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Abstract. Shared decision diagram representations of a state-spaechbeen
shown to provide gicient solutions for model-checking of large systems. How-
ever, decision diagram manipulation is tricky, as the awoesion procedure is
liable to produce intractable intermediate structurels.dgpeak éect). The def-
inition of the so-called saturation method has empiricegn shown to mostly
avoid this peak fect, and allows verification of much larger systems. However
applying this algorithm currently requires deep knowleaddehe decision di-
agram data-structures, of the model or formalism manipdlaand a level of
interaction that is notféered by the API of public DD packages.

Hierarchical Set Decision Diagrams (SDD) are decision rdiap in which arcs
of the structure are labeled with sets, themselves stor&D&s This data struc-
ture dfers an elegant and veryfieient way of encoding structured specifications
using decision diagram technology. It al$®ers, through the concept of inductive
homomorphisms, unprecedented freedom to the user wheringgtire transition
relation. Finally, with very limited user input, the SDD fdry is able to opti-
mize evaluation of a transition relation to produce a s#inmasffect at runtime.
We further show that using recursive folding, SDD are ableffer solutions in
logarithmic complexity with respect to other DD. We con@ualith some perfor-
mances on well known examples.
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1 Introduction

Parallel systems are notablfiitult to verify due to their complexity. Non-determinism
of the interleaving of elementary actions in particular isoairce of errors dicult to
detect through testing. Model-checking of finite systemsxdraustive exploration of
the state-space is very simple in its principle, entirelyoeatic, and provides useful
counter-examples when the desired property is not verified.

However model-checking fiiers from the combinatorial state-space explosion pro-
blem, that severely limits the size of systems that can bekgttautomatically. One
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solution which has shown its strength to tackle very larggesspaces is the use of
shared decision diagrams like BDD,2].

But decision diagram technology alsoffaus from two main drawbacks. First, the
order of variables has a huge impact on performance and dgfm appropriate order
is non-trivial [3]. Second, the way the transition relation is defined andiagphay
have a huge impact on performand¢].

The objective of this paper is to present hierarchical decidiagrams called Set
Decision Diagrams (SDD) and associated optimization tegles, that together are
suitable to master the complexity of very large systemsh@lgh SDD are a general
all-purpose compact data-structurépet has been put in providing easy to usetbe
shelf constructs (such as a fixpoint) to develop a modeldreasing SDD. These
constructs allow the library to control operation applicat and harness the power of
state of the art saturation algorithnig vith low user expertise in DD.

No specific hypothesis is made on the input language, althewgyfocus here on
a system described as a composition of labeled transitistesys. This simple formal-
ism captures most transition-based representations @alitomata, communicating
processes like in Promel6][ Harel state charts, or bounded Petri nets).

Our hierarchical Set Decision Diagrams (sect®wffer the following capabilities:

— Using the structure of a specification to introduce hiergintihe state space, it en-
ables more possibilities for exploiting pattern simili@stin the system (sectid),

— Automatic activation of saturation ; the algorithms ddsedi in this paper allow the
library to enact saturation with minimal user input (seetid and5),

— A recursivefolding technique that is suitable for very symmetric sysse(sec-
tion 7).

We also show that our openly distributed implementatldaD DD [7], is efficient
in terms of memory consumption and enables the verificatidnigger state spaces.

2 Definitions

We define in this section Data Decision Diagrams (based8hnand Set Decision
Diagrams (based of]).

2.1 Data Decision Diagrams

Data Decision Diagrams (DDDJJ are a data structure for representing finite sets of
assignments sequences of the foan:£ x1) - (&2 := X2) -+ (€n := Xn) Whereg are vari-
ables and are the assigned integer values. When an ordering on thelesiis fixed
and the values are booleans, DDD coincides with the wellsknBinary Decision Di-
agrams. When the ordering on the variables is the only assum@DD correspond
closely to Multi-valued Decision Diagrams (MD5J|

However DDD assume no variable ordering and, even moreatie sariable may
occur many times in a same assignment sequence. Moreoxiahles are not assumed



to be part of all paths. Therefore, the maximal length of ausege is not fixed, and
sequences of dierent lengths can coexist in a DDD. This feature is very Usefien
dealing with dynamic structures like queues.

DDD have two terminals : as usual for decision diagram, Y¥deatand for accept-
ing terminators and O-leaves for non-accepting ones. Shee is no assumption on
the variable domains, the non-accepted sequences areesapgifrom the structure. 0
is considered as the default value and is only used to deln@&npty set of sequences.
This characteristic of DDD is important as it allows the ubeasiables of finite domain
with a priori unknown bounds. In the followinds denotes a set of variables, and for
anyein E, Dom() C IN represents the domain ef

Definition 1 (Data Decision Diagram).The setD of DDD is inductively defined by
deDif:

—de{0,1} or
— d = (e a) with:
e ecE
e a:Dom(e) — D, such thafx e Dom(e)|a(x) # O} is finite.

We denote e d, the DDD(e, ) with o(x) = d and for all y# X, a(y) = 0.

Although no ordering constraints are given, DDD represetstgfcompatible DDD
sequencedNote that the DDD 0 represents the empty set and is theretorpatible
with any DDD sequence. Theymmetric compatibility relatios is defined inductively
for two DDD sequences:

Definition 2 (Compatible DDD sequences)We call DDD sequence a DDD of the
form g N & %, ...1. Let 5, $ be two sequences; $ compatiblewith s, noted
s1x g iff
—s1=1As=1
X X, e=€eA
- =e—>dArs,=€¢ —d suchthat{xzx,ﬂdzd,

As usual, DDD are encoded as (shared) decision trees (set fléigan example).
Hence, a DDD of the fornte, «) is encoded by a node labelednd for each e Dom(e)
such thatx(x) # 0, there is an arc from this node to the rootdk). By the definition
1, from a nodge, ) there can be at most one arc labeledktsyDom(e) and leading to
a(X). This may cause conflicts when computing the union of two DDibe sequences
they contain are incompatible, so care must be taken on thatipns performed.

