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Abstract. Shared decision diagram representations of a state-spacielg eficient solutions for
model-checking of large systems. However, decision diagranipulation is tricky, as the con-
struction procedure is liable to produce intractable imtediate structures (a.k.a peakeet). The
definition of the so-called saturation method has empisidagen shown to mostly avoid this peak
effect, and allows verification of much larger systems. Howeapplying this algorithm currently
requires deep knowledge of the decision diagram data stegt

Hierarchical Set Decision Diagrams (SDD) are decision idiags in which arcs of the structure
are labeled with sets, themselves stored as SDD. This datetise dfers an elegant and very
efficient way of encoding structured specifications using datidiagram technology. It alsdlers,
through the concept of inductive homomorphisms, flexiptlit a user defining a symbolic transition
relation. We show in this paper how, with very limited useqmit the SDD library is able to optimize
evaluation of a transition relation to produce a saturagitect at runtime.

We build as an example an SDD model-checker for a compositfonmalism: Instantiable Petri
Nets (IPN). IPN define #ypeas an abstract contract. Labelef Pets are used as an elementary
type. A composite type is defined to hierarchically contaistances (of elementary or composite
type). To compose behaviors, IPN use classic label synctation semantics from process calculi.

With a particular recursive folding SDD are able tfies solutions for symmetric systems in log-
arithmic complexity with respect to other DD. Even in lesguiar cases, the use of hierarchy in
the specification is shown to be well supported by SDD. Expentations and performances are
reported on some well known examples.
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1. Introduction

Parallel systems are notablfiittult to verify due to their complexity. Non-determinism bégtinterleav-
ing of elementary actions in particular is a source of erdifcult to detect through testing. Model-
checking of finite systems or exhaustive exploration of ttaesspace is very simple in its principle,
entirely automatic, and provides useful counter-examylesn the desired property is not verified.

However model-checking fiiers from the combinatorial state-space explosion probileat severely
limits the size of systems that can be checked automatidaiie solution which has shown its strength
to tackle very large state spaces is the use of shared dedisigrams like BDD4, 5].

But decision diagram technology alsdi&us from two main drawbacks. First, the order of variables
has a huge impact on performance and defining an approprigée is non-trivial B]. Second, the way
the transition relation is defined and applied may have a lhagact on tool performancd, 10]. Such
aspects are ficult to tackle for non specialists of decision diagram texdbgy.

The objective of this paper is to present novel optimizatechniques for hierarchical decision di-
agrams called Set Decision Diagrams (SDD), suitable toendlse complexity of very large systems.
Although SDD are a general all-purpose compact data-sireica design goal has been to provide easy to
use df the shelf constructs (such as a fixpoint) to develop a maaetier using SDD. These constructs
allow the library to control operation application, andress the power of state of the art saturation al-
gorithms [LO] with limited user expertise in DD. These high level constsiallow a user to concentrate
on specifying the transition relation of the system ugioghomorphismsThe rewriting rules introduced
in this paper allow to obtain an equivalent representatigth(the same overallféect), but that optimizes
its evaluation.

No specific hypothesis is made on the input language, althawgfocus here on a system described
as a composition of labeled transition systems. This sirffgi@malism captures most transition-based
representations (such as automdth fommunicating processes like in Promels]|[or Harel state
charts [L5]). To illustrate the use of our approach, we introduce IPNiegaarchical Petri net representa-
tion as a basis for illustration and experimentation.

Our hierarchical Set Decision Diagrams (sect®mffer the following capabilities:

e Exploitation of specification’s structure to introduceraiehy in the state space, it enables more
possibilities for exploiting pattern similarities in thgssem,

e Automatic activation of saturation; the algorithms ddsed in this paper allow the library to enact
saturation with minimal user input,

e A recursivefolding technique that is suitable for very symmetric syste

The paper is structured as follows. Sectpresents SDD and sectiéghdefines a compositional
Petri net formalism: Instantiable Petri Nets (IPN), thabyide built-in functions for modularity and
assembling. Sectiof then explains how to build a model checker for IPN on top of SBBctions
and 6 show how we can provide transparent optimizations, thusnelihg the saturation mechanisms
introduced in 10]. Section7 then presents a performance evaluation of our openly llig&d imple-
mentation: 1ibddd [18]. Finally, section8 presents a way to take advantage of hierarchy in decision
diagrams for very regular systems, as well as the assogiatdédrmance results we get.
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2. Hierarchical Set Decision Diagram (SDD)

This section recalls the salient points of Hierarchical Betision Diagrams (SDD), a data structure
based on the principles of decision diagram technologydnmigueness thanks to a canonical represen-
tation, dynamic programming, ordering issues, etc.). Thature two main original aspects: the support
of hierarchy in the representation (sectii) and the definition of user operations through a mechanism
calledinductive homomorphisn{section2.2) which gives freedom and flexibility to the user.

2.1. Structure of SDD

Hierarchical Set Decision Diagrams (SDD) definedi][ are shared decision diagrams in which arcs
are labeled by aetof values, instead of a single value. This set may itself peasented by an SDD,
thus when labels are SDD, we think of them as hierarchicakaerdiagrams. Definitior2.1is taken
practically verbatim from14] where it was adapted for more clarity frorhd.

SDD are data structures for representing sets of sequehessignments of the form; € s;;ws €
;- ;wp € S, Wherew; are variables ang are sets of values.

We assume no variable ordering, and the same variable cam segeral times in an assignment
sequence. We define the terminal 1 to represent the empgnassint sequence, that terminates any
valid sequence. The terminal O represents the empty sesiginaisent sequences. In the followingar
denotes a set of variables, and for amyn Var, Dom(w) represents the domain af which may be
infinite.

Definition 2.1. (Set Decision Diagram)
6 € 3, the set of SDD, is inductively defined by:

e 6€{0,1} or
e {0 ={w,m, a)with:

— weVar.
— n=5U---Usis afinite partition of Domg), i.e. Vi # j,sNs; =0,s # 0,nfinite.
— a1 — S, such thavi # j,a(s) # a(s)).

By convention, when it exists, the element of the partitictmat maps to the SDD 0 is not represented.
We denote by 5 &', the SDD6 = (w, 7r,a@) with 7 = sanda(s) = ¢’ (anda(Dom(w) \ s) = 0).

Despite its simplicity, this definition supports rich andrgaex data:

e SDD support domains of infinite size (e.g. Dam& R), provided that the number of elements in
the partition remains finite (e.g. .J8],]3.. + «o]). This feature could be used to model clocks for
instance (as in1]). It also places the expressive power of SDD above mosantgiof DD.

e SDD or other variants of decision diagrams can be used asoifmaid of variables, introducing
hierarchy in the data structure.
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e SDD can handle paths of variable lengths, if care is takemvdi®osing the state encoding to
avoid creating so-called incompatible sequences (B8 [This feature is useful when represent-
ing dynamic structures such as queues, lists or variabdeasiays.

