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Abstract. Shared decision diagram representations of a state-space provide efficient solutions for
model-checking of large systems. However, decision diagram manipulation is tricky, as the con-
struction procedure is liable to produce intractable intermediate structures (a.k.a peak effect). The
definition of the so-called saturation method has empirically been shown to mostly avoid this peak
effect, and allows verification of much larger systems. However, applying this algorithm currently
requires deep knowledge of the decision diagram data structures.

Hierarchical Set Decision Diagrams (SDD) are decision diagrams in which arcs of the structure
are labeled with sets, themselves stored as SDD. This data structure offers an elegant and very
efficient way of encoding structured specifications using decision diagram technology. It also offers,
through the concept of inductive homomorphisms, flexibility to a user defining a symbolic transition
relation. We show in this paper how, with very limited user input, the SDD library is able to optimize
evaluation of a transition relation to produce a saturationeffect at runtime.

We build as an example an SDD model-checker for a compositional formalism: Instantiable Petri
Nets (IPN). IPN define atypeas an abstract contract. Labeled P/T nets are used as an elementary
type. A composite type is defined to hierarchically contain instances (of elementary or composite
type). To compose behaviors, IPN use classic label synchronization semantics from process calculi.

With a particular recursive folding SDD are able to offer solutions for symmetric systems in log-
arithmic complexity with respect to other DD. Even in less regular cases, the use of hierarchy in
the specification is shown to be well supported by SDD. Experimentations and performances are
reported on some well known examples.
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1. Introduction

Parallel systems are notably difficult to verify due to their complexity. Non-determinism of the interleav-
ing of elementary actions in particular is a source of errorsdifficult to detect through testing. Model-
checking of finite systems or exhaustive exploration of the state-space is very simple in its principle,
entirely automatic, and provides useful counter-exampleswhen the desired property is not verified.

However model-checking suffers from the combinatorial state-space explosion problem,that severely
limits the size of systems that can be checked automatically. One solution which has shown its strength
to tackle very large state spaces is the use of shared decision diagrams like BDD [4, 5].

But decision diagram technology also suffers from two main drawbacks. First, the order of variables
has a huge impact on performance and defining an appropriate order is non-trivial [3]. Second, the way
the transition relation is defined and applied may have a hugeimpact on tool performance [19, 10]. Such
aspects are difficult to tackle for non specialists of decision diagram technology.

The objective of this paper is to present novel optimizationtechniques for hierarchical decision di-
agrams called Set Decision Diagrams (SDD), suitable to master the complexity of very large systems.
Although SDD are a general all-purpose compact data-structure, a design goal has been to provide easy to
use off the shelf constructs (such as a fixpoint) to develop a model-checker using SDD. These constructs
allow the library to control operation application, and harness the power of state of the art saturation al-
gorithms [10] with limited user expertise in DD. These high level constructs allow a user to concentrate
on specifying the transition relation of the system usinghomomorphisms. The rewriting rules introduced
in this paper allow to obtain an equivalent representation (with the same overall effect), but that optimizes
its evaluation.

No specific hypothesis is made on the input language, although we focus here on a system described
as a composition of labeled transition systems. This simpleformalism captures most transition-based
representations (such as automata [1], communicating processes like in Promela [16] or Harel state
charts [15]). To illustrate the use of our approach, we introduce IPN, ahierarchical Petri net representa-
tion as a basis for illustration and experimentation.

Our hierarchical Set Decision Diagrams (section2) offer the following capabilities:

• Exploitation of specification’s structure to introduce hierarchy in the state space, it enables more
possibilities for exploiting pattern similarities in the system,

• Automatic activation of saturation; the algorithms described in this paper allow the library to enact
saturation with minimal user input,

• A recursivefolding technique that is suitable for very symmetric systems.

The paper is structured as follows. Section2 presents SDD and section3 defines a compositional
Petri net formalism: Instantiable Petri Nets (IPN), that provide built-in functions for modularity and
assembling. Section4 then explains how to build a model checker for IPN on top of SDD. Sections5
and6 show how we can provide transparent optimizations, thus extending the saturation mechanisms
introduced in [10]. Section7 then presents a performance evaluation of our openly distributed imple-
mentation:libddd [18]. Finally, section8 presents a way to take advantage of hierarchy in decision
diagrams for very regular systems, as well as the associatedperformance results we get.
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2. Hierarchical Set Decision Diagram (SDD)

This section recalls the salient points of Hierarchical SetDecision Diagrams (SDD), a data structure
based on the principles of decision diagram technology (node uniqueness thanks to a canonical represen-
tation, dynamic programming, ordering issues, etc.). Theyfeature two main original aspects: the support
of hierarchy in the representation (section2.1) and the definition of user operations through a mechanism
calledinductive homomorphisms(section2.2) which gives freedom and flexibility to the user.