DDD are equipped with the classical set-theoretic opemat{@nion, intersection,
set diference). They alsoffer a concatenation operatidip- d> which replaces 1 termi-
nals ofd; by dy. It corresponds to a cartesian product. In addition, honrpimems are
defined to allow flexibility in the definition of applicatiopscific operations.

A basic homomorphism is a mappiggfrom D to ID such tha®?(0) = 0 and®(d +
d) = &(d)+d(d’),¥d,d’ € D. The sum+ and the composition of two homomorphisms
are homomorphisms. Some basic homomorphisms are hardkcBdeinstance, the



homomorphisnd « Id whered € D, = stands for the intersection aidifor the identity,
allows to select the sequences belongind td is a homomorphism that can be applied
to anyd’ yieldingd = 1d(d") = d«d’. The homomorphismd- Id andld - d permit to left
or right concatenate sequences. We widely use the left tematon that adds a single

assignmentd:= x), notede > 1d.

We also have #ransitive closure * unary operator that allows
to perform a fixpoint computation. For any homomorphtsri* (d),

d € D is evaluated by repeatirdy— h(d) until a fixpoint is reached.
In other wordsh*(d) = h"(d) wheren is the smallest integer such
thath"(d) = h"™1(d). This computation may not terminate (ehgn-
crements a variable). However, if it does, theh= h" with n fi-
nite. Thush* is itself an inductive homomorphism. This operator is
usually applied tdd + h instead ofh, allowing to cumulate newly
reached paths in the result.

Furthermore, application-specific mappings can be defined b
Fig.1: DDDfor  inductivehomomorphisms. An inductive homomorphisiis de-
atatpli1 fined by its evaluation on the 1 termin&(1) € D, and its evaluation
ratedbe @' = &(e,X) for anye e E and anyx e Dom(g). @’ is itself a (possi-
+atatct 1 blyinductive) homomorphism, that will be applied on the segsor

noded. The result of®((e, @)) is then defined aF,  g)c, P(€, X)(d),
where}’ represents a union. We give examples of inductive homo-
morphisms in sectioB which introduces a simple labeledlmet formalism.

2.2 Set Decision Diagrams

Set Decision Diagrams (SDDJY], are shared decision diagrams in which arcs of the
structure are labeled bysetof values, instead of a single valuation. This set may itself
be represented by an SDD or DDD, thus when labels are SDD, ik d¢ifi them as
hierarchical decision diagrams. This section presentdéfiaition of SDD, which has
been modified fromg] for more clarity (although it is identical infiects).

Set Decision Diagrams (SDD) are data structures for repteggsequences of as-
signments of the forne; € ag; e, € ay;--- €, € &y Wwhereg are variables and; are sets
of values.

SDD can also be seen as ddient representation of the DDD defined as:

Uxgeay " Uxnean €1 A, € X, 1, however since; are not required to be finite, SDD
are more expressive than DDD.

We assume no variable ordering, and the same variable cansmeral times in an
assignment sequence. We define the usual terminal 1 to ezpr@scepting sequences.
The terminal 0 is also introduced and represents the empbyf assignment sequences.
In the following,E denotes a set of variables, and for @ig E, Dom(€) represents the
domain ofe which may be infinite

Definition 3 (Set Decision Diagram).The se of SDD is inductively defined bye § if:

— se{0,1}or
— s={(ema) with:



e ecE.

e 1 ={ap,...,an} is afinite partition oDom(g), i.e.Dom(e) = ap ¥ - - - W a, where
@ is the disjunctive union. We further assutfiea; # 0, and n finite.

e a:7— 8§, suchthawi # j,a(a) # a(a)).

We will simply note s (e a) the node(e ,a) as a implicitly definesr. We denote
e d, the SDD(g, @) with a(a) = d,a(Dom(e) \ a) = 0. By convention, when it exists,
the element of the partitiomthat maps to the SDD is not represented.

SDD are canonized by construction through the union operais definition en-
sures canonicity of SDD, as is a partition and that no two arcs from a node may
lead to the same SDD. Therefore any vakugf Dom(g) is represented on at most one

. a a .
arc, and any time we are about to constreieb d+e — d, we will construct an arc

e 22, dinstead. This ensures that any set of assignment sequeasasmique SDD
representation.

The finite size of the partition ensures we can stoseas a finite set of pairs(, d;),
and letr be implictly defined byx.

Although simple, this definition allows to construct richkdecomplex data :

— The definition supports domains of infinite size (e.g. Dem( R), provided that
the partition size remains finite (e.g. 8,]3.. + =]). This feature could be used to
model clocks for instance (as i()]).

— $ or D can be used as the domain of variables, introducing hieydrcthe data
structure. In the rest of the paper we will focus on this usecand consider that
the SDD variables we manipulate are exclusively of donSaon D.

Like DDD, to handle paths of variable lengths, SDD are regpito represent a set
of compatible assignment sequences. An operation over SB@id partially defined
if it may produce incompatible sequences in the result.

Definition 4 (Compatible SDD sequencesAn SDDsequencés an SDD of the form
€ 2, < @n 2, 1. Let g, $ be two sequences;, s s iff:

—s=1As=1
a a e=¢
—ss=e—>dAs =€ — d suchthat raz &

Aana #0=d~d

Compatibility is a symmetric property. Thexaa’ is defined as SDD compatibility if
a,a € S or DDD compatibility if aa’ € ID. DDD and SDD are incompatible. Other
possible referenced types should define their own notionmopatibility.