The definition ensures that any set of assignment sequeaseasumique (canonical) SDD represen-
tation. The finite size of the partitionensures we can storeas a finite set of pairés, 6;), and letr be
implicitly defined bya.

SDD are canonized by construction through the union operdtbe canonicity of SDD is due to
the two properties (1) is a partition and (2) no two arcs from a node may lead to theesa@D.
Therefore any valug e Dom(w) is represented on at most one arc, and any time we are abmanigtruct

WS S+w SR 6, we will construct an are s, ¢ instead (fusing arcs).

The opposite fect (splitting arcs) is obtained when building an SDD sudt tivo arc(s,5) and
(,68’) have non empty intersectioan s’ # 0. We then produce three arc&\ s,6),(s'\ s,6’) and
(sNS,0Ud).

To handle paths of variable lengths, SDD are required tcesgmt a set of compatible assignment
sequences. An operation over SDD is said partially defingenfy produce incompatible sequences in
the result.

Definition 2.2. (Compatible SDD sequences)
An SDD sequencés an SDD of the formug 2, <-wn 1. Leto1, o2 be two sequences;; ~ o iff.:

e or1=1A02=1

w=0w
s s
e ri=w—o0Ao2=w — ¢ suchthak Asx ¢
ASNS #0 = 6~ ¢

Compatibility is a symmetric property. Thex s condition is defined as SDD compatibility s’ € $.
Other possible referenced types should define their owomati compatibility.

While this notion of compatible sequences may seem rasgijcit is more permissive than usual
for DD, where the norm is to use a fixed set of variables, in afixeler along all paths. In practice,
we use this compatible sequence definition to handle dynamictures such as queues. To encode a
gqueue, we repeat the same variablelhe last occurrence aof along any path is then artificially labeled

with a special marker, notetl Hence,w—ﬁ> 1 represents an empty queue, and> w—ﬁ> 1 represents

a queue with one element (chosen freg. These two SDD are compatible, and can be stored inside
a single SDD. Furthermore, using homomorphisms we can defipepriate operations to manipulate
such dynamic structures (se€]).

2.2. Operations and Homomorphisms

Usually in symbolic methods (e.g. BDD), the next state fiomctof a system is encoded using one
or more decision diagrams, with two variables per varialfléhe state signature. These variables are
usually interlaced in the transition relation represeotatA dedicated synchronized product operation
then allows to compute the successor image for a set of states
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In contrast to BDD, SDD operations are encoded as homonwr@ — $. SDD support standard
set theoretic operationsJ{N,\ respectively noted,*,—). They also ffer a concatenation operation
6162 which replaces 1 terminal @f by 6,. This corresponds to a Cartesian product. In additioncbasi
and inductive homomorphisms are introduced as a powertuflexible mechanism to define application
specific operations. A detailed description of homomonpisisncluding many examples can be found
in [12].

A basic homomorphism is a mappidg: $ — S satisfying®(0) = 0 and¥é6,6” € S5, D(6 + ") = O(5) +
®(6”). The sum+ and the compositior of two homomorphisms are homomorphisms. For instance,
the homomorphisnd - Id, whered € $ andId designates the identity homomorphism, permits to left
concatenate sequences. Some basic homomorphisms areokdadtl- For instance, the homomorphism
¢ =ld whered € $, = stands for the intersection amd for the identity, allows to select the sequences
belonging tod : it is an homomorphism that can be applied to ahyielding d«1d(d’) =dnd’. The
homomorphismsl - 1d andId - d permit to left or right concatenate sequences. We widelythsdeft

concatenation of a single assignmentds), notedw — Id.

Furthermore, application-specific mappings can be defigedductivehomomorphisms oves. An
inductive homomorphisng is defined by its evaluation on the 1 termigll) € 3, and its evaluation
#(w,s) for any w € Var and anys € Dom(w). The expressio(w, 9) is itself a (possibly inductive)
homomorphism, that will be applied on the successor rdde The result ofp({w,n, a)) is then defined
as) o, d(w, s)(a(s)), where); represents a union.

As an example, the local constructighallows to “carry” a homomorphisrh to a certain variable
v, and applyh to the current state of. Thus, it implements an operation local to the variableT his
homomorphism will be used in sectidn It is defined by:

S
w— L(v,h) ifo#v
L(v.h)(w,9) = { h(s)

w—>l1d else
L(v,h)(1) 0

The reader will find several examples of homomorphisms tinout this paper. Sectio® shows
simple homomorphisms that select and increment assignsegutences, while Sectighshows more
complex homomorphisms that describe the transition maif a Petri net.

The transitive closure * unary operator allows to perform a least fixpoint compumatié-or any
homomorphisnh and any nodé € $, h* () is evaluated by repeating— h(6) until a fixpoint is reached.
In other wordsh* () = h"(5) wheren is the smallest integer such thHaY(s) = h™*(5). This operator is
often applied tol@ + h) instead of jush, allowing to accumulate newly computed assignment se@senc
in the result.

An important contribution of14] is the definition of a set of rewriting rules for homomorphs
allowing to automatically make use of the decision diagratargtion algorithms originally due to Ciardo
[10Q]. In this extended version olLf], these rules will be detailed in sectiénWhen computing the least
fixpoint of a transition relation over a set of states, thigoathm dfers gains of one to three orders of
magnitude over classical BFS fixpoint algorithms.

For the user, these rewriting rules are transparent. Giveet @f homomorphismés,...,t,} that
represent a partition of the transition relation of the eystthe application oft{ + ... +t, + Id)* to
a node automatically triggers the saturation algorithmtfar evaluation. Note that this is a central
operation in any symbolic model-checking problem sincehaaility is defined as a transitive closure
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over the full transition relation. A more complex model-cker, for instance a CTL model-checker, can
then be constructed using nested transitive closures beetransition relation or its reversg]] The
predecessor transition relation can also be encoded usmginorphisms, though care must be taken to
remain within a forward reachable region.

3. Instantiable Petri Nets (IPN)

This section defines Instantiable Petri Nets (IPN). Thisduehical Petri Net notation will be used as a
running example to demonstrate our SDD based encodingsddfhmtion is split into two parts, first an
abstract contract for IPN types. then two concrete readimaif this contract.

We show how to adapt labeled Petri nets to match this contidoén we define a composite type
that is a container for instances (of composite Ar et nature). The abstract contract is introduced to
allow a composite type to contain instances of elementagporposite nature homogeneously.

The definitions of this section are new with respect to thder@mce version of this papet4]. The
definitions we use here are both more generic and bettetatktdihey reflect a mature formalization of
compositionality and hierarchy that closely matches thmabdities of SDD.

3.1. Instantiable Types

The generic definition of an Instantiable Petri NEt (IPN)It#siiupon the notion of model type and
instance. It uses a composition mechanism based solelasitionsynchronizatior{no explicit shared
memory or channel). DefinitioB.1sets an abstract contract or interface that must be redlizedncrete
IPN types. The definition is split in two parts: we first definatsstract contract, then two concrete
realizations of this contract for Petri nets and a compdgite.

