
Advances in Requirements Engineering:

Bridging the Gap between Stakeholders’ Needs

and Formal Designs⋆

Luqi1 and Fabrice Kordon2

1 Naval Postgraduate School, Monterey, California, USA luqi@nps.edu
2 LIP6, Université Pierre et Marie Curie, Paris, France, Fabrice.Kordon@lip6.fr

Abstract. The lions’s share of the software faults can be traced to re-
quirements and specification errors, so improvements in requirements
engineering can have a large impact on the effectiveness of the overall
system development process. A weak link in the chain is the transition
from the vague and informal needs of system stakeholders to the formal
models that support theoretical analysis and software tools.
This paper explains the context for the 2007 Monterey workshop that was
dedicated to this problem. It provides the case study that participants
were asked to use to illustrate their new methods, and summarizes the
discussion and conclusions of the workshop.

1 Introduction

The Monterey Workshop Series The objective of the entire series of 15 Mon-
terey workshops since 1992 has been to ”increase the practical impact of formal
methods in computer-aided software development”. The workshop seeks to im-
prove software practice via application of engineering theory and to encourage
development of engineering theory that is well suited for this purpose.

Previous workshops have reduced the gap between theoretical and practical
aspects of software/system engineering and have produced a consensus that the
pain of system development could be reduced via computer aid for or automa-
tion of software engineering subtasks based on particular theories and various
kinds of formal models. A common theme has been to hide theoretical results
and complex mathematical ideas inside tools with simple interfaces so that prac-
titioners could use them without the need to fully understand the theory behind
them.

However, there has also been general agreement that the pain of development
cannot be eliminated completely. No matter what you do, somewhere in the
process some people have to think clearly and in detail to reach agreement on
what problems should be solved by the software to be developed. Consequently,
requirements, response to changes, and human aspects of programming have
been identified as potentially fruitful areas for improvement.

⋆ This work was supported in part by ARO grant 45614CI.



Goal of the 2007 Monterey Workshop The 2007 workshop is focused on
requirements, particularly the process of transforming vague and uncoordinated
needs of individual stakeholders into consistent and well defined requirements
that are suitable for supporting automated and computer aided methods for
engineering subtasks in the development process to follow.

Errors or failures of software-based systems are due to a variety of causes, e.g.
misunderstanding of the real world, erroneous conceptualization, or problems in
representing concepts via the specification or modeling notations. Precise speci-
fication is a key success factor as are communication and the deliberation about
whether the specification is right and whether it has been properly implemented.
Not all stakeholders are familiar with the formal models and notations employed.
Some important requirements might be difficult to quantify and/or express us-
ing formal languages, such as the desire that a system should be user-friendly
or easily maintainable. Better technologies for requirements analysis should thus
be considered.

The majority of requirements are given in natural language, either written or
orally expressed. Other requirements might also be visually expressed in terms
of figures, diagrams, images or even gestures. Artificial-intelligence approaches
might be used to develop prototypes, which can then be re-engineered using
more conventional requirements technologies and safety assurance techniques.
For example, we might employ large amounts of semantic and statistical data,
knowledge bases and theorem provers to infer as much contextual information
as possible from the (vague) textual or visual requirements. Then, some extra
questions could be raised to system/software stakeholders to point out some
fuzzy (or missing) requirements to be refined or some conflicting requirements
to be reconciled.

Accurate automatic analysis of natural language expressions has not yet been
fully achieved, and interdisciplinary methodologies and tools are needed to suc-
cessfully go from natural language to accurate formal specifications. Confor-
mance of a system implementation to its requirements requires dynamic and
efficient communication and iteration among system stakeholders. It is in sup-
porting this process, and not in supplanting it, that innovative approaches to
requirements analysis need to find their proper role.

We want to gain a better understanding of how to deal with natural lan-
guage as the vehicle from which we derive system/software requirements, how
to use intelligent agents as entities to facilitate semi-automatic requirements-
documentation analysis, and how to build automatic systems to aid in require-
ments/specifications elicitation. The overall aim is to exchange ideas for contin-
ued research in the intersection of these two areas and to reduce the gap between
theory and practice.