2.1. Structure of SDD

Hierarchical Set Decision Diagrams (SDD) defined in [13], are shared decision diagrams in which arcs
are labeled by asetof values, instead of a single value. This set may itself be represented by an SDD,
thus when labels are SDD, we think of them as hierarchical decision diagrams. Definition2.1 is taken
practically verbatim from [14] where it was adapted for more clarity from [13].

SDD are data structures for representing sets of sequences of assignments of the formω1 ∈ s1;ω2 ∈

s2; · · · ;ωn ∈ sn whereωi are variables andsi are sets of values.
We assume no variable ordering, and the same variable can occur several times in an assignment

sequence. We define the terminal 1 to represent the empty assignment sequence, that terminates any
valid sequence. The terminal 0 represents the empty set of assignment sequences. In the following,Var
denotes a set of variables, and for anyω in Var, Dom(ω) represents the domain ofω which may be
infinite.

Definition 2.1. (Set Decision Diagram)
δ ∈ S, the set of SDD, is inductively defined by:

• δ ∈ {0,1} or

• δ = 〈ω,π,α〉 with:

– ω ∈ Var.

– π = s0∪ · · ·∪ sn is a finite partition of Dom(ω), i.e.∀i , j, si ∩ sj = ∅, si , ∅,n finite.

– α : π→ S, such that∀i , j,α(si) , α(sj).

By convention, when it exists, the element of the partitionπ that maps to the SDD 0 is not represented.

We denote byω
s
−→ δ′, the SDDδ = 〈ω,π,α〉 with π = sandα(s) = δ′ (andα(Dom(ω) \ s) = 0).

Despite its simplicity, this definition supports rich and complex data:

• SDD support domains of infinite size (e.g. Dom(ω) =R), provided that the number of elements in
the partition remains finite (e.g. ]0..3], ]3..+∞]). This feature could be used to model clocks for
instance (as in [21]). It also places the expressive power of SDD above most variants of DD.

• SDD or other variants of decision diagrams can be used as the domain of variables, introducing
hierarchy in the data structure.
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• SDD can handle paths of variable lengths, if care is taken when choosing the state encoding to
avoid creating so-called incompatible sequences (see [13]). This feature is useful when represent-
ing dynamic structures such as queues, lists or variable size arrays.

The definition ensures that any set of assignment sequences has a unique (canonical) SDD represen-
tation. The finite size of the partitionπ ensures we can storeα as a finite set of pairs〈si , δi〉, and letπ be
implicitly defined byα.

SDD are canonized by construction through the union operator. The canonicity of SDD is due to
the two properties (1)π is a partition and (2) no two arcs from a node may lead to the same SDD.
Therefore any valuex∈Dom(ω) is represented on at most one arc, and any time we are about toconstruct

ω
s
−→ δ+ω

s′
−→ δ, we will construct an arcω

s∪s′
−−−→ δ instead (fusing arcs).

The opposite effect (splitting arcs) is obtained when building an SDD such that two arcs〈s, δ〉 and
〈s′, δ′〉 have non empty intersections∩ s′ , ∅. We then produce three arcs,〈s\ s′, δ〉, 〈s′ \ s, δ′〉 and
〈s∩ s′, δ∪δ′〉.

To handle paths of variable lengths, SDD are required to represent a set of compatible assignment
sequences. An operation over SDD is said partially defined ifit may produce incompatible sequences in
the result.

Definition 2.2. (Compatible SDD sequences)
An SDDsequenceis an SDD of the formω0

s0
−→ ·· ·ωn

sn
−→ 1. Letσ1, σ2 be two sequences,σ1 ≈ σ2 iff.:

• σ1 = 1∧σ2 = 1

• σ1 = ω
s
−→ δ∧σ2 = ω

′ s′
−→ δ′ such that



























ω = ω′

∧s≈ s′

∧s∩ s′ , ∅ =⇒ δ ≈ δ′

Compatibility is a symmetric property. Thes≈ s′ condition is defined as SDD compatibility ifs, s′ ∈ S.
Other possible referenced types should define their own notion of compatibility.

While this notion of compatible sequences may seem restrictive, it is more permissive than usual
for DD, where the norm is to use a fixed set of variables, in a fixed order along all paths. In practice,
we use this compatible sequence definition to handle dynamicstructures such as queues. To encode a
queue, we repeat the same variableω. The last occurrence ofω along any path is then artificially labeled

with a special marker, noted♯. Hence,ω
♯
−→ 1 represents an empty queue, andω

s1
−→ ω

♯
−→ 1 represents

a queue with one element (chosen froms1). These two SDD are compatible, and can be stored inside
a single SDD. Furthermore, using homomorphisms we can defineappropriate operations to manipulate
such dynamic structures (see [12]).