Notations: Bag(A) denotes a multiset over a setLet® designate a commutative operatids A +—
A. Lett € Bag(®), we noteS = @aETawhere if an elemerd € A occursn times int it will be @-edn
times inS.

Definition 3.1. (IPN Concepts)
An IPN type must provide a tupléype= (S, InitStatesT, Locals Sucg:

e Sis a set of states;

¢ InitStatesc S is a finite subset of designated initial states;

T is a finite set of public transition labels;

Locals: S — 25 is the local successors function.

e Succ: SxBag(T) — 25 is the transition function satisfyings € S, Suc¢s, 0) = {s}.

Let Types denote a set of IPN types. MM instancei is defined by its IPN type, notagp€g(i) €
Types We will further usetyp€(i).S (resp.typg(i).InitStates. . . ) to refer to the states (resp. initial states,
...) of an instance’s type.

(Reachability) A states' is reachable by an instancérom the stateyy iff. 3s,,...s, € typ€i).S s.t.

S =sAVY1<j<nsetypdi).Localgsj-1).
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InitStatesis introduced to avoid violating encapsulation: to initial an instance we need to be able
to designate its initial configuration(s) without knowirgetinternal structure of the instance.

Localswill typically return states reachable through occurreotkocal events. It represents transi-
tions that may occur within an instance autonomously orpedéently from the rest of the system.

The functionSuccallows to obtain successors by explicitly synchronizingroa multiset of public
transition labels. Synchronizing on an empty multisetahgitions leaves the state of the instance locally
unchanged. Note th&uccis the only way to control the behavior of a (sub)system frartsiole. Thus
the transition relation of a full system can only be definetemnms of transition synchronizations using
Succand of independent local behaviors.

A full system is defined by an instance of a particular type $pecific initial state. As a full system
is self-contained, the definition of reachability only deg@e on the definition of ocals

As an example, figurd presents two IPN type declarations. They could be used tcehtbé
classical dining philosophers. For each type declaredk(Bnd Philo), only elements that are publicly
visible are representedhitStatesandT. Of course, the transition relation itsefjccandLocalg is not
represented, as this part is defined in the implementatientye (e.g a Petri net, see figite

Fork & O put getl O— Philo & —O 9eR
available —O get idle —O eat
Type name Public transition labels Initial States

Figure 1. Type declarations for the dining philosopherg&ofk which one camputor get A Philo with transition
labels allowing interaction with other types when he gesddii (resp. right) fork wittgetL (resp.getR or returns
them (simultaneously in this version) wigtat Philo are initially idle andFork areavailable An implementation
of these types using Petri Nets is provided in fighre

3.2. Petri Nets as Elementary Type

We show here how to adapt classic labelgd &efinitions to match this IPN type contract. In practice,
any finite state machine based formalism could be used dzatah of IPN.

Definition 3.2. A labeled Petri net (LPN) is a tupk®l, Tr, Pre, Post L , label, mp) where

e Plis afinite set of places,

e Tris a finite set of transitions (witRINTr = 0),

e PreandPost: PIx Tr — IN are the pre and post functions labeling the arcs.
e L C Tris a set of labeled transitions

e Mg c IN"!is a set of designatemtarkingsof the net.

So that LPN fulfill the IPN type contract, we further define:
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° S=]NP|

InitStates= Mg

T=L

Locals: S — 25 is defined byvm,n € S,nY € Localgm) iff 3t e Tr\ L, ¥Yp € Pl,m(p) > Pre(p,t)
and thermm’(p) = m(p) — Pre(p,t) + Pos(p,t);

Succ: SxBag(L) — 25: is defined byym,nv € S, VY7 e Bag(L),n' € Sucdm, ) iff

VpePlLm(p)> > Pre(p,t) (enabling)

ter

and then
m'(p) = m(p) + Z(POS(p,t) - Pre(p,t)) (firing)

ter

As an example, figur@ represents an implementation of the types introduced irrdigjfor the
Philosophers dinner. Note the use of privale\(L) and public {) transitions. Public transitions cannot
be fired in isolation (byLocalg), but they are fiered to the environment as transition labels.

Philo 2 ] PN
graphical
notation

lace
)

gry

Type name Fork £

get

« private » I
transition

put labeled

transition |:|

Initial states

available = {Res = 1} arc ——=

Idle = {Think=1}

Figure 2. Implementation of the types defined in figlire

3.3. A Composite Type

We now define a composite IPN type tfier support for the hierarchical composition of IPN instance

Notations: Let | ={i1,...,in} designate a set of IPN instance&S, is the settypdii).Sx...x
typgin).S and Syncg designates the set Bagpe(i1).T) x ... x Bagtypgin).T). We will noteVi € |,
the projection operatoByncs — Bagtyp€gi).T). The suma : Syncgx Syncs — Syncs is defined as:
t=tooty iff Vi € I,7(t) = 7 (tg) + 7j (t1) where+ designates the standard sum of multisets.

Intuitively, CS; represents composite states, &yhcs represents synchronizations of public labels
of the setl of subcomponents. The susrepresents an operation cumulating tiiees of two syn-
chronizations. For instance, let= {ig,i1}. Lett,t" € Syncsg, t = (to+2't1) X (0); t" = (to) X (t3). Then
t =tot = t" = (2tg+2'ty) X (ta).
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We define the next state functidvexji, which is used when definingocalsand Succbelow, Nexij :
CS xBag(Syncs) — 2°5.¥s ' € CSy, Yt € BagSyncs),

deNexi(st) if Viel.s(i)etypei).Sucgs().mi((P)

ter

In words, the successors by a multiset of synchronizatisnsomputed as the states obtained by
applying the projection of their cumulatedfects (obtained with@tET t)) to the current state of each
instance i in the set |.

Definition 3.3. (Composite)
A compositeis a tupleC =(1,1S,ST,V):

e | is afinite set of IPN instances, saidie containedy C. We further require that the type of each
IPN instance preexists when defining these instances, &r twgrevent circular or recursive type
definitions.

e ISC{seCS|Viel,q(i)etypdi).InitStateg is a finite set of designated initial states
e STc Syncsis the finite set of synchronizations;

e V:STw {public,private assigns a visibility to each synchronization

The IPN type corresponding to a composite, is defined as:

e S=CS

InitStates= IS

T ={ste ST| V(st) = public}

Locals: S+ 25. Vs s €S, ¢ € Locals) iff

diel,s(i) etypei).Localgs(i)) AVjel,j#i,5(j) = A))
or dte ST V(t) =private s’ € Next, (s, {t})

e Succ: SxBag(T) - 25. Vs, s € S,Vr e Bag(T), Sucgs, 7) = Next, (S, 7)

Definition 3.3is a realization of the generic IPN type contract. It corgagither elementary subcom-
ponents (see secti@®12), or recursively other instances of composite nature.