A good case study for these issues is to consider how to extract a conceptual
model of the goals and requirements of the software needs discussed in a blog. As
blogs are unstructured natural language, they represent one of the most difficult
challenges for natural language processing. All workshop participants have been



requested to use the case study given in Section 4 of this paper to illustrate their
work.

2 Focus Areas

The three days of the workshop were organized around the following focus areas:

– Recent Advances in Requirements Engineering. Feather compares various ap-
proached to specification and requirements analysis. Aschauer et al explore
success factors for agile requirements analysis. Dinesh et al present an ap-
proach for regulatory conformance checking.

– Human and Linguistic aspects of Requirements Engineering. Kof addresses
identification of goals in stakeholder dialogs. Sawyer examines profiling and
tracing of stakeholder needs. Goedecke explores the relation between view-
points and documents.

– Computer Aid for Requirements Engineering. Fe describes how model-driven
prototyping can help elicit requirements. Popescu et al explain how automat-
ically created OO models can be used to improve the quality of requirements
specifications.

The panels and discussion sections interleaved with the presentations were
focused on integrating, balancing, and assessing the various viewpoints presented
at the workshop to reach a consensus on where we are, how emerging capabili-
ties for natural language processing and computer aided requirements elicitation
methods can contribute, and to identify the best paths forward.

3 Workshop Case Study

All workshop participants were asked to use the case study given below to illus-
trate their work. The participants in the case study discussion are:

– a representative from the Transportation Security Administration (TSA);

– a representative from the Federal Aviation Administration (FAA);

– a representative from Airport screening and security (ASS).

Their discussion on the blog is reproduced hereafter.



Who Post

FAA We have to ban on airplane passengers taking liquids on board in order to
increase security following the recent foiled United Kingdom terrorist plot.
We are also working on technologies to screen for chemicals in liquids,
backscatter, you know...

ASS Technologies that could help might work well in a lab, but when you use it
dozens of times daily screening everything from squeeze cheese to Chanel
No. 5 you get False Alarms... so it is not quite ready for deployment!

FAA Come on! Generating false positives helped us stay alive; maybe that
wasn’t a lion that your ancestor saw, but it was better to be safe than
sorry. Anyway, I want you to be more alert - airport screeners routinely
miss guns and knives packed in carry-on luggage.

ASS Well... It’s not easy to move 2 million passengers through U.S. airports
daily. And people can’t remain alert to rare events, so they slip by

TSA We can deal with it. What if you guys take frequent breaks? And also we
are going to artificially impose the image of a weapon onto a normal bag
in the screening system as a test. Then screeners learn it can happen and
must expect it. Eventual solution will be a combination of machine and
human intelligence.

AAS Sounds good though we do take breaks and are getting inspected. We do
not get annual ’surprise’ tests - sometimes we get them everyday; and if
a screener misses too may of these consistently, they are sent to training.

TSA We have yet to take a significant pro-active step in preventing another
attack - everything to this point has been reactive. Somebody hijacks a
plane with box cutters? - Ban box cutters. Somebody hides explosives in
their shoes? - X-ray shoes, and then ban matches. We are well behind!

FAA What do you suggest? Yes, there is an uncertainty. On each dollar that a
potential attacker spends on his plot we had to spend $ 1000 to protect.
There are no easy solutions. We are trying to federalize checkpoints and
to bring in more manpower and technology.

TSA We need to think ahead. For instance, nobody needs a metal object to
bring down an airliner, not even explosives. Practically everything inside
the aircraft is easily flammable, except for the people, so all anyone needs
is oxidizer. Do any of the automated screening devices detect oxidizers?
Are the human screeners trained to recognize them?

FAA Good point. Airlines need to take the lead on aviation security. The cor-
porate response was to market cheap tickets and pass security off on the
federal government. Have a trained group of security officers on every
flight. Retrain flight attendants as security officers. Forget about passing
around the soda and peanuts - that should be secondary.