2.3 SDD Operations

SDD support standard set theoretic operations (unionisetgion, set dierence) for
compatible SDD. Like DDD they also support concatenatiegnwall as a variant of



inductive homomorphisms. Some built-in basic homomonpkige.g.d = Id) are also
provided similarly to DDD.

To define a family of inductive homomorphismsone has just to set the homomor-
phisms for the symbolic expressidr(e, X) for any variablee and setx € Dom(e) and
the SDD®(1). The application of an inductive homomorphignto a nodes= (e, @) is
then obtained byb(s) = 3 (x d)eo P(€, X)(d).

It should be noted that this definitionftérs from the DDD inductive homomor-
phism in that®(e, X) is defined over theets xc Dom(g). This is a fundamental ffer-
ence as it require® to be defined in an ensemblist way: we cannot define the el@huat
of @ over a single value of. However® must be defined for theetcontaining any
single value. If the user only definedi(e,x) with x e Dom(e), since thea; may be
infinite, evaluation could be impossible. Even when Dem(D, a element-wise def-
inition would force to use an explicit evaluation mechanisvhich is not viable when
a is large (e.glaj| > 10).

Furthermore, letb1, @, be two homomorphisms. Theby + @;, &1 o @, and @I
(transitive closure) are homomorphisms.

We also now define Bbcal construction, as an inductive homomorphism. ate
E designate a target variable, antbe a SDD or DDD homomorphism (depending on
Dom(var)) that can be applied to anyc Dom(var),

local(h,var)(e, x) =
h(x) .
{ e—>Id if e=var

el local(h,var) otherwise
local(h,var)(1)=0

This construction is built-in, and gives a lot of structuiraormation on the op-
eration. As we will see in sectioB, specific rewriting rules will allow to optimize
evaluation ofocal constructions.

3 Model Checking with Set Decision Diagrams

To build a model checker for a given formalism using SDD, oeeds to perform the
following steps:

1. Define the formalism,

2. Define a representation of states,

3. Define a transition relation using homomorphisms,

4. Define a verification goal.

We exhibit these steps in this section using a simple fosngliabeled P nets.
Most of what is presented here is valid for other LTS.

1. Defining the Formalism A unitary Labeled PT-Netis a tuple(P, T, Pre, Post L ,
label, mp) where

— Pis afinite set of places,



— T is afinite set of transitions (WitRN T = 0),

— PreandPost: PxT — IN are the pre and post functions labeling the arcs.
— Lis aset of labels

— label: T — 2t is a function labeling the transitions

— mp € INP is the initial marking of the net.

Idle
O—
hungry label(putFork) = {Ri+1modn}
WaitL i label(getFork) = { Li+1modn
label(eat) = {Ri}
getl ¥ getﬁ!F putFork label(getL;) = {£;)
Fork
HasL “\ ,~HasR
cat T getFork

Fig. 2: Labeled PT netP; of it philosopher in theé\ dining philosophers problem

For a transitiort, °t (resp.t®) denotes the set of plac@se P | Pre(p,t) # 0} (resp.
{p e P| Pos(p.t) # 0}). A markingm is an element oiNP. A transitiont is enabled
in a markingm if for each placep, the conditionPre(p,t) < m(p) holds. The firing
of an enabled transitioh from a markingm leads to a new markingY defined by
VYpe P,m'(p) = m(p) — Pre(p, t) + Pos(p, t).

Labeled IPT nets may be composed by synchronization on the transiti@idear
the same label. This is a parallel composition nogedwith event-based synchro-
nizations that can be interpreted as yielding a new (contgoksibeled PT net. Let
M= Mg/ -/ My be such a composite labeled Petri net. Each lab& @bmmon to
the composed netd; gives rise to aynchronization transition of M.

Letr = {tj|ti e M;.T Al € M;.label(t;)} represenparts of the synchronizatigne. the
set of transitions that bear this label in the subrMist, is enabledff. Vtj € 7 , tj is
enabled. Theféect firing oft| is obtained by firing all the partse ;. In the rest of this
paper, we will callabeled Petri net unitary or composite net.

Figure2 presents an example labeled Petri net, for the classicaglphilosophers
problem. The composite n€ / P1 synchronizes transitioRg.eat with P;.putFork
through labelRg for instance. This transition corresponds to philosogfesynchro-
nously eating and returning philosoptrhis fork.

This is a general compositional framework, adapted to tiepasition of arbitrary
labeled transition systems (LTS).

2. Defining the State RepresentationLet us consider a representation of a state space
of a unitary PPT net in which we use one DDD variable for each place of theesgsThe



(a) SDD: Po) / (P1) // (P2) (b) DDD: P; unitary net

Fig. 3: Hierarchical encoding of the full state-space foh8gsophers

domain of place variables is the set of natural numbers. fiitialimarking for a single

place is represented by, = p ﬂ) 1. For a given total order on the places of the

net, the DDD representing the initial marking is the congat®n of DDDdy, --- dp,.
For instance, the initial state of a philosopher can be sepred by Forki Hang

WaitR> HasL> WaitL > Idle = 1.

To introduce structure in the representation, we introdheeole of parenthesis in
the definition of a composite net. We will thus exploit thetfie model is defined as
a composition of (relatively independent) parts in our etieg. If we disregard any
parenthesizing of the composition we obtain an equival#at’‘composite net, how-
ever using dierent parenthesizing(s) yields a more hierarchical vig@sted submod-
ules), that can be accurately represented and exploitedriframework.

Definition 5 (Structured state representation)Let M be a labeled A net, we induc-
tively define its initial state representatioiM) by :
— If M is a unitary net, we use the encodin@w) = dp, ---dp,, with dp = p M 1
— If M =Mz /) My, r(M) =r(M3) - r(My). Thus the parallel composition of two nets
will give rise to the concatenation of their representation

M
— If M =(My), r(M) = muu,) ), 1, where m,) is an SDD variable. Thus paren-
thesizing an expression gives rise to a new level of hiesairclthe representation.

