techniques are defined by a set of preconditions that a model must match
for being amenable to analysis, and a set of computation steps to compute a metric on
a model and conclude. Yet, these frameworks are limited to computable results. In this
context, in-depth scheduling analysis shows complexity issues that cannot be solved.

Simulation-Based Techniques. proposes methods to compute an estimation of some
properties of a system, like the Monte-Carlo method. This technique is required when
no analytical techniques can easily be derived from a system because of the many inter-
fering factors, e.g. peers in an ad hoc wireless network under the influence of electro-
magnetic perturbation. In this setting, only simulation can help gaining an estimate on
the achievable bandwidth. Yet, simulation-based, just like model checking suffers from
the combinatorial explosion problem. Furthermore, the parameters required for the sim-
ulation might be complex. The designer need a simple way to express these parameters
in a way close to the mathematical model of the underlying phenomenon.

So, if formal verification techniques are getting more mature, there is no silver bullet
since no technique can be used easily on any type of problems [40]. One technique can
be useful at one step of the software life cycle and irrelevant at the next . It is necessary
to use the right approach at the right stage of software design and development.

2.3 Related Difficulties

The use of models is delicate. Engineers must consider models quality (appropriate-
ness) [55], language limitations [54] or methodological aspects [38]. Appropriateness
of models is crucial if engineers want to reason on them. Languages involved in the
design and development process must be able to capture basics required for such rea-
soning. Basics range from static considerations (such as the composition of interfaces,
the compatibility of Quality of Service policies), to dynamic one (ensure liveness
of a model up to safety properties). This is difficult to achieve in a unified way
(in the meaning of UML) because the language becomes too complex to use and
generalization is usually against precision that is required in industrial critical
applications.

Methodological aspects are also often underestimated. The way models and associ-
ated languages are used is very important to ensure that an analysis can be performed.
Concepts and details must be considered in an appropriate way. This is even more im-
portant when formal methods are involved since a detail may ruins all the effort and
make the proof or the verification false because some hypothesis on the configuration
have been forgotten. Furthermore, the application of formal methods may face imple-
mentation limits through the so-called “state-explosion” problem, or the inability to
compute some metrics (reliability, schedulability).

It is important to clearly state what can be achieved by each family of formal methods
and to know when to use them. Then, one can states that they can provide an appropriate
answer to expected properties.
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2.4 Towards a Better Use of Formal Methods

MDE defines a methodological framework to elaborate models, whereas formal meth-
ods exploit some information and derive some statements for a system. The key chal-
lenge is to orchestrate requirements for an easy modeling framework dedicated to the
designer, and the capability to apply formal methods in an efficient and consistent way.
Therefore, we propose the following requirements as a baseline to define a consistent
VDE framework that integrate MDE and verification.

R1 A modeling notation that allows the designer to capture the multiple dimension of
his system: interfaces, functionnal, non-functionnal and behavioral properties. This
requires a notation that is non-ambiguous. Standards like AADL or UML and its
profiles like MARTE define such framework.

R2 A mapping between some models elements and a mathematical framework. This
requires the modeling notation to have enough semantics, properties or expression
power to derive such mapping. For instance, core UML does not support scheduling
entities, whereas MARTE does.

R3 Eventhough semantics is present, one need to focus on the expression of complex
interaction patterns to be analyzed, like ad hoc networks, consensus, . . .

R2 and R3 requires the intervention of the formal method community in order to guide
the engineer in its modeling work. This can be a set of guidelines, wizards or specific
front-end to indicate what are the relevant information to be provided.

R4 If multiple analyzes are required, it is important to make sure the different modeling
artifacts are consistent and reflect the same model.

R5 An automated process should occur, to derive the engineer’s model onto a model
suitable for the analysis technique. Such process can be defined through the notion
of “model-bus” to exchange models.

We point out that most of these requirements where already present when the UML-SPT
profile was designed. Yet, the integration of tools is inefficient and support a limited set
of analysis, mostly performance analysis.

3 Verification Driven Engineering

Sections 2 listed requirements for integrated verification in a MDE framework. This
section defines our vision of an extended use of MDE that puts emphasis on the ex-
ploitation of models to verify and validate properties. We call it VDE for “Verification
Driven Engineering”.

If modeling the system is important, engineers often forget that a model has proper-
ties that must be defined as soon as possible. The testing research field states that tests
must be elaborated jointly with specifications. This is the same for modeling as it is
suggested in the B approach with so called ”proof obligation” [3,23].

However, there are several types of property that should be elaborated at various
levels of the software life cycle. We here propose a classification of such properties.
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3.1 Classification of Properties

There are three types of useful properties when designing a system: 1) Structural
properties, 2) Qualitative properties and 3) Quantitative properties.

Structural properties are the ones related to the structure of the system :

– connection and consistency between interfaces of system’s components,
– invariants to be maintained in the system,
– fault-tree analysis (dependencies between system’s components when one fails).