AAS Sir, a lot of airlines are not doing well and are on the Government assis-
tance. Prices go up, baggage get mishandled. There are constant changes
in screening rules – liquids/no liquids/3-1-1 rule. Anything radical will
not only cost a lot of money but also deter people. I mean an economic
threat is also a threat.

TSA I think that enforcing consistency in our regulations and especially in
their application will be a good thing to do. Another thing is that even if
an airline goes bankrupt there are still advantages: bankruptcy makes it
easier to rearrange company assets and to renegotiate vendor and supplier
contracts.

FAA Ok, we had very productive discussion. Now back to work. I want you
to come up with some concrete measures based on what we have been
talking about. You should finally generate some ROI for that money we
have been spending. And do not forget, the examples listed above are not
all-inclusive.



The objective of the case study exercise is to answer the following questions
based on the discussion above:

1. What was the topic(s) of the discussion? Have you noticed any contradic-
tions?

2. What are the realistic requirements that FAA suggests for increasing airport
security?

3. What long-terms goals should be set by TSA?
4. What concrete changes should be enforced by Airport screening and security?

4 Synthesis of Workshop Discussions

The main points that emerged from workshop discussions are the following:

Getting Unambiguous Specifications A major focus of the workshop was
the transition from informal ideas to formal models, and the associated prob-
lems of resolving ambiguities. This transition is an inescapable part of software
development because stakeholder needs, which are inherently informal, must be
transformed into software, which is inherently formal. Synthesizing an unam-
biguous model of stakeholder needs is a major part of requirements engineering;
another major part is ensuring that this model is accurate.

It was recognized that natural language is an inescapable part of the process,
because most of the communication with stakeholders is carried out in natural
language. There has been a great deal of past work on requirements engineer-
ing that has advocated the use of formal models to represent requirements by
creating notations and tools to make such models accessible to a wider audience.

However, this does not avoid the need for resolving ambiguities. Despite all
the past advances, it is still the case that most stake holders are unable to write
formal models. These models are constructed by specially trained experts, who
construct models on behalf of the stakeholders based on their natural language
statements. These experts are at risk of subconscious disambiguation; they con-
struct formal models based on their understanding of stakeholders’ statements
even though their interpretations could be different than what the stakeholders
meant. The model builder may not even be aware that there is an interpretation
of the natural language other than the first one that comes to mind and was
understood [2].

A similar problem applies to approaches that use unambiguous subsets of
natural language. These subsets are made unambiguous by rules and restrictions
that admit only one interpretation. Subconscious disambiguation in this case can
have the reader relying on an understanding and interpretation of the constrained
natural language that differs from the one chosen by the rules and used by all
of the software tools based on those rules.

The workshop recognized that it is not possible to write unambiguous natural
language, and that it is useful to reduce the amount of ambiguity where possi-
ble. Some details can be found in [2, 12]. Other suggested approaches included



using fault tolerance strategies to engineer systems that can tolerate ambiguity
and to use examples to clarify which interpretation is intended. Examples could
be supplied by stakeholders or generated from formal models and checked by
stakeholders.

Ambiguity Management Sometimes ambiguity may be used to deliberately
express disagreements among different stakeholders. In such cases, questions
must be raised to get the correct interpretation. The clients may not know the
answer, so negotiations or additional information may be needed to get a reliable
resolution.

The workshop concluded that natural language processing and aid for resolv-
ing ambiguities would be useful, but should be used to support current processes
rather than replacing them. Reasons for this include (1) that there is a lot more
to requirements engineering than just translating stakeholder statements into
formal models and (2) that current accuracies of automated natural language
processing are less than 100%.

Requirement Engineering Requirements engineering tasks include finding
implied but unstated requirements, detecting conflicts between needs of different
stakeholders, and resolving such conflicts. Communication gets increasingly dif-
ficult as systems scale up. Stakeholder are typically comprised of diverse groups,
each of which has its own specialized domain knowledge, jargon, and unique
tacit understanding of the problem. Bridging the gaps becomes key to success
as complexity increases because each group typically has only a partial under-
standing of the issues, constraints, possible solutions and cost implications [14,
9].