A state is thus encoded hierarchically in accordance witptirenthesized compo-
sition definition. If we disregard parenthesizing, we obtaiflat representation using
only DDD. We use in our benchmark set many models taken fréemakure that are
defined using “modules”, that is a niét= (M1) // --- / (Mn) where eachM; is a unitary
net called a module (yielding a single level of hierarchytie 8DD). Figure3 shows
an example of this type of encoding, where fig8(a)is an SDD representing the full
composite net, and labels of the SDD arcs refer to DDD nodégurfe 3(b).



3. Defining the Transition encoding The symbolic transition relation is defined arc
by arc in a modular way well-adapted to the further combaratf arcs of diferent
net sub-classes (e.g. inhibitor arcs, reset arcs, capaleitgs, queues...). Homomor-
phisms allowing to represent these extensions were prslialefined in 8], and are
not presented here for sake of simplicity. The two followhmmomorphisms are de-
fined to deal respectively with the pre (noted and post (noteti*) conditions. Both
are parameterized by the connected plageaé well as the valuatiorv) labeling the
arc entering or outing .

h™(p.v)(e.X) = h*(p,v)(e.X) =
e=51d  ife=pax>v e%1d ife=p
0 ) if e= p./\x< % e h*(p,v) otherwise
e— h™(p,v) otherwise h*(p,v)(1)=0
h™(p,v)(1)=0

These basic homomorphisms are composed to form a transéfition.

Definition 6 (Inductive homomorphism transition representation). Let t be a tran-
sition of labeled T net M. We inductively define its representation as a homemor
phisms hang(t) by :

— If M is a unitary net, we use the encoding

hrrandt) = Opeteh™(p, Pos(p, 1)) e Opesth™(p, Pre(p, )

— IfM=(My) /- /(Mp), and t represents a synchronization of transitions on allabe
| € L. The homomorphism representing t is written :

hrrang(t) = Otier local(hrand(ti), Mow;))

For instance the transitionungry in the model of Fig.2, would have as homo-
morphism :hrangdhungry) = h*(WaitL, 1) o h*(WaitR 1) o h~(Idle, 1). When on a path
a precondition is unsatisfied, the homomorphism will return O, pruning the path from
the structure. Thus thig" are only applied on the paths such that all preconditions are
satisfied.

To handle synchronization of transitions bearing the saahellin diferent nets of
a compositional net definition we use the local applicationstruction of SDD homo-
morphisms. The fact that this definition as a compositionoctl actions is possible
stems from the simple nature of the synchronization schemnaidered. A transition
relation that is decomposable under this form has beendcklienecker-consistent in
various papers on MDD by Ciardo et al likg] [

For instance, let us consider the dining philosophers el@fopN = 3, M = (Pg) /
(P1) / (P2). The transitiortg, is written :

hTrans(tRO) = local(hrrandeald, mep,))
olocal(hrrandputFork, me,))
= local(h*(ldle,1)o h*(Fork,1) o h~(HasL 1) o h~(HasR 1), mpy)
olocal(h*(Fork, 1), mp,))



4. Defining the Verification Goal The last task remaining is to define a set of tar-
get (usually undesired) states, and check whether theyeahable, which involves
generating the set of reachable states usifigpmintover the transition relation. The
user is then free to define a selection inductive homomonpliist only keeps states
that verify an atomic property. This is quite simple, usirggrtomorphisms similar to
the pre conditionlf™) that do not modify the states they are applied to. Any baolea
combination of atomic properties is easily expressed ugirign, intersection and set
difference.

A more complex CTL logic model-checker can then be constidiosing nestefix-
point constructiongver the transition relation or its revers®.[Algorithms to produce
witness (counter-example) traces also exi4} fnd can be implemented using SDD.

4 Transitive Closure : State of the Art

The previous section has allowed us to obtain an encodintti#ssusing SDD and of
transitions using homomorphisms. We have concluded wéthrttportance of having
an dhicient algorithm to obtain the transitive closure or fixpahthe transition relation
over a set of (initial) states, as this procedure is centrti¢ model-checking problem.

Such a transitive closure can be obtained using variousitigts, some of which
are presented in algorithin Variantais a naive algorithnt) [2] andc[4] are algorithms
from the literature. Variard, together with automatic optimizations, is our contributi
and will be presented in the next section.

Symbolic transitive closure ('91)P] Variationa is adaptated from the natural way of
writing a fixpoint with explicit data structures: it uses & &&loexclusively containing
unexplored states. Notice the slight notation abuse: we hiibdo) when we should
note (1 t)(todo).

Variantb instead applies the transition relation to the full set afrently reached
states. Varian is actually much moref&icient than varian&in practice. This is due to
the fact that the size of DD is not directly linked to the numbkstates encoded, thus
thetodo of varianta may actually be much larger in memory. Varianélso requires
more computations (to get thefifirence) which are of limited use to produce the final
result. Finally, applying the transition relation to statkat have been already explored
in b may actually not be very costly due to the existence of a cache

Variantb is similar to the original way of writing a fixpoint as found [g]. Note
that the standard encoding of a transition relation uses aMdBDtwo DD variables
(before and after the transition) for each DD variable ofdtete. Keeping each tran-
sition DD isolated induces a high time overhead, @Bedént transitions then cannot
share traversal. Thus the union of transitidnis stored as a DD, in other approaches
than our DDDSDD. However, simply computing this unidhhas been shown in some
cases to be intractable.