Localsis defined as states reachable through the occurrence étdanaitions of any nested com-
ponent (without ffecting the other subcomponents) or states reachable thiemayirrence of any given
private synchronization.

Succis realized by “summing” the impact of the multiset of trditsis given as its argument using
the® operator defined ove3yncs, and synchronously updating the state of each subcomponent

Concerning our running example, consider FigBigefines a module that groups oRkilo and one
Fork to build a composite type PhiloFork.

We can then consider in Fig.a composite type built to represent the Philosophers sysiémthree
instances of PhiloFork.
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an instance
i Type name
getl PhiloFork =l get
O e | o pmmmmmm s {10
/9 getR getint  \/get
22* Phil 4O<*I*>é* /37 FFork Public
p:Fhilo jm——— [=3 -ror synchronizations
eat </}\ eat | j}iput put
O—AF====mm Y e e 4+—0O
initial = {p->idle, f->available}

private synchronization

Figure 3. A PhiloFork composite type representing a Phild #re Fork to his right as a block. Note that
synchronizatioreat synchronizes the philosophpreat eating and releasing his right forflkput but is declared
public to allow synchronization with the release of the feftk. getl, getand put are simply exported (made
visible). An internal event exists to represent the phijpdsar getting his right fork (synchronizegetRandf.ge).
This event is not visible to the environment (it is fired Liacalg.

main (3 PhiloFork modules) g |
getl get getL

o —O<—---__5-=>0— get
‘ pf1:PhiloFork get2 pf2:PhiloFork |
| O --= |
! | eat put eat2 cat } ipm
! | put eat b
|

******* - —=>0— —O<=——F— ;-
| eat1 pf3:PhiloFork eat3 1
L*********ﬁl***f%f —O<******¥3I ****** !
ge get getL ge
initial = {pf1->initial, pf2->initial, pf3->initial}

Figure 4. A model for the dinner of 3 philosophers. The conitpdgpe declaration contains three instances and
six private synchronizations. For instance, private syocizationeab synchronizepf2.eatandpfl.put

Other encodings can be defined. For example, instanggsilofandFork could be directly assem-
bled as a ring, without defining the PhiloFork type. Or theléfork could be directly implemented by
a PT net. Or as we will show in sectio® PhiloFork can be implemented by dfgrent composite type
that represents several philosophers. This example sh@tdierarchical specification of a system is
possible. Such a feature is of particular interest to deeatdistributed systems that can be seen as a
hierarchical composition of elementary modules. It al$oves to exhibit a certain type of symmetry of
in system, which can be exploited by SDD.

4. Building a Model-Checker for IPN with Set Decision Diagrans

To build a model-checker for a given formalism using SDD, naeds to perform the following steps:
1. Adapt the formalism to a hierarchical encoding,
2. Define a representation of states,

3. Define a transition relation using homomorphisms,
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4. Define a verification goal.

These steps are presented here using the IPN formalism d&fitiee previous section.

4.1. Step 1: Define a hierarchical formalism

This step is not strictly necessary to enable saturatioweler, it allows to profit from a hierarchical
state encoding.

The easiest way to do this given our definitions of secB@nto adapt a formalism to match the IPN
type contract. In this way, new elementary types can be difig. a simple labeled transition system,
or any variant of automata). They can then reuse the coneptygit definition to allow hierarchical
modelling.

One could also extend the composite definition, for instdnycadding other types of synchroniza-
tions (e.g. reset transitions, UML-style history to rettwrma previous state, non deterministic synchro-
nizations, etc.).

We use as running example the IPN definition of sec8pwhich is already hierarchical. So this
step consisted in adapting the definitions of/& Ret to match the IPN type contract, as presented in
section3.2

4.2. Step 2: State Encoding

For any IPN type, we need to define an SDD representation ofeinyf states as an SDD.
IPN To encode the state of an IPN with= |P| places, we use an SDD withinteger domain SDD

variables. Given a total ordering of the places, for anyestat S, we can define a state(m) € $ such

thato(m) = po s ...y APl g

Composite A statese CS; of a compositeC will be represented by an SDD ¢ variables, each
representing the state of an instameel. The domain of each variable is determined by the type of the
instance.

Figure5 shows this type of encoding for the philosopher example @vesicler three philosophers).
This encoding reproduces the structure of the IPN spedtitatVe thus find three levels:

e The main level describes the states of the three instanzEs pf2 andpf3 of figure4. Each
instance is represented by one variable. The arcs are thbsileg SDD of thé>hiloFork level.

e ThePhiloFork level describes the possible states ¢fhdaloFork module (see figur8). The state
of aPhiloFork is decomposed into the state of the fdrland thePhilo instancep.

e The elementary levetontains IPN states. For more clarity we have represenfedhie SDD
corresponding to Philo states and right the SDD represgritork states (see figurB. These
SDD use integer domain variables, and one variable per platbe net.

At each level, the possibility of sharing representatiomisoduced. The labels of the arcs of the
upper levels refer to nodes of lower levels. Let us outlin€igure5 how we can read a state from the
structure. In themain SDD, bold gray arcs (labeled wittm2) are linked to than2 entry point in the
PhiloFork SDD. Similarly, bold black arcs in thehiloFork SDD (labeled withf0) are linked to thefO
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3
>

«main» level
(3 «PhiloFork» modules)

N &

«PhiloFork» level

3
>

«elementary» level

one fork: i

one philosopher i

Figure 5. Hierarchical encoding of the full state-space3fphilosophers

entry in the fork SDD. Finally, double gray arc (labeled wjiB) are connected to thg2 entry in the
one philosopheSDD. The state where a@fhiloFork instances are in state2 corresponds to a deadlock
state:m2 is a state where the fork is not availabl®) and the philosopher is in stap2 whereWaitR
andHasL are marked (he has the left fork and waits for the right one).

This example clearly shows that parts of the representatiershared at each level thanks to these
relationships between hierarchical levels. For exampknR entry of thePhiloFork level is referenced
four times in themainlevel. With “classical” decision diagrams, this type of shg between parts of
the state space could not be achieved.

4.3. Step 3: Transition Encoding:

The IPN formalism defines two types: IPN and composite. Foh @fthese concrete realizations of the
IPN type contract, we need to defiBeiccandLocalsas homomorphisms.
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IPN  The two following homomorphisms are defined to deal respelgtiwith the pre (notedh™) and
post (notech™) conditions. Both are parameterized by the connected glacas well as the valuation
(v) labeling the arc entering or outin.

h™(p,V)(w,s) = h*(p,V)(w, ) =
{n—v|nesAn>v} d ifw= D o {n+v|nes} d ifw= D
W h=(p,v) otherwise W h*(p,v) otherwise
h™(p,v)(1)=0 h*™(p,v)(1)=0

Note that this definition arc by arc of the semantics is waljzted to the further combination of arcs
of different net sub-classes (e.g. inhibitor arcs, reset arcacitgplaces, queues...). Homomorphisms
allowing to represent these extensions were previousiyne@fin [L2], and are not presented here for
sake of simplicity.