Accuracy of the requirements engineering process is crucial. Requirements
engineering is a critical part of the system development process because require-
ment errors cost roughly 100 times less to correct during requirement engineering
than after system delivery [4]. This imposes extreme constraints on the accu-
racy of natural language processing and that we might use to derive system
requirements. However, natural language processing accuracies are currently in
the 90%-92% range, at best [3]. Therefore natural language processing must be
augmented with other methods for removing residual errors, and accuracy must
be greatly improved if it is to be seriously used for Requirements engineering.

Towards Computer Aided Requirement Engineering To be useful, tools
must find all possible instances of a problem, and it is acceptable to have some
false positives in the warnings and error reports, otherwise engineers will not be
able to afford to rely on the results of the tool. Since the delivered system is
unlikely to be any better than the requirements, accuracy of the requirements
has great importance. Existing manual processes for deriving requirements form
informal stakeholder statements therefore incorporate a variety of checking pro-
cedures that include reviews, storyboarding, simulation and prototype demon-
stration, dependency tracing, consistency checking, and many others. Natural



language processing of requirements engineering must be integrated with such
checking procedures to achieve needed accuracy.

Accuracy of natural language processing can be improved by specializing the
problem to the context of requirements engineering and using the extra informa-
tion provided by that context. For details, see [3]. Developing tools and methods
for augmenting and supporting current requirements engineering processes with
tools that incorporate natural language processing appears to be a promising
realistic goal, if it is coupled with integration into error checking and correction
processes already used in requirements engineering. Total automation of require-
ments engineering does not appear to be feasible in the foreseeable future, in view
of the gap between promises and actual results of AI research of the past several
decades. Natural language processing is highly context dependent, both on the
subject domain and the questions being asked. In the context of requirements
engineering there are an effectively unlimited number of domains.

Given the huge size of requirements documents for real projects, even imper-
fect heuristic methods that can improve confidence that something important
was not overlooked. Some problems that have been explored in detail include
identifying goals in stakeholder dialogs [10], support for dealing with require-
ments changes [1, 8], using shallow natural language processing techniques to
aid in synthesizing requirements [13, 11], and requirements validation [6].

To automate the process it is useful to rely on representations and methods
for detecting conflicts or unfounded constraints in the requirements (this can
be seen as a second focus that emerged from the workshop). Methods based
on logic were proposed for checking conformance of requirements to regulations
[5]. A notation and method for analyzing conflicts, ambiguities, and imprecision
in requirements based on viewpoints of different stakeholders were explored [7].
These directions are promising because they attempt automation of the processes
that cannot be effectively done manually when requirements are very complex.
The reason for this is that the analyses are non-local in nature and can depend
on interactions between wildly separated parts of the requirements. People are
effective at analyzing small bits of text in depth, but not at finding widely sep-
arated connections in very long documents. Progress in these directions should
be possible in the not too distant future.

Synthesis of Discussions during the Workshop Traditionally, Monterey
Workshops leave a large space to discussion between participants. In 2007, the
workshop discussions resulted in the following conclusions:

– End-to-end integration is necessary for all of the component technologies to
realize their possible contributions to real software development processes.
To achieve this, a necessary step is to clarify the interface between natural
language processing and requirements engineering. [3] contains a step toward
this goal.

– Domain specific approaches can help natural language processing perform
better. Context information such as the goals of the speaker, the speaker’s
area of expertise, and expected output of the process can narrow the search



space for disambiguation and condition the probabilities governing the most
likely interpretations.

– Natural language processing for requirements engineering needs to handle
domain specific jargon and acronyms.

– Generating accurate natural language from formal models is easier and more
accurate than the reverse process, and can be very helpful for finding errors.
However problems with subconscious disambiguation [2] are still present.