Most of these properties should be established at an early stage in the design process
and at a coarse grained level. They can be refined later or enriched with some smaller
coarse grained, when design is being detailed.

Qualitative properties deal with the behavior of the system e.g. schedulability, liveness,
causality and deadlock detection.

To ensure such properties, the behavior of the system must be defined. They are usu-
ally described later in the software process, when information are known about com-
ponents behavior. If specifications moves to programming early (e.g from UML class
diagram directly to implementation), these properties are not set up since it is more
difficult to elaborate them on programming language.

However, some recent work try to propose solutions to behavioral analysis of pro-
grams from their source code [33]. Some tools are already operational: Feaver [31] and
then Modex [34]. They are able to analyze C-ansi code and perform model checking
using SPIN [32]. QUASAR [27] is able to generate a communication model using Petri
Nets from an Ada Program to check for communication problems (e.g. deadlocks).

Quantitative Properties are used to evaluate performances of the system or to evaluate
its behavior considering characteristics such as probability of actions to occur when
non-determinism occurs, or the time execution time.

To set up such properties, even ore information is required such as an estimation of
execution time (for time analysis).

3.2 Relations between Properties, Techniques and Tools

Table 1 links properties to verification techniques and list well-known related tools.
We selected a set of well known verification techniques. Simulation is not formal

but remains widely used, at least as a first approach to analyze a new system. Semantic
Analysis is analyzing source code to make sure it does not violate some elementary se-
mantic checks (e.g. arithmetic on integers) or more advanced one (concurrent access on
variables like in the Esterel synchronous language). Different type checking techniques
rely on calculi and are now embedded in typical programming languages like Ada, Eif-
fel or CAML. Other techniques like theorem proving and model checking have already
been presented in section 2.2.

There are several categories of model checking that are differentiated by their com-
binatorial explosion: there now exist efficient techniques like symbolic representation
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Table 1. Relations between verification needs, techniques suitable to address these needs, and
some related available tools
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Available tools

Simulation × Cheddar [56], CPNTOOLS [19],
Rhapsody [58], Renew [20],
SCADE [26], Simulink [46]

Semantic Analysis × × × Cheddar [56], MAST [21],
SPARK [51], TRAIAN [62]

Type checking × EiffelStudio [25], FuZZ [44],
Z/EVES [48]

Theorem proving × × × × × Atelier B [5], Coq [16], Z/EVES [48],
PVS [57]

Model Checking... × × × × × CHARON [59], CPN-AMI [42],
FAST [41], SMV [47], SPIN [32],
SCADE [26], SPOT [24]

...timed × CADP [61], Kronos [22], TINA [8],
UPPAAL [60]

...stochastic × GreatSPN [30], PRISM [52],
QPME [50]

of states based on the computation of symmetries in the system [13] or symbolic en-
coding of states by means of decision diagrams [10,17,18] that allow to cope with state
space explosion. The use of symmetries can still be applied with some success for sto-
chastic systems (like in GreatSPN) as well as some decision diagram encoding (like in
PRISM). However, none of these techniques can be applied to timed analysis for which
analysis limitations are reached faster.

Table 1 illustrates that some properties may be evaluated using more than one tech-
niques. It is up to engineers to select the most appropriate one. It is important to point
out that all the referenced tools may rely on different notations. For instance, the tools
we refer in Table 1 for model checking with time relies on timed automata (CADP, Kro-
nos, UPPAAL) or times Petri nets (TINA). The choice may be delicate since techniques
and tools may have week and strong parts that are not the same.

3.3 Formal Methods, Drawbacks

There are numerous success stories in the use of formal methods in various domains.
This concerns numerous formal verification approaches like general Model Check-
ing [15], Model Checking from programs [11], Petri Net based techniques applied to
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telecommunication systems [9] or algebraic methods (B) applied on the MÉTEOR
subway line [6]. However, the underlying techniques are not easy to operate.

First, as Table 1 illustrates, a given type of property can be verified using several
techniques, and multiple tools. Each technique or tool has its advantages and drawbacks.
To be efficient, engineers must select the appropriate technique and tool for his problem.
It remains an open problem since the skills needed to address this problem require
experience. This is why formal verification is costly.

Second, there is a consistency problem between: (1) the specification, (2) its mapping
to formal specifications (required for verification) and (3) its implementation. Hence,
one must ensure that what is verified is what is implemented. Usually, (1) is a high-level
(standardized) specification that is easier to handle than a formal notation. So far, there
are several approaches to tackle this problem:

• Using transformation engines from MDE to perform in a rigorous way the trans-
formation from (1) to (2) and code generation from (1) to (3). One need to prove
that the transformations are correct. See [37] for preliminary works in the context
of CCM.

• Perform “extreme-programming like approach” and consider that (1), (2) and (3)
are the programming language [33].