Chaining ('95)[4] An intermediate approach is to use clusters. Transitiostels are
defined and a DD representing each cluster is computed usiiog.urhis produces



Algorithm 1: Four variants of a transitive closure loop.

Data: {Hom} T : the set of transitions encodedlasans homomorphisms
$ mp : initial state encoded agM) SDD

$ todo: new states to explore
S reach: reachable states

a) Explicit reachability style

begin
todo:=my
reach:=mg

while todo+ 0 do
S tmp:=T(todo
\; todo:=tmp\reach
reach:=reach+tmp

b) Standard symbolic BFS loop

begin
todo:=my
reach:=0

while todo# reachdo
reach:=todo
todo:=todo+ T(todo) = (T + Id)(todo)

end
end
¢) Chaining Toop
begin
todo:=my
reach:=0 d) Saturation enabled

while todo # reachdo

forteT do

begin
| reach:= (T +Id)*(mp)
end

\; reach:= todo

| todo:= (t+Id)(todo

end

smaller DD, that represent the transition relation in parte transitive closure is then
obtained by algorithnt, where each represents a cluster. Note that this algorithm
no longer explores states in a strict BFS order, as wheés applied afteit;, it may
discover successors of states obtained by the applicationdhe clusters are defined
in [4] using structural heuristics that rely on the Petri net defin of the model, and
try to maximize independence of clusters. This may allowaoverge faster than ia

or b which will need as many iterations as the state-space is. dghjpe this variant
relies on a heuristic, it has empirically been shown to bembetter tharb.

Saturation ('01)[5] Finally the saturation method is empirically an order of miagde
better tharc. Saturation consists in constructing clusters based ohigeest DD vari-
able that is used by a transition. Any time a DD node of theestptice representation
is modified by a transition it is (re)saturated, that is thestdr that corresponds to this
variable is applied to the node until a fixpoint is reached eWbaturating a node, if
lower nodes in the data structure are modified they will trelves be (re)saturated.
This recursive algorithm can be seen as particular apmicairder of the transition
clusters that is adapted to the DD representation of stateesjnstead of exploring in
BFS order the states.

The saturation algorithm is not represented in the algarithriants figure because
itis described (in%])on a full page that defines complex mutually recursive poures,
and would not fit here. Furthermore, DD packages sududdor Buddy{12,13] do not



provide in their public API the possibility of such fine mauigtion of the evaluation
procedure, so the algorithm d][cannot be easily implemented using those packages.

Our Contribution All these algorithm variants, including saturation (s&f,[can
be implemented using SDD. However we introduce in this papeore natural way
of expressing a fixpoint through tH& unary operator, presented in variahtThe
application order of transitions is not specified by the usehis version, leaving it up
to the library to decide how to best compute the result. Brdkfthe library will thus
apply the most #icient algorithm curently available: saturation. We thusrcome the
limits of other DD packages, by implementing saturaiiwsidethe library.

5 Automating Saturation

This section presents how using simple rewriting rules weraatically create a satu-
ration dfect. This allows to embed the complex logic of this algoritimthe library,
offering the power of this technique at no additional cost tasuskt the heart of this
optimization is the property dbcal invariance

5.1 Local Invariance

A minimal structural information is needed for saturationbe possible: the highest
variable operations need to be applied to must be known.i$etid we define :

Definition 7 (Locally invariant homomorphism). An homomorphism h is locally in-
variant on variable eff

Vs=(ea)eDUS, h(9) = X (xaew € h(d)

Concretely, this means that the applicationhofloesn’t modify the structure of
nodes of variable, andh is not modified by traversing these nodes. The variable
is a “don’t care” w.r.t. operatioh, it is neither written nor read bly. A standard DD
encoding 5] of h applied to this variable would produce the identity. Theniitg ho-
momorphismid is locally invariant on all variables.

For an inductive homomorphishlocally invariant ore, it means thal(e, x) = el
h. A user defining an inductive homomorphignshould provide a predicatgkige)
that returngrueif his locally invariant on variable. This minimal information will be
used to reorder the application of homomorphisms to produsaturation gect. It is
not difficult when writing a homomorphism to define tRikippredicate since the useful
variables are known, it actually reduces the number of thstsneed to be written.

For example, thé* andh™ homomorphisms of sectid®hican exhibit the locality of
their éfect on the state signature by definiBiip which removes the tegt= p w.r.t.
the previous definition sincgis the only variable that is nakipped

h™(p,v)(e,x) =
e Id if x>v h*(p,v)(e X) = e — Id
0 if x <V h*.Skige) = (e # p)
h~.Skife) = (e # p) h*(p,v)(1)=0

h™(p.v)(1)=0



An inductive homomorphisn®@’s application tos = (e «) is defined by®(s) =
2 (xd)ea P(6,X)(d). But when is invariant one, computation of this union produces

the expressior‘z(x,d)mei @(d). This result is known beforehand thanks to the predi-
cateSkip

From an implementation point of view this allows us to createew node directly
by copying the structure of the original node and modifyihéniplace. Indeed the
application of® will at worst remove some arcs. Ifé(d) produces the 0 terminal, we
prune the arc. Else, if twa(d) applications return the same value in SDD setting, we
need to fuse the arcs into an arc labeled by the union of theadues. We thus avoid
computing the expressiol, 4, ?(€, X)(d), which involves creation of intermediate

single arc nodes = --- and their subsequent union. The impact on performances of
this “in place” evaluation is already measurable, but monpartantly it enables the
next step of rewriting rules.

5.2 Union and Composition

For built-in homomorphisms the value of tB&ippredicate can be computed by query-
ing their operands: homomorphisms constructed using yo@mnposition and fixpoint
of other homomorphisms, are locally invariant on variabifietheir operands are them-
selves invariant oe.