– Generating summary descriptions is useful for finding defects, especially er-
rors of omission.

– To have practical impact, automatic methods contributing to the transfor-
mation from natural language to formal requirement models have to be faster
and more accurate than current manual methods.

5 Conclusion

Overarching goals of the rest of the series of Monterey Workshops are to cre-
ate a shared community-wide articulation of the system/software engineering
enablement challenge, reach consensus on the set of intellectual problems to be
solved, and create a common vision of how the solutions to these problems will
fit together in a comprehensive engineering environment.

The Monterey Workshop has been able to bring the brightest minds in Soft-
ware Engineering together with the purpose of increasing the practical impact
of formal methods for software development so that these potential benefits can
be realized in actual practice. In the workshop, attendees and organizers work to
clarify what good formal methods are, what are their feasible capabilities, and
what are their limits. Overall, the workshop strives to reduce the gap between
theory and practice. This has been a slow and difficult process because theoreti-
cians and practitioners do not normally talk to each other, and did not at the
beginning of the workshops. This gap has been gradually reduced. In particu-
lar, researchers have focused on problems that are relevant to the practitioners,
and have helped demonstrate how recent theory can be applied to solve current
problems in software development practice.

Here are the workshops:

N Year Theme Location Chairs

0 1992 Concurrent and Real-Time Systems Monterey Luqi, Gunter

1 1993 Software Slicing, Merging and Integra-
tion

Monterey Berzins

2 1994 Software Evolution Monterey Luqi, Brockett

3 1995 Specification-Based Software Architec-
ture

Monterey Luqi

4 1996 Computer-Aided Prototyping Monterey Luqi

5 1997 Requirements Targeting Software and
Systems Engineering

Bernried Broy, Luqi

6 1998 Engineering Automation for Computer
Based-Systems

Carmel Luqi, Broy



7 2000 Modeling Software System Structures
in a Fastly Moving Scenario

Santa
Margherita
Ligure

Astesiano, Broy, Luqi

8 2001 Engineering Automation for Software
Intensive System Integration

Monterey Luqi, Broy

9 2002 Radical Innovations of Software and
Systems Engineering in the Future

Venice Wirsing

10 2003 Embedded Systems Chicago Shatz

11 2004 Compatibility and Integration of Soft-
ware Engineering Tools

Vienna Manna, Henzinger

12 2005 Networked Systems Irvine Sztipanovits, Kordon

13 2006 Composition of Embedded Systems Paris Kordon, Sokolsky

14 2007 Innovations for Requirements Analysis Monterey Luqi, Kordon

15 2008 Foundations in Computer Software Budapest Dobrowiecki,
Sztipanovits

The 2007 workshop highlighted some differences between generic natural language pro-
cessing and natural language processing in the context of requirements engineering.
Researchers from both communities learned about relevant recent advances from each
of the communities and became more aware of the open problems in the gaps between
the two fields. It is becoming clear that many software problems originate in the gap
between the fuzzy needs of the human stakeholders and the formal models used in
software design. This are is gaining increasing attention from the scientific community.

The Monterey workshops have helped focus the attention of the community on
many productive directions. For example, since the 1995 workshop identified specifica-
tion-based architectures as a key means to achieve system flexibility and reuse, there
has been a great deal of activity in these areas. A great deal of research has produced
architecture description languages and associated analysis methods, there have been
commercial advances on ”plug and play” hardware and software, adoption of service-
based architectures in electronic commerce, and a move toward open architectures in
government and defense systems. Currently the practical impact of software architec-
ture is no longer in doubt

We look forward to comparable advances in computer aided requirements analysis
in the decade to come.

Acknowledgments

The Monterey Workshops were initiated under the support of Dr. Hislop at ARO and
many others at NSF, ONR, AFOSR, and DARPA. We would like to thank DARPA
and NSF for their financial support of the 2007 workshop, NRC for support of two
talented postdoctoral fellows Dr. Rodriguez and Dr. Ivanchenko who contributed to the
proposal, workshop case study and material for the web page, the program committee
chairs Barbara Paech and Craig Martell and committee members for their efforts on
reviewing papers and putting together the workshop program, and the local chair
Craig Martell for handling endless practical details. All of the workshop participants
contributed to the ideas summarized in this paper.