LocalsandSuccare then defined as compositions of these inductive homdrisong. We usé)neH
to denote the composition lyof the homomorphismk in the setH.

Locals= " (Opeph* (p, Postp,t)) o h™(p, Pre(p,1)))
teT\L

SUC((T) = OpEP(OtET(h+(p’ Pre( p, t)) © Oter(h_(p, Pre( P, t)))))

For instance the transitidmungryin the model of Figl, would have as homomorphism :
hrranghungry)h* (WaitL, 1) o h* (WaitR 1) o h™(Idle, 1)

When on a path a precondition is unsatisfied,ithé@omomorphism will return O, pruning the path from
the structure. Thus the" are only applied on the paths such that all preconditionsatisfied.

Composite The Nexi function is defined using th€ homomorphism introduced in secti@?2 For
anyt € Bag(T):
Nexi (7) = Oia £(i, ty peli)- Sucg(EH 1))

ter
The homomorphisms representihgcalsandSucc, ¥t € BagT, are encoded:

Locals Yiel L(i,type(i).Locals) + Ytes Tv(t)=private NEXE.I ({t})
Sucgr) = Next, (1)

To handle synchronization of transitions bearing the sahellin diferent nets of a compositional
net definition we use the local application construction BDShomomorphisms. The fact that this
definition as a composition of local actions is possible stéram the simple nature of the synchro-
nization schema considered. A transition relation thatisothposable under this form has been called
Kronecker-consistent in various papers on MDD by Ciardd Bte[10].

Figure2 present a PhiloFork module. The private synchronizagjetint of this composite net syn-
chronizes transitiorp.getL with f.get This transition corresponds to the philosoplpguicking up the
fork to his right.
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The homomorphism encoding this transitigetintis written :

Nexi ({getint)

L(Sucdcgel), ) o L(Sucdcgetl), p)
L(h~(Resl), f)o L(h*(HasR1)oh (WaitL, 1), p)

4.4. Defining the Verification Goal

The last task remaining is to define a set of target (usualtjesined) states, and check whether they
are reachable, which involves generating the set of redelsiites using fixpoint over the transition
relation. The user is then free to define a selection indedtmomorphism that only keeps states that
verify an atomic property. This is quite simple, using honoophisms similar to the pre conditioh)
that do not modify the states they are applied to. Any booteembination of atomic properties is easily
expressed using union, intersection and séédBnce.

A more complex CTL logic model-checker can then be considicising nestetixpoint construc-
tions over the transition relation or its reversgl.[ Efficient algorithms to produce witness (counter-
example) traces also exidt]] and can be implemented using SDD.

5. Transitive Closure : State of the Art

The previous section has allowed us to obtain an encodintatgssusing SDD and of transitions using
homomorphisms. We have concluded with the importance dhbaan dficient algorithm to obtain the
transitive closure or fixpoint of the transition relationeowa set of (initial) states, as this procedure is
central to the model-checking problem.

Such a transitive closure can be obtained using variousitiges, some of which are presented in
Algorithm 1. Varianta is a naive algorithmb [5] and ¢ [19] are algorithms from the literature. Variant
d, together with automatic optimizations, is our contribnteand will be presented in the next section.

5.1. Symbolic transitive closure (1991)9]

Variationais adapted from the natural way of writing a fixpoint with dgfildata structures: it uses a set
todo exclusively containing unexplored states. Notice thehsligbtation abuse: we nofg(todo) when
we should noteX;.1 t)(todo).

Variantb instead applies the transition relation to the full set afently reached states. Varidnts
actually much moref&cient than variang in practice. This is due to the fact that the size of DD is not
directly linked to the number of states encoded, thugdde of varianta may actually be much larger
in memory. Variant also requires more computations (to get th&edence) which are of limited use to
produce the final result. Finally, applying the transitietation to states that have been already explored
in b may actually not be very costly due to the existence of a cache

Variantb is similar to the original way of writing a fixpoint as found B]. Note that the standard
encoding of a transition relation uses a DD with two DD vaeah(before and after the transition) for
each DD variable of the state. Keeping each transition DIaied induces a high time overhead, as
different transitions then cannot share traversal. Thus thenuwfitransitionsT is stored as a DD, in
other approaches than in SDD. However, simply computinguhionT has been shown in some cases
to be intractable (leading to more elaborate partitionilgg@thms [6]).
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Algorithm 1: Four variants of a transitive closure loop.
Data: {Hom} T : the set of transitions encodedlagans homomorphisms
$ 0 : initial state encoded as an SDD
S todo: new states to explore
$ reach: reachable states

g)e;):]pllcn reachability style b) Standard symbolic BFS loop
todo:= s begind _
e o reachi=0
while todo# 0 do o
$ tmp:= T(todo) while tocri]o;&tre(?chdo
. reach:= todo
L tr(;;k;r.]—._trrneg\crhiafr: D L todo:= todo+ T(todo) = (T +1d)(todo)
end . end
¢) Chaining Toop
begin
todo:= 5 _
reach:=0 d) Saturation enabled
while todo+ reachdo begin .
reach:= todo | reach:= (T +1d)*(so)
forteT do end
| todo:= (t+1d)(todo
end

5.2. Chaining (1995) 19|

An intermediate approach is to use clusters. Transitiosteta are defined and a DD representing each
cluster is computed using union. This produces smaller b&x,represent the transition relation in parts.
The transitive closure is then obtained by algoritbmvhere each represents a cluster. Note that this
algorithm no longer explores states in a strict BFS ordewlant, is applied aftetty, it may discover
successors of states obtained by the application.oThe clusters are defined id9] using structural
heuristics that rely on the Petri net definition of the modal] try to maximize independence of clusters.
This may allow to converge faster thandror b which will need as many iterations as the state-space is
deep. While this variant relies on a heuristic, it has erogily been shown to be much better than

5.3. Saturation (2001) L0

Finally the saturation method is empirically an order of miagle better thar. Saturation consists
in constructing clusters based on the highest DD variatdéithused by a transition. Any time a DD
node of the state space representation is modified by aticangiis (re)saturated, that is the cluster that
corresponds to this variable is applied to the node until poiixt is reached. When saturating a node,
if lower nodes in the data structure are modified they willtlselves be (re)saturated. This recursive
algorithm can be seen as particular application order ofrtvsition clusters that is adapted to the DD
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representation of state space, instead of exploring in BE& dhe states.

The saturation algorithm is not represented in the algorittariants figure because it is described
(in [1Q)) on a full page that defines complex mutually recursive pdaces, and would not fit here.
Furthermore, DD packages such @siDD or Buddy[20, 17] do not provide in their public API the
possibility of such fine manipulation of the evaluation mdare, so the algorithm ofLQ] cannot be
easily implemented using those packages.