This property derives from the definition (given i8,9]) of the basic set theory
operations on DDD and SDD. Indeed for two homomorphisrsdh’ locally invariant
on variableewe have¥s= (e, a) e DUS,

(h+h)(s) = h(s)+h'(9)
= Sxdea €= h(d) + Zixapea € N()
= Sxdyea € h(d) +H(d)
= Sd)ea €2 (N+1)(d)

A similar reasoning can be used to prove the property for asitipn.

It allows homomorphisms nested in a union to share traveféhe nodes at the top
of the structure as long as they are locally invariant. Wihey ho longeSkipvariables,
the usual evaluation definitidm(s) + h'(s) is used to &ect the current node. Until then,
the shared traversal implies better time complexity antebeemory complexity as
they also share cache entries.

We further support natively the n-ary union of homomorplssirhis allows to dy-
namically create clusters by top application level as themavaluation travels down-
wards on nodes. When evaluating an nary urkigg) = >’; hi(s) on a nodes = (e, a) we
partition its operands inté = {h;j|h;.Skige)} andG = {hj|-h;.Skige)}. We then rewrite
the unionH(8) = (Xner )(S) + Xneg h)(S), or more simplyH(s) = F(s) + G(s). TheF
union is thus locally invariant oa and will continue evaluation as a block. T@epart
is evaluated using the standard definit®fs) = >,,.c h(s)

Thus the minimalSkip predicate allows to automatically create clusters of opera
tions by adapting to the structure of the SDD it is applied/Me. still have no require-
ments on the order of variables, as the clusters can be drdgtmmically. To obtain



efficiency, the partition& + G are cached, as the structure of the SDD typically has lim-
ited variation during construction. Thus the partitionsdo nary union are computed
at most once per variable instead of once per node.

The computation using the definition &f(s) = }; hi(s) requires eacln; to sepa-
rately traverses, and forces to fully rebuild all th;(s). In contrast, applying a uniod
allows sharing of traversals of the SDD for its elements pgsations are carried to their
application level in clusters before being applied. Thusewa strict BFS progression
(like algorithm 1b) is required this new evaluation mechanism has a signifieff@tt
on performance.

5.3 Fixpoint

With the rewriting rule of a unioi = F + G we have defined, we can now examine the
rewriting of an expressiorH + I1d)*(d) as found in algorithm 4 :

(H+1d)*(8) = (F +G+1d)*(9)
= (G+1d+(F +1d)*)*(9)

The F +1d)* block by definition is locally invariant on the current vasia. Thus
it is directly propagated to the successor nodes, wherdliteaursively be evaluated
using the same definition asl & 1d)*.

The remaining fixpoint oves homomorphisms can be evaluated using the chaining
operation order (see algorithnx}, which is reported empirically moreffective than
other approachedfl], a result also confirmed in our experiments.

The chaining application order algorithncan be written compactly in SDD as :

reach= (Orer (t+ 1d))*(s0)

We thus finally rewrite:

(H+1d)*(s) = (Ogec(g+1d) o (F +1d)*)*(s)

5.4 Local Applications

We have additional rewriting rules specific to SDD homomapts and théocal con-
struction (see sectioA3):

local(h,var)(e,x) = e~ Id
local(h, var).Skide) = (r # var)
local(h,var)(1)=0

Note thath is a homomorphism, and its application is thus linear to tileas inx.
Further a local operation can onlffect a single level of the structure (definedvay).
We can thus define the following rewriting rules, exploitithg locality of the opera-
tion :



(1) local(h,v) o local(h,v) = local(ho i, V)

(2) local(h,v) + local(h’,v) = local(h + ', V)
(3)v#V = local(h,v) olocal(h’,v) = local(h’,Vv’) o local(h, V)
4) (local(h,v) +1d)* = local((h+ Id)*,v)

Expressions (1) and (2) come from the fact that a local ojmerat locally invariant
on all variables except Expression (3) asserts commutativity of composition c&lo
operations, when they do not concern the same variableethdlee &ect of applying
local(h,v) is only to modify the state of variable so modifyingv thenv’' or modifying
V' thenv has the same overalffect. Thus two local applications that do not concern the
same variable are independent. We exploit this rewritihg when considering a com-
position oflocal to maximize applications of the rule (1), by sorting the casifion
by application variable. A final rewriting rule (4) is usedaibow nested propagation of
the fixpoint. It derives directly from rules (1) and (2).

With these additional rewriting rules defined, we slighthaoge the rewriting of
(H+1d)*(s) for nodes= (e, a): we consideH(s) = F(s) + L(s) + G(s) whereF contains
the locally invariant partL = local(l,e) represents the operations purely local to the
current variablee (if any), andG contains operations whicltact the value oé (and
possibly also other variables below). Thanks to rule (4vabwe can write :

(H+1d)*(9) = (F+L+G+1d)*(9)
= (G +1d+(L+1d)* + (F +1d)*)*(9
= (Ogea(g+ Id) o local((l +1d)*,€) o (F + Id)*)*(s)

As the next section presenting performance evaluatiorlssiviw, this saturation
style application order heuristically allows to gain an@rdf magnitude in the size of
models that can be treated.

6 Performances of Automatic Saturation

Impact of Propagation We have first measured how the propagation alone impacts on
memory size, that is without automatic saturation. We haws measured the mem-
ory footprint when using a chaining loop with propagatioraleled or not. We have
observed a gain from 15% to 50%, with an average of about 40%5.i$ due to the
shared traversal of homomorphisms when they are propadhateinducing much less
creation of intermediary nodes.

Impact of Hierarchy and Automatic Saturation Table1 shows the results obtained
(on a Xeon @ 1.83GHz with 4GB of memory) when generating theestpaces of
several models with automatic saturation (Algal) compared to those obtained using
a standard chaining loop (Algd.c). Moreover, we measured how hierarchical encoding
of state spaces perform compared to flat encoding (DDD).

