
Design Methodologies for Embedded Systems:
Where is the Super-Glue?

Fabrice Kordon
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1 Introduction

Embedded systems is an area that grows rapidly with
new communication media such as smart-phones, house
automation applications (that might finally come) and all
other hidden systems we use everyday in cars, airplanes,
etc. Moreover, in these last domains, there is a need for
very safe development because such systems are often life-
critical.

2 Building Embedded Systems

So, the community is working hard to deal with some
major problems raised by such developments.

Numerous embedded systems do have to deal with time
constraints. So, a lot of top world-researchers are working
hard on this. How to handle and design systems with time
like in [1, 5] ? How to check timing constrains like in [3, 2] ?
How to model time like in [7] ?

One problem when such embedded systems are dis-
tributed is the underlying execution environnement that
must be handled by middleware. So, people are building
middleware or protocols that should increase safety of such
systems like in [11, 9]. And now we start being able to
consider middleware as Components off-the-shelf. Some of
them are even formally verified for some points like in [4].

And we could scan as well numerous areas in embed-
ded systems... All this work allow to build nice case studies
that comes from realistic application such as the BART sys-
tem [6].

3 So What’s Wrong?

However, embedded systems stil cost a lot more than ex-
pected, probably due to the high number of so-called ”non
functional requirements”... actually, the ones that require
the most important development effort. So, what’s wrong?

In French, there is an expression that can be translated as
follows: ”be aware of the tree that hides the forest”. In Em-
bedded systems research, there are several trees hiding the
forest that should be considered too: when we pay attention
to ”local” problems (that are also important ones) such as
modeling, building, analyzing. We forget the forest behind
these trees : the required super-glue gathering all these tech-
niques together in an orchestrated way to help engineers to
build their systems.

One could say: watch UML [8] ? Watch AADL [10] ?
However, what do you get with these ? A huge standard-
book with very detailed explanations telling you how to de-
scribe this or that. But no real information about how to
use the notation in a comprehensive way to build systems...
this is not yet methodologies than can be operated ”on the
ground”, where people have to ”fight with bugs” to make
reliable embedded systems on time.

The recent model driven engineering approach could
raise some hope in that direction. However, I feel that
there are still some areas missing since model transforma-
tion and code generation, if they are of precious usage in
such projects, do not solve all problems of embedded sys-
tems as stated in [12]. In particular, constraints such as re-
source usage or time are quite difficult to capture in early re-
quirements and Another issue exists with education in com-
puter engineering that should consider methodological as-
pects as well as the technical ones.

4 Conclusion

So, I feel this is important that researchers also put their
attention to the definition of ”good practices” in order to
sketch some appropriate engineering rules. This is the
super-glue that creates the global coherence of the ”big pic-
ture” in embedded systems development.

Of course, the underlying techniques, as the ones out-
lined in section 2, should be defined (methodology to build
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an house will not help if you do not even know how to elab-
orate concrete). However we should also pay more atten-
tion to methods that are the ”hidden part” of development,
as non functional requirements are for embedded systems :
the part you forget and ”consider later” (when it is too late).
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