5.4. Our Contribution

All these algorithm variants, including saturation (s&8]), can be implemented using SDD. However
we introduce in this paper a more natural way of expressingp@ifit through thén* unary operator,
presented in variard. The application order of transitions is not specified byuker in this version,
leaving it up to the library to decide how to best compute #mult. By default, the library will thus
apply the most ficient algorithm currently available: saturation. We thusrocome the limits of other
DD packages, by implementing saturatiosidethe library.

6. Automating Saturation

This section presents how using simple rewriting rules weraatically create a saturatioftect. This
allows to embed the complex logic of this algorithm in thedity, dfering the power of this technique
at no additional cost to users. At the heart of this optinndzais the property ofocal invariance

6.1. Intuition

The key idea behind exploiting local invariance is firepagationof operations. Indeed, often opera-
tions representing transitions do ndiext all variables of the state signature. Thus the homonigrph
representing the transition can be propagated, skippmgdhables which are not relevant for the tran-
sition. This allows to limit the number of (useless) intedie nodes created during an application of a
transition relation.

Let us consider the two following homomorphistagandinc. leqreturns all assignments sequences
in which all values of the variable are less or equal thdq while incq increments all values af.

{n|nesAn<k} .
{ w ° Id ifo=Xx

leq(x, k) (w,s) =

W leq(x, k) else
leq(x, K)(1) =1
{n+1|nes} .
. w——ld fwo=x
inc(¥)(w,s) = S
w — inc(X) else
inc(x)(1) =1

Suppose we have the transitidg = leq(d, 2) o inc(d) to apply onS; of the figure6. We want the
full state space, i.e. f{+1d)*(S1). A basic BFS application would produce intermediate S®Dto
S4. However, if the evaluation mechanism could know that \deisa, b andc are not relevant for the
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4o-mmmmo- ) S REEEEEE |
fg——> v Sfi—> v
{13 {1} {1} {1} {1}
{23 {2} {2} {2} {2y

{3} {3} {3} {3} {3}
{0}, {1} {0,1} 1.2} {0.1.2}

Figure 6. Hfects of propagation

operation, we could propagaté ¢ Id)* down to thed node ofS1, work on that node until th& fixpoint
is reached, then reconstruct the top of the SDI3£fThis avoids creation of all the intermediate nodes
outlined in grey.

The next subsections formalizes this intuition, allowiogembed this logic in the SDD library.

6.2. Local Invariance

A minimal structural information is needed for saturatiorbe possible: the highest variable operations
need to be applied to must be known. To this end we define :

Definition 6.1. (Locally invariant homomorphism)
An homomorphisnhis locally invariant on variable iff

V6 = (w,m,) €8, h(6) = X ssyea @ — h(8")

Concretely, this means that the applicatiorhafoesn’t modify the structure of nodes of variable
andh is not modified by traversing these nodes. The variabig a “don’t care” w.r.t. operatioh, it is
neither written nor read bly. A standard DD encodindLP] of h applied to this variable would produce
the identity. The identity homomorphisid is locally invariant on all variables.

For an inductive homomorphisin locally invariant onw, it means that(w, s) = w S h. A user
defining an inductive homomorphishrshould provide a predicat&kipgw) that returngrueif his locally
invariant on variablev. This minimal information will be used to reorder the apation of homomor-
phisms to produce a saturatioffext. It is not dificult when writing an homomorphism to define this
Skippredicate since the useful variables are known, it actuallipices the number of tests that need to
be written.

For example, théa* andh™ homomorphisms of sectioh can exhibit the locality of theirféect on
the state signature by defini8kip which removes the test = p w.r.t. the previous definition singeis
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the only variable that is na@kipped

h_(p,V)(w, S) =w m Id h+(p,V)(a), S) —w {n+v|nes} I
(P V) Skif{w) = (w # p) h*(p,Vv).Skifw) = (w # p)
h™(p.v)(1)=0 h* (p.v)(1) = 0

An inductive homomorphisnt’s application toS = (w, 7, @) is defined byp(6) = 3(s 5ye0 P(w, 9)(9").
But when® is invariant onw, computation of this union produces the expres@;gé,mwi D).
This result is known beforehand thanks to the prediSiig

From an implementation point of view this allows us to creamtgew node directly by copying the
structure of the original node and modifying it in place. éed the application af will at worst remove
some arcs. If @(¢") produces the 0 terminal, we prune the arc. Else, if §@) applications return the
same value, we need to fuse the arcs into an arc labeled byitye af the arc values. We thus avoid
computing the expressiol s sie, #(w, S)(0), which involves creation of intermediate single arc nodes

w=> - and their subsequent union. The impact on tfieiency of this “in place” evaluation is already
measurable, but more importantly it enables the next stegvaiting rules.

6.3. Union and Composition

For built-in homomorphisms the value of tB&ippredicate can be computed by querying their operands:
homomorphisms constructed using union, compaosition apaifit of other homomorphisms, are locally
invariant on variablev if their operands are themselves invariantan
This property derives from the definition (given i 13]) of the basic set theory operations on
DDD and SDD. Indeed for two homomorphist&ndh’ locally invariant on variables we have:Vs =
(w,m,a) €Y,
(h+Hh)(5)

h(s) + h'(6)

= Y(esea®— hE) + Sisoyeaw— N ()
= Y(ssea®— h(E)+H (&)

= e — (h+h)(E)

A similar reasoning can be used to prove the property for amitipn.

It allows homomorphisms nested in a union to share travefdle nodes at the top of the structure
as long as they are locally invariant. When they no lorfgleip variables, the usual evaluation defini-
tion h(6) + h' () is used to fect the current node. Until then, the shared traversal @agetter time
complexity and better memory complexity as they also shacbe entries.

We further support natively the n-ary union of homomorptssinhis allows to dynamically create
clusters by top application level as the union evaluatiamdis downwards on nodes. When evaluating
an n-ary uniorH(6) = >; hi(6) on a node&s = {w, r, @) we partition its operands intb = {h;|h;.Skigw)}
andG = {hj|=h;.Skigw)}. We then rewrite the uniofl(6) = (X hee N)(0) + O hec N)(6), Or more simply
H(6) = F(6) + G(6). TheF union is thus locally invariant om and will continue evaluation as a block.
TheG part is evaluated using the standard definitég{@) = > e h(0)

Thus the minimaBkippredicate allows us to automatically create clusters ofaimss by adapting
to the structure of the SDD it is applied to. We still have nguieements on the order of variables, as the
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clusters can be created dynamically. To obtdfitency, the partition§ + G are cached, as the structure
of the SDD typically has limited variation during constiiect Thus the partitions for an n-ary union are
computed at most once per variable instead of once per node.

The computation using the definition Bf(6) = X; hi(6) requires each; to separately traversge and
forces to fully rebuild all then;j(6). In contrast, applying a uniol allows sharing of traversals of the
SDD for its elements, as operations are carried to theiriegmn level in clusters before being applied.
Thus, when a strict BFS progression (like algorithrin) 1s required this new evaluation mechanism has
a significant &ect on performance.