• Use the formal notation as (1) and perform code generation from this notation [6].
• Use a pivot notation associated to (1) that provides a concrete semantics and trans-

lations from this pivot notation to (2) and (3) like in the MORSE project [28].

In all cases, there is an entry point notation that acts as a pivot notation which relates
several types of specifications (e.g. semi-formal, formal, implementation).

Third, when does a given property should be verified during software development ?
We sketch a proposal in section 3.4, based on our experience to link the verification of
a given property to a step in the software life cycle.

3.4 The VDE Design Process

In this section, we explicit the way VDE can be applied in a software development
process. We propose an helicoidal life cycle inspired from the prototyping based ap-
proach presented in [39]. This life-cycle is illustrated in figure 1. Each loop corresponds
to one refinement of the system as follows:

1. Developers must first build (or refine) a model.

modeling

verification+
code generation

feed-back analysis

V2 V4V1

Fig. 1. The VDE helicoidal life cycle
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2. Then, they perform some verification operations using some of the techniques and
tools mentioned in table 1. To enable formal techniques, the model should be
transformed into a formal specification. Otherwise, informal approaches such as
simulation are also acceptable if the model remains executable.

3. If verification results are satisfactory, then the system can be generated and addi-
tional analysis can be performed (tests in the execution environment of the imple-
mented properties). To reduce implementation costs, code generators are required.

4. Finally, analysis of collected date (from verification and execution) is stored for
feed back. From this feed back, issues for the next refinement (loop) are deduced.

Towards Application with AADL. In [36], we evaluate potential impacts of VDE on
the development of High-Integrity systems.

We contemplated the use of AADL as a mean to describe a systems on which analysis
techniques can be applied. In fact, AADL is rich enough to express multiple aspects of
a real-time system in a concise way.

Numerous efforts are currently done to help full analysis with some of the tools we
listed: schedulability analysis with Cheddar [56]; model checking of behavioral proper-
ties with Petri Nets and CPN-AMI [42], or CHARON [59]; dimensioning analysis with
OSATE [2], etc. We think this demonstrates VDE is a feasible concept.

3.5 Open Issues

Of course, current practice and tools do not yet allow the full picture depicted in
section 3.4. Several problems remain to have VDE fully operational. So far, there
mainly are two open issues.

First, it is important to have a consistent set of information in the input specification,
from which one can derive formal specifications, in a mathematical meaning.

UML is a typical example: numerous works propose to derive formal specifications
from specific diagrams such as state-charts like [7] or sequence-charts like [4] but none
proposes simultaneous analysis from several UML diagrams. This is because connec-
tion between diagram is not formally defined. Additional interpretation must be per-
formed (possibly by means of UML profiling like in UML-MARTE [49]). Compared
to UML, AADL [53] is better to derive formal specification because all features are
expressed in one single language: interface and non-functional properties are better de-
fined and thus more exploitable for verification purpose. For instance, connections with
SCADE have been improved [35]. So, we think the elaboration of a pivot notation with
links to verification and code generation is mandatory.

Second, verification techniques and their related implementation are difficult to se-
lect. One tool may complete analysis on given model and be enable to cope with another
one. So far, deep knowledge of the involved techniques are required. This problem
is more difficult to solve, but analysis and design frameworks are still studied in the
context of large projects like IST-ASSERT2 or AVSI3.

2 http://www.assert-project.net
3 https://avsi-tees.tamu.edu/

http://www.assert-project.net
https://avsi-tees.tamu.edu/
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4 Conclusion

Bringing verification techniques to engineer is now recommended to ensure more con-
fidence in safety critical systems. Model-Driven Engineering emerged as an efficient
way to reason about systems. However, MDE usually focus on the “how-to-model”
rather than the “what-to-model”. It is therefore difficult to know whether a system is
suitable for analysis. A model that cannot be processed is useless for engineers, except
for documentation purposes.

This paper proposes to reflect on concepts conveyed by models, and on existing for-
mal methods and analysis techniques to draw a landscape of available tools. Therefore,
one may move from MDE to VDE: verification driven engineering. In this context, the
user would know exactly what are the facets of this system relevant for a family of
analysis (e.g. schedulability), and what are the tools available to perform it.

We proposed a list of techniques and associated tools, based on a comprehensive
state of art. So far, there is no silver-bullet: one need to combine multiple analysis;
but also for a given analysis technique, one may need to pick the appropriate tools for
interoperability, performance or its supported features.

From this complex landscape, we note there is a trend towards the integration of all
these techniques around modeling notations like AADL or MARTE. We note these two
notations provide strong support for the embedded systems domain.

Besides, one need to reflect on the exact goal of software engineering. Efficient ap-
plication of verification techniques must be set up in a methodological approach. To do
so, we propose an helicoidal cycle and advocate for its iterative nature.

From these considerations, one may provide advanced modeling tools, in which a
“wizard” would guide the engineers to build its system and validate it. Defining such a
process, and associated tools remain a key challenge for both the academic and indus-
trial communities.
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