We have run the benchmarks on 4 parametrized models, wiireit sizes: the
well-known Dining Philosophers and Kanban models; a mo@i¢i® slotted ring pro-
tocol; a model of a flexible manufacturing system. We have laésichmarked a LOTOS



Final Hierarchical Flat Hierarchical
# Chaining Loop || Automatic Sat. Automatic Sat.
Model| States |DDD | SDD || T. [Mem.| Peak || T. [Mem.| Peak || T. IMem.| Peak
Size # (s)|(MB)| # (s)|[(MB)| # (s)|(MB)| #
LOTOS Specification
[98e21] — [1085][-] — | — [[-] — | - [1.47 74.0]110e3

Dining Philosophers
100 | 4.9e+62 | 2792| 419 ||1.9] 112 |276e+3||0.2| 20 | 18040(|0.07 5.2 | 4614
200 |2.5e+125/ 5589| 819 (|7.9| 446 |1.1e+6(|0.7| 58.1| 36241|| 0.2| 10.6| 9216
1000 (9.2e+626/27989 4019|| — | — - 14{1108(182er3|| 4.3| 115 | 46015
4000| 7e+2507, - |16019| —| - - - - - 77 |1488|184e+3

Slotted Ring Protocol
10 | 8.3e+09| 1283| 105 (|1.1] 48 |90043||0.2] 16 | 31501||0.03 3.5 | 3743

50 | 1.7e+52 (29403 1345|| — | - - 22|1054|2.4e+6(| 5.1| 209 |461e+3

100 |2.6e+105 -— |5145|| —| - - - - - 22| 816 |1.7e+6

150 |4.5e+158 — [(114458| - | - - - - - 60 | 2466|5.6e+6
Kanban

100 | 1.7e+19 (11419 511 || 12| 145 |264e+3|(2.9| 132 |309e+3|| 0.4| 11 | 14817
200 | 3.2e+22|42819 1011||96| 563 | 1e+6 ||19]| 809 |1.9e+6|| 2.2| 37 | 46617
300 | 2.6e+24 194219 1511|| — | - - 60(2482|5.7e+6|| 7 | 78 |104e+3
700 | 2.8+28 | — |3511|| —| - - - - - 95| 397 |523e+3

Flexible Manufacturing System
50 |4.2e+17 | 8822| 917 || 13| 430 |530e+3||2.7| 105 |222e+3|| 0.4| 16 | 23287

100 | 2.7e+21 32622 1817|| — | - - 19| 627 |1.3e+6|| 1.9| 50 | 76587
150 | 4.8e+23 71422 2717|| — | - - 62|1875|3.8e+6|| 5.3| 105 |160e+3
300 | 3.6e+27| — |5417| —-| - - - - - 33| 386 [590e+3

Table 1: Impact of hierarchical decision diagrams and aatansaturation

specification obtained from a true industrial case-stutydis generated automatically
from a LOTOS specification — 8,500 lines of LOTOS cad®,000 lines of C code — by
Hubert Garavel from INRIA).

All1 “— entries indicate that the state space’s generation didinish because of
the exhaustion of the computer’s main memory.

The"Final” grey columns show the final number of decision diagram nodeded
to encode the state spaces for hierarchical (SDD) and flaD(@EDcoding. Clearly, flat
DD need an order of magnitude of more nodes to store a state sphis shows how
well hierarchy factorizes state spaces. The good perfocesaf hierarchy also show
that using a structured specification can help detect giityilaf behavior in parts of a
model, enabling sharing of their state space representéae figures).

But the gains from enabling saturation are even more impbti@n the gains from
using hierarchy on this example set. Indeed, saturatiawalto mostly overcome the

1 We haven't reported results for flat DDs with a chaining lo@meration algorithm as they
were nearly always unable to handle models of big size.



“peak dfect” problem. ThusFlat Automatic Saturation”performs better (in both time
and memory) thatfHierarchical Chaining Loop”.

As expected, mixing hierarchical encoding and saturatiamgls the best results:
this combination enables the generation of much larger fsdban other methods on
a smaller memory footprint and in less time.

7 Recursive Folding

In this section we show how SDD allow in some cases to gain deraf complexity:
we define a solution to the state-space generation of thegahers problem which
has complexity in time and memotggarithmicto the number of philosophers. The
philosophers system is highly symmetric, and is thus wadlpded to techniques that
exploit this symmetry. We show how SDD allow to capture thimmetry by an adapted
hierarchical encoding of the state-space. The crucial igléa use a recursive folding
of the model withn levels of depth for 2 philosophers.

7.1 Initial State

Instead of Po) / (P1) / (P2) / (P3) which is the parenthesizing that is assumed by de-
fault, we parenthesize our compositionRg) / (P1)) / (P2) / (P3))). We will thus in-
troducen+ 2 levels of hierarchy to represerit ghilosophers, each level corresponding
to a parenthesis group. Since each parenthesis grlig (t)) only contains one com-
position //, its SDD will contain two variables that correspond to thetess of ¥) and
(Y).

The innermost level (level 0, corresponding to the mosteteparenthesis of the
composition) contains a variable of domain the states afglsiphilosopher. The most
external parenthesis group will be used to close the loepcannect the first and last
philosophers. Hence level 0 represents a single philosplelrel 1 represents the states
of two philosophers, and levetepresents the states dfghilosophers.

The magic in this representation is that each half of theogbjphers at any level
behaves in the same way as the other half : it's reallpo({/ (Po)) / ((Po) / (Po))).
Thus sharing is extremely high : the initial state of the egsfor 2' philosophers only
requires 2+ k (k € IN) nodes to be represented.