6.4. Fixpoint

With the rewriting rule of a uniod = F + G we have defined, we can now examine the rewriting of an
expressionk +1d)*(6) as found in algorithm 4 :

(H+1d)* @) = (F+G+Id)*(6)

= (G+Id+(F+I1d)*)*(o)

The (F +1d)* block by definition is locally invariant on the current vddie. Thus it is directly
propagated to the successor nodes, where it will recuysbelevaluated using the same definition as
(H+1d)*.

The remaining fixpoint ove& homomorphisms can be evaluated using the chaining operatier
(see algorithm I), which is reported empirically morefective than other approached,[a result also
confirmed in our experiments.

The chaining application order algorithnrcan be written compactly in SDD as :

reach= (Oxer (t+1d))* (s0)

We thus finally rewrite:

(H+1d)*(6) = (Ogec(g+Id)o (F+1d)*)*(6)

6.5. Local Applications

We have additional rewriting rules specific to SDD homom@pis and thel local construction (see

section2.2):

Lhvan(w,s) = w2 1d

L(h,var).Skiplw) = (w # var)
L(h,var)(1)=0
Note thath is an homomorphism, and its application is thus linear tostilees ins. Further aL op-

eration can only fiect a single level of the structure (defined\ar). We can thus define the following
rewriting rules, exploiting the locality of the operation :
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(1) L(h,v)o L(,v) = L(hoh V)

2 L(hVv)+ LR ,v)=L(h+h,v)

3) vV = L(hv)oL(N,V)=L(IN,V)oL(hV)
4) L(h,v)+1d)* = L((h+1d)*,v)

Expressions (1) and (2) come from the fact that a local ojpera locally invariant on all variables
exceptv. Expression (3) asserts commutativity of composition @ilooperations, when they do not
concern the same variable. Indeed, tife@ of applyingL(h,v) is only to modify the state of variable
v, so modifyingv thenv’ or modifyingVv’ thenv has the same overalitect. Thus two local applications
that do not concern the same variable are independent. Vi@tetkiis rewriting rule when considering a
composition oflocal to maximize applications of the rule (1), by sorting the casipon by application
variable. A final rewriting rule (4) is used to allow nestedpagation of the fixpoint. It derives directly
from rules (1) and (2).

With these additional rewriting rules defined, we slightyange the rewriting ofH + Id)*(5) for
nodes = (w,n,a). we considerH(6) = F(5) + L(6) + G(6) whereF contains the locally invariant part,
L = £(l,w) represents the operations purely local to the currenalbbeiv (if any), andG contains
operations which féect the value otv (and possibly also other variables below). Thanks to ruje (4
above, we can write :

(H +1d)*(5) (F+L+G+Id)*()

= (G+Id+(L+Id)* + (F+1d)*)*(6)
= (Ogec(g+1d)o L((I +1d)*,w) o (F +1d)*)*(5)

As the next section presenting performance evaluationsshaw, this saturation style application
order heuristically allows to gain an order of magnitudehia $ize of models that can be treated.

7. Efficiency of Automatic Saturation

SDD and automatic saturation have been implemented in #he XGbddd library [18], available un-
der the terms of GNU LGPL. Hereafter reported results wetained with this library on a Xeon @
1.83GHz with 4GB of memory.

We have run the benchmarks on 4 parametrized models, witdrelt sizes: the well-known Dining
Philosophers and Kanban models; a model of the slotted rimtgpgol; a model of a flexible manufactur-
ing system. We have also benchmarked a LOTOS specificatiamell from a true industrial case-study
(it was generated automatically from a LOTOS specificati@500 lines of LOTOS code 3,000 lines
of C code — by Hubert Garavel from INRIA).

7.1. Impact of Propagation

We have first measured on these models how the propagatior aigpacts on memory size, that is
without automatic saturation. We have thus measured theamefmotprint when using a chaining loop
with propagation enabled or not. We have observed a gain #f¥h to 50%, with an average of about
40%. This is due to the shared traversal of homomorphismswhey are propagated, thus inducing
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much less creation of intermediary nodes. Although byfitdes is a good optimization, automatic
saturation allows to gain orders of magnitude in both menaoiytime.

7.2. Impact of Hierarchy and Automatic Saturation

Table 1 shows the results obtained when generating the state sphseseral models with automatic
saturation (Algol.d) compared to those obtained using a standard chainipg(Algo. 1.c). Moreover,
we measured how hierarchical encoding of state spacesrpedompared to a flat encoding. A such
encoding means that we do not use the intrinsic hierarchyoofats.

Final Hierarchical Flat Hierarchical
# Chaining Loop Automatic Sat. Automatic Sat.
Model States Flat Hier. T. Mem. Peak T. Mem. Peak T. Mem. Peak
Size # (s) | (VB) # (s) | (MB) # (s) (MB) #

LOTOS Specification

| 9.810? | - 085 | -] - | - [ -] - - [ 147] 740 ] 1.1x00°
Dining Philosophers

100 4.9x10%2 2792 419 1.9 112 2.8x10° 0.2 20 18040 0.07 5.2 4614

200 2.5x10%° | 5589 819 7.9 | 446 1.1x10° 0.7 | 58.1 36241 0.2 10.6 9216

1000 | 9.2x<10°%6 | 27989 | 4019 - - - 14 | 1108 | 1.8x1C° 4.3 115 46015

4000 7x107%07 - 16019 - - - - - - 77 1488 | 1.8x10°
Slotted Ring Protocol

10 8.3x100° 1283 105 1.1 48 90043 0.2 16 31501 0.03 3.5 3743

50 1.7x10°2 | 29403 | 1345 - - - 22 1054 | 2.4x10° 5.1 209 4.6<10°

100 2.6x1019% - 5145 - - - - - - 22 816 1.7x10°

150 4.5¢10158 - 11445 - - - - - - 60 2466 | 5.6<1C°

Kanban

100 1.7x10° | 11419 | 511 12 145 2.6x10° 2.9 132 | 3.1x10° 0.4 11 14817

200 3.2x1072 | 42819 | 1011 96 563 1x10P 19 809 1.9x10° 2.2 37 46617

300 2.6x1074 | 94219 | 1511 - - - 60 | 2482 | 5.7x10° 7 78 1.0x10°

700 2.8x10%8 - 3511 - - - - - - 95 397 | 5.2x10°

Flexible Manufacturing System

50 4.2<10% 8822 917 13 430 5.3x10° 2.7 105 2.2¢<10° 0.4 16 23287

100 2.7x10%1 | 32622 | 1817 - - - 19 627 1.3x10° 1.9 50 76587

150 481028 | 71422 | 2717 - - - 62 1875 | 3.8x10° 53 105 1.6x10°

300 3.6x10%7 - 5417 - - - - - - 33 386 5.9x10°

Table 1. Impact of hierarchical decision diagrams and aatansaturation

All “=" entries indicate that the state space’s generati@hrbt finish because of the exhaustion of
the computer's main memory. We have not reported result8dbrepresentation with a chaining loop
generation algorithm as they were nearly always unablendlbanodels of big size.