References

1. T. Aschauer, G. Dauenhauer, P. Derler, W. Pree, and C. Steindl. Could an Agile
Requirements Analysis be Automated? In Workshop on Innovations for Require-

ment Analysis: From Stakeholders Needs to Formal Designs, volume This issue,
page TBD, Monterey, California, September 2008. Springer Verlag, LNCS.

2. D. Berry. Ambiguity in Natural Language Requirements Documents: Extended
Abstract. In Workshop on Innovations for Requirement Analysis: From Stakehold-

ers Needs to Formal Designs, volume This issue, page TBD, Monterey, California,
September 2008. Springer Verlag, LNCS.

3. V. Berzins, C. Martell, Luqi, and P. Adams. Innovations in Natural Language
Document Processing for Requirements Engineering. In Workshop on Innovations

for Requirement Analysis: From Stakeholders Needs to Formal Designs, volume
This issue, page TBD, Monterey, California, September 2008. Springer Verlag,
LNCS.

4. B. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1981.

5. N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky. Logic-based Regulatory Conformance
Checking. In Workshop on Innovations for Requirement Analysis: From Stakehold-

ers Needs to Formal Designs, volume This issue, page TBD, Monterey, California,
September 2008. Springer Verlag, LNCS.

6. J. Fu, F. Bastani, and I. Yen. Model-Driven Prototyping Based Requirements Elic-
itation. In Workshop on Innovations for Requirement Analysis: From Stakeholders

Needs to Formal Designs, volume This issue, page TBD, Monterey, California,
September 2008. Springer Verlag, LNCS.

7. M. Goedicke and T. Herrmann. A Case for ViewPoints and Documents. In Work-

shop on Innovations for Requirement Analysis: From Stakeholders Needs to For-

mal Designs, volume This issue, page TBD, Monterey, California, September 2008.
Springer Verlag, LNCS.

8. A. Hoss and D. Carver. Towards Combining Ontologies and Model Weaving for the
Evolution of Requirements Models. In Workshop on Innovations for Requirement

Analysis: From Stakeholders Needs to Formal Designs, volume This issue, page
TBD, Monterey, California, September 2008. Springer Verlag, LNCS.

9. D. Kelly. A software chasm: Software engineering and scientific computing. IEEE

Software, 24(6):120–119, Nov.-Dec. 2007.
10. L. Kof. On the Identification of Goals in Stakeholders Dialogs. In Workshop on

Innovations for Requirement Analysis: From Stakeholders Needs to Formal Designs,
volume This issue, page TBD, Monterey, California, September 2008. Springer
Verlag, LNCS.

11. D. Lange. Text Classification and Machine Learning Support for Requirements
Analysis Using Blogs. In Workshop on Innovations for Requirement Analysis: From

Stakeholders Needs to Formal Designs, volume This issue, page TBD, Monterey,
California, September 2008. Springer Verlag, LNCS.

12. D. Popescu, S. Rugaber, N. Medvidovic, and D. Berry. Reducing Ambiguities in
Requirements Specifications via Automatically Created Object-Oriented Models.
In Workshop on Innovations for Requirement Analysis: From Stakeholders Needs

to Formal Designs, volume This issue, page TBD, Monterey, California, September
2008. Springer Verlag, LNCS.

13. P. Sawyer, R. Gacitua, and A. Stone. Profiling and Tracing Stakeholder Needs. In
Workshop on Innovations for Requirement Analysis: From Stakeholders Needs to



Formal Designs, volume This issue, page TBD, Monterey, California, September
2008. Springer Verlag, LNCS.

14. A. Stone and P. Sawyer. Identifying tacit knowledge-based requirements. Software,

IEE Proceedings, 153(6):211–218, Dec. 2006.


