
Design Methodologies for Embedded Systems:
Where is the Super-Glue?

Fabrice Kordon
Université Pierre & Marie Curie, LIP6-CNRS UMR 7606,

4 place Jussieu, 75252 Paris Cedex 05,
France

Fabrice.Kordon@lip6.fr

1 Introduction

Embedded systems is an area that grows rapidly with
new communication media such as smart-phones, house
automation applications (that might finally come) and all
other hidden systems we use everyday in cars, airplanes,
etc. Moreover, in these last domains, there is a need for
very safe development because such systems are often life-
critical.

2 Building Embedded Systems

So, the community is working hard to deal with some
major problems raised by such developments.

Numerous embedded systems do have to deal with time
constraints. So, a lot of top world-researchers are working
hard on this. How to handle and design systems with time
like in [1, 5] ? How to check timing constrains like in [3, 2] ?
How to model time like in [7] ?

One problem when such embedded systems are dis-
tributed is the underlying execution environnement that
must be handled by middleware. So, people are building
middleware or protocols that should increase safety of such
systems like in [11, 9]. And now we start being able to
consider middleware as Components off-the-shelf. Some of
them are even formally verified for some points like in [4].

And we could scan as well numerous areas in embed-
ded systems... All this work allow to build nice case studies
that comes from realistic application such as the BART sys-
tem [6].

3 So What’s Wrong?

However, embedded systems stil cost a lot more than ex-
pected, probably due to the high number of so-called ”non
functional requirements”... actually, the ones that require
the most important development effort. So, what’s wrong?

In French, there is an expression that can be translated as
follows: ”be aware of the tree that hides the forest”. In Em-
bedded systems research, there are several trees hiding the
forest that should be considered too: when we pay attention
to ”local” problems (that are also important ones) such as
modeling, building, analyzing. We forget the forest behind
these trees : the required super-glue gathering all these tech-
niques together in an orchestrated way to help engineers to
build their systems.

One could say: watch UML [8] ? Watch AADL [10] ?
However, what do you get with these ? A huge standard-
book with very detailed explanations telling you how to de-
scribe this or that. But no real information about how to
use the notation in a comprehensive way to build systems...
this is not yet methodologies than can be operated ”on the
ground”, where people have to ”fight with bugs” to make
reliable embedded systems on time.

The recent model driven engineering approach could
raise some hope in that direction. However, I feel that
there are still some areas missing since model transforma-
tion and code generation, if they are of precious usage in
such projects, do not solve all problems of embedded sys-
tems as stated in [12]. In particular, constraints such as re-
source usage or time are quite difficult to capture in early re-
quirements and Another issue exists with education in com-
puter engineering that should consider methodological as-
pects as well as the technical ones.

4 Conclusion

So, I feel this is important that researchers also put their
attention to the definition of ”good practices” in order to
sketch some appropriate engineering rules. This is the
super-glue that creates the global coherence of the ”big pic-
ture” in embedded systems development.

Of course, the underlying techniques, as the ones out-
lined in section 2, should be defined (methodology to build

11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC)

978-0-7695-3132-8/08 $25.00 © 2008 IEEE
DOI 10.1109/ISORC.2008.88

358

an house will not help if you do not even know how to elab-
orate concrete). However we should also pay more atten-
tion to methods that are the ”hidden part” of development,
as non functional requirements are for embedded systems :
the part you forget and ”consider later” (when it is too late).

References

[1] B. Bérard, P. Gastin, and A. Petit. Intersection of regular
signal-event (timed) languages. In E. Asarin and P. Bouyer,
editors, Proceedings of the 4th International Conference on
Formal Modelling and Analysis of Timed Systems (FOR-
MATS’06), volume 4202 of Lecture Notes in Computer Sci-
ence, pages 52–66, Paris, France, Sept. 2006. Springer.

[2] B. Berthomieu and F. Vernadat. Time petri nets analysis with
tina. In Third International Conference on the Quantitative
Evaluation of Systems (QEST 2006), 11-14 September 2006,
Riverside, California, USA, pages 123–124. IEEE Computer
Society, 2006.

[3] W. Deng, M. Dwyer, J. Hatcliff, G. Jung, Robby, and
G. Singh. Model-checking middleware-based event-driven
real-time embedded software. In Proceedings of the First In-
ternational Symposium on Formal Methods for Components
and Objects (FMCO 2002), 2003.

[4] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middle-
ware Behavioral Properties. In Proceedings of the 9th Inter-
national Workshop on Formal Methods for Industrial Criti-
cal Systems (FMICS’04), Linz, Austria, Sept. 2004. TO BE
PUBLISHED.

[5] H. Kopetz. Event-triggered versus time-triggered real-time
systems. In A. I. Karshmer and J. Nehmer, editors, Operat-
ing Systems of the 90s and Beyond, International Workshop,
Dagstuhl Castle, Germany, July 8-12, 1991, Proceedings,
volume 563 of Lecture Notes in Computer Science, pages
87–101. Springer, 1991.

[6] F. Kordon and M. Lemoine, editors. Formal Methods for
Embedded Distributed Systems: How to Master the Com-
plexity. Kluwer Academic, 2004. ISBN:1-4020-7997-4.

[7] E. A. Lee and Y. Zhao. Reinventing Computing for Real
Time. In F. Kordon and J. Sztipanovits, editors, Reliable
Systems on Unreliable Networked Platforms, 12th Monterey
Workshop 2005, Laguna Beach, CA, USA, September 22-
24, 2005. Revised Selected Papers, volume 4322 of LNCS,
pages 1–25. Springer Verlag, January 2007.

[8] OMG. Unified Modeling Language: Superstructure, v2.0.
Technical report, Object Management group, 2005.

[9] B. Ravindran, E. Curley, J. S. Anderson, and E. D. Jensen.
Assured-timeliness integrity protocols for distributable real-
time threads with in dynamic distributed systems. In Emerg-
ing Directions in Embedded and Ubiquitous Computing,
EUC 2007 Workshops: TRUST, WSOC, NCUS, UUWSN,
USN, ESO, and SECUBIQ, Taipei, Taiwan, December 17-
20, 2007, Proceedings, volume 4809 of Lecture Notes in
Computer Science, pages 660–673. Springer, 2007.

[10] SAE. Architecture Analysis & Design Language (AS5506).
available at http://www.sae.org, sep 2004.

[11] D. Schmidt and F. Buschmann. Patterns frameworks and
middleware: Their synergistic relationships. In Proceedings
of the 25th International Conference on Software Engineer-
ing, 2003.

[12] B. Selic. From model-driven development to model-driven
engineering. In 19th Euromicro Conference on Real-Time
Systems, ECRTS’07, 4-6 July 2007, Pisa, Italy, Proceedings,
page 3. IEEE Computer Society, 2007.

359