The“Final” grey columns show the final number of decision diagram nodesled to encode the
state spaces for hierarchical and flat encoding. ClearlyDia need an order of magnitude of more
nodes to store a state space. This shows how well hierarchyrifzes state spaces. Thii@ency of
hierarchy also show that using a structured specificatiarhetp detect similarity of behavior in parts of
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a model, enabling sharing of their state space represemt@tee figurd).

But the gains from enabling saturation are even more impbttean the gains from using hierarchy
on this example set. Indeed, saturation allows to mostlyocovee the “peakféect” problem. ThusFlat
Automatic Saturation’performs better (in both time and memory) th&herarchical Chaining Loop”.

As expected, mixing hierarchical encoding and saturatigmgb the best results: this combination
enables the generation of much larger models than otheroaietin a smaller memory footprint and in
less time.

8. Recursive Folding

In this section we show how SDD allow us in some cases to gaiordér of complexity: we define
a solution to the state-space generation of the philosspgh@blem which has complexity in time and
memorylogarithmic to the number of philosophers. The philosophers systenghdyhsymmetric, and

is thus well-adapted to techniques that exploit this synyné&t/e show how SDD allow to capture this
symmetry by an adapted hierarchical encoding of the sfzees The crucial idea is to use a recursive
“folding” of the model withn levels of depth for 2 philosophers.

8.1. A group of Philosophers

We now introduce a composite type definiti®hiloForkGroupto represent ajroup of philosophers
(figure7 left), so that it is identical to a singlehiloFork as defined in figur& (from the point of view of
the IPN type contract).

PhiloForkGroup(2) 2 | PhiloRing z |
getL get
O—F— . me? 130 closeGet
I I ! I [ R I
| | ! I | I
getL& \/ get Qeﬂ-% %get getl) \‘/ get
pf1:PhiloFork pf2:PhiloFork p:PhiloForkGroup
eat | %} put eat %‘ Wput eat %‘ %‘ put
| | | | put [ N R — |
O R e --{1+0 closePut
eat eat2
initial = {pf1->initial, pf2->initial} initial = {p->initial}

Figure 7. Module containing orfeork and onePhilo

We further introduce (figur@ right) a composite type definitioRhiloRingto “close the loop”, and
connect the first and last philosophers of a group.

These two type definitions can be adapted by setting the typkeoinstances they contain. In
particular, sincé’hiloFork andPhiloForkGrouphave the same transition labels and initial states, one can
build aPhiloForkGroup(like in figure 7) that contains instances of (small&filoForkGrouprather than
instances oPhiloFork.

Such an encoding can be extremely compact. Suppose tla gtéitte of onéhiloForkis noted Py).

The initial state of &hiloForkGroup(2)is notedM; = (Po) / (Po). Then the state dPhiloForkGroup(4)
is notedMy = (M) / (M2). The state oPhiloForkGroup(8)would be Mg = (My) / (My), etc... Thus,
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sharing is extremely high : the initial state of the system2fbphilosophers only requiresn k (k € IN)
nodes to be represented.

We can easily adapt this encoding to treat an arbitrary numloé philosophers instead of powers
of 2, by decomposing into it’s binary encoding. For instance, foe520 + 22 philosophers with a group
definition containing a single PhiloFork and a PhiloFrok@r@l). Such unbalanced depth in the data
does not increase computational complexity.

8.2. [Experimentations

We show in tabl€ how SDD provide an elegant solution to the state-space ggoerof the philosophers
problem, for up to 2°990 philosophers. The complexity both in time and space is ryulijhear ton,
with empirically & nodes and 12arcs required to represent the final state-spacé phfosophers.

Nb. Philosophers States Time (s) Final Peak
210 1.0233%10°42 0.0 124 814
231 1.63233¢1 (1346392620 0.02 282 2347
21000 NA 0.81 8034 73084
210000 NA 9.85 80034 730084
220000 NA 20.61 160034 | 1460084

Table 2. Performance evaluation of recursive folding witlpBilosophers . The states count is nokgd when
the large number library GNU Multiple Precision (GMP) we usports an overflow.

What is surprising in this problem instance, is that eachdfahe philosophers at any level actually
behaves in the same way as the other half. This is beyond est@lisymmetry to global behavioral
symmetry. Also when the system is evolving, few system-wiependencies emerge, the evolution of a
Philo depends on its immediate neighbors, not much on pemptess the table.

The solution presented here is specific to the philosophetsem, though it can be adapted to other
symmetric problems. Itsfigciency here is essentially due to the inherent propertigeofnodel under
study. In particular the strong locality, symmetry and taet that even in a BDD representation, adding
philosophers does not increase the “width” of the DDD regmégtion — only it's height —, are the key
factors.

The encoding presented here can be used for other very reysi@ms. However even when such
a recursive encoding is possible, logarithmic complexstynot guaranteed. Even when the memory
complexity is low, an asymmetry of the initial state may bowptimal complexity to lineam(iterations
to pass a token around a ring for instance).

Our current research direction consists in defining a tediosi pattern from higher level notations
that express symmetries (e.g. Well-Formed N&fstp IPN. Such a translation could help recognize this
pattern and obtain the recursive encoding automatically.

In any case, this example reveals that SDD are potentiafpprantially more powerful than other
decision diagram variants without hierarchy.
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9. Conclusion

In this paper, we have presented the latest evolutions ddiftieical Set Decision Diagrams (SDD), that
are suitable to master the complexity of very large systéffesthink that such diagrams are well-adapted
to process hierarchical high-level specifications suchetsyithin-Nets [f] or CO-OPN R].

We have presented how we optimize evaluation of user opesatd automatically produce a satu-
ration gfect. Moreover, this automation is done at a low cost for ysgnse it uses &kippredicate that
is easy to define. We thus generalize the extremfigient saturation approach of Ciardo et al0]
by giving a definition that is entirely based on the struciofréhe decision diagram and the operations
encoded, instead of involving a given formalism. Furtherenahe automatic activation of saturation
allows users to concentrate on defining the state and ti@mgihcoding.

We have shown how to build a symbolic model-checker thataitgoh hierarchical model definition.
To this end we introduced Instantiable Petri Nets, based genaral compositional notion of type and
instance. Petri nets were used as elementary component type

Finally, we have shown how recursive folding allows in vefiyagent and elegant manner to generate
state spaces of some regular and symmetric models, with @3°%P° philosophers in our example.
Although generalization of this application example ig teffurther research, it exhibits the potentially
exponentially better encoding SDD provide over other DDargs for regular examples.

SDD and the optimizations described are implementetliinddd, a G++ library freely available
under the terms of GNU LGPL. With growing maturity since théial prototype developed in 2001
and described in12], 1ibddd is today a viable alternative to Budd¥{] or CUDD [20] for developers
wishing to take advantage of symbolic encodings to build dehchecker.
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