LetPg= Forki Hang Waith Hang WaitLg Idlei 1 representthe states
of a single philosopher as a DDD (as in sect®)nLet My represent the states of 2
philosophers using the recursive parenthesizing scheoilewing our definitions of
the previous sectionVly is defined inductively by :

Po
My = ho Mi-1 hy Mi-1 1 Mo=p—1

The most external parenthesis group yields a last variatedri v, such that

r((Mn)) = how,) M, 1. We have thus defined 4 variablégy,,) for the external paren-
thesishp andh; for intermediate levels, angfor the last level (Domg) C D).



7.2 Transition Relation

We define the SDD homomorphisnisandl to work respectively on the first and last
philosopher modules of a submodule, as they communicatesgpehronization tran-
sition.

f(h)(e.x) = I(h)(e,x) =
e, g ife=p %Id ife=p
f(h)(x) 10014 i = h (¥ O, 14 if e=hy
f.Sklp(e) (e# p) A(e# hp) l-Sklr(e) (e# p)A(e# hy)
f(h)(1)=0 ° I(h)(1)=0

We then need to take into account that all modules have the samsitions. Tran-
sitions that are purely local to a philosopher module arensd and stored in a homo-
morphism which will be noted. (in fact only hungryis purely local). We noté’Z;(s)
the part of a synchronization transitisp created for label that concerns theurrent
philosopher modul®; and/7,1(s) the part ofs_ that concern®;1modn the right hand
neighbor ofP;. We noteS the set of synchronization transitions, induced by theltabe
L andRi.

Let Tioop = 1d + X5 1(77i(9)) o F(7i41(9))
Tloop IS @an SDD homomorphism operation defined to “close the lothyalt, materializes
that the last philosophers right hand neighbor is the firdbpbpher. Our main firing
operation that controls the saturatiorridefined as follows :

7(ex) =
(toTI00p)* (¥)
e 7 g if e=howmy,)

* T*ol(I7,
ei>T+Zses ﬂwof(ﬂm(s)) if e=ho

e—(f)—>|d if e=hy

i(—XLId ife=p

7((1)=0

We can easily adapt this encoding to treat an arbitrary numizé philosophers
instead of powers of 2, by decomposingnto it's binary encoding. For instance, for
5= 20+ 22 philosophers (0) / ((P1/ P2) / (P3/ P4))) Such unbalanced depth in the
data structure is gracefully handled by the homogeneityusfaperation definitions,
and does not increase computational complexity.

7.3 Experimentation

We show in tabl& how SDD provide an elegant solution to the state-space gtoer
of the philosophers problem, for up t8%%philosophers. The complexity both in time
and space is roughly linear @ with empirically &1 nodes and 12 arcs required to
represent the final state-space bfdhilos

The solution presented here is specific to the philospheyisi@m, though it can
be adapted to other symmetric problems. lisceency here is essentially due to the



Final Peak
Nb. Philosophers States Time (s) SDD |DDD| SDD |DDD
210 1.02337e-642 0.0 83 | 31| 717 | 97
231 1.63233e134639262p 0.02 | 251 | 31 | 2250 | 97
21000 NA 0.81 | 8003 | 31 | 72987 | 97
210000 NA 9.85 | 80003| 31 |729987| 97
220000 NA 20.61 |160003 31 |1459987 97

Table 2: Performances of recursive folding withghilosophers . The states count is noi¢4
when the large number library GNU Multiple Precision (GMR) use reports an overflow.

inherent properties of the model under study. In particiilarstrong locality, symmetry
and the fact that even in a BDDD representation, adding philosophers does not
increase the “width” of the DDD representation — only it'sdie —, are the key factors.

The dfficulty in generalizing the results of this example, is thatexploit in the
definition of the transition relation the fact that all plstphers have the same behavior,
and the circular way they are synchronized. In other wordsfarmalism is not well
adapted to scaling to"2because it lacks an inductive definition of the problem that
we could capture automatically. While a simple use of theptiresizing scheme de-
scribed in sectio® would produce overall the saméects, the recursive homogeneity
captured byr would be lost. We would then have linear complexity w.r.thte number
of philosophers, when computing our rewriting rules, whihot viable to scale up to
22000055 we no longer can have overall logarithmic complexity.

Thus our currentresearch direction consists in definingradtism (e.g. a particular
family of Petri nets) such that we could recognize this patsad obtain the recursive
encoding naturally.

However, this example reveals that SDD are potentially eeptially more power-
ful than other decision diagram variants.

8 Conclusion

In this paper, we have presented the latest evolutions oétukical Set Decision Di-
agrams (SDD), that are suitable to master the complexityeof \arge systems. We
think that such diagrams are well-adapted to process llgical high-level specifica-
tions such as Net-within-Net&p] or CO-OPN [L6].

We have presented how we optimize evaluation of user homuaimigms to automat-
ically producing a saturatiorfiect. Moreover, this automation is done at a low cost for
users since it uses3kippredicate that is easy to define. We thus generalize extyemel
efficient saturation approach of Ciardo et & by giving a definition that is entirely
based on the structure of the decision diagram and the apesancoded, instead of
involving a given formalism. Furthermore, the automatitvation of saturation allows
users to concentrate on defining the state and transiticodang.

Also, we have shown how recursive folding allows in vefficéent and elegant
manner to generate state spaces of regular and symmetrielsnedth up to 20000
philosophers in our example. Although generalization @ tpplication example is



left to further research, it exhibits the potentially expatially better encoding SDD
provide over other DD variants for regular examples.

SDD and the optimizations described are implementetliisddd, a G++ library
freely available under the terms of GNU LGPL. With growingtaréty since the initial
prototype developed in 2001 and described8np [ibddd is today a viable alternative
to Buddy [L3] or CUDD [12] for developers wishing to take advantage of symbolic
encodings to build a model-checker.
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