2.2. Operations and Homomorphisms

Usually in symbolic methods (e.g. BDD), the next state function of a system is encoded using one
or more decision diagrams, with two variables per variable of the state signature. These variables are
usually interlaced in the transition relation representation. A dedicated synchronized product operation
then allows to compute the successor image for a set of states.
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In contrast to BDD, SDD operations are encoded as homomorphismsS 7→ S. SDD support standard
set theoretic operations (∪,∩,\ respectively noted+,∗,−). They also offer a concatenation operation
δ1 · δ2 which replaces 1 terminal ofδ1 by δ2. This corresponds to a Cartesian product. In addition, basic
and inductive homomorphisms are introduced as a powerful and flexible mechanism to define application
specific operations. A detailed description of homomorphisms including many examples can be found
in [12].

A basic homomorphism is a mappingΦ : S 7→ S satisfyingΦ(0)= 0 and∀δ,δ′ ∈ S,Φ(δ+δ′) = Φ(δ)+
Φ(δ′). The sum+ and the composition◦ of two homomorphisms are homomorphisms. For instance,
the homomorphismδ · Id, whereδ ∈ S and Id designates the identity homomorphism, permits to left
concatenate sequences. Some basic homomorphisms are hard-coded. For instance, the homomorphism
δ ∗ Id whered ∈ S, ∗ stands for the intersection andId for the identity, allows to select the sequences
belonging tod : it is an homomorphism that can be applied to anyd′ yielding d∗ Id(d′) = d∩d′. The
homomorphismsd · Id and Id · d permit to left or right concatenate sequences. We widely usethe left

concatenation of a single assignment (ω ∈ s), notedω
s
−→ Id.

Furthermore, application-specific mappings can be defined by inductivehomomorphisms overS. An
inductive homomorphismφ is defined by its evaluation on the 1 terminalφ(1) ∈ S, and its evaluation
φ(ω, s) for any ω ∈ Var and anys⊆ Dom(ω). The expressionφ(ω, s) is itself a (possibly inductive)
homomorphism, that will be applied on the successor nodeα(s). The result ofφ(〈ω,π,α〉) is then defined
as
∑

s∈πφ(ω, s)(α(s)), where
∑

represents a union.
As an example, the local constructionL allows to “carry” a homomorphismh to a certain variable

v, and applyh to the current state ofv. Thus, it implements an operation local to the variablev. This
homomorphism will be used in section4. It is defined by:

L(v,h)(ω, s) =



















ω
s
−→L(v,h) ifω , v

ω
h(s)
−−−→ Id else

L(v,h)(1) = 0

The reader will find several examples of homomorphisms throughout this paper. Section6 shows
simple homomorphisms that select and increment assignmentsequences, while Section4 shows more
complex homomorphisms that describe the transition relation of a Petri net.

The transitive closure ⋆ unary operator allows to perform a least fixpoint computation. For any
homomorphismh and any nodeδ ∈ S, h⋆(δ) is evaluated by repeatingδ← h(δ) until a fixpoint is reached.
In other words,h⋆(δ) = hn(δ) wheren is the smallest integer such thathn(δ) = hn+1(δ). This operator is
often applied to (Id+h) instead of justh, allowing to accumulate newly computed assignment sequences
in the result.

An important contribution of [14] is the definition of a set of rewriting rules for homomorphisms,
allowing to automatically make use of the decision diagram saturation algorithms originally due to Ciardo
[10]. In this extended version of [14], these rules will be detailed in section6. When computing the least
fixpoint of a transition relation over a set of states, this algorithm offers gains of one to three orders of
magnitude over classical BFS fixpoint algorithms.

For the user, these rewriting rules are transparent. Given aset of homomorphisms{t1, . . . , tn} that
represent a partition of the transition relation of the system, the application of (t1 + . . .+ tn + Id)⋆ to
a node automatically triggers the saturation algorithm forthe evaluation. Note that this is a central
operation in any symbolic model-checking problem since reachability is defined as a transitive closure
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over the full transition relation. A more complex model-checker, for instance a CTL model-checker, can
then be constructed using nested transitive closures over the transition relation or its reverse [5]. The
predecessor transition relation can also be encoded using homomorphisms, though care must be taken to
remain within a forward reachable region.

3. Instantiable Petri Nets (IPN)

This section defines Instantiable Petri Nets (IPN). This hierarchical Petri Net notation will be used as a
running example to demonstrate our SDD based encodings. Thedefinition is split into two parts, first an
abstract contract for IPN types. then two concrete realization of this contract.

We show how to adapt labeled Petri nets to match this contract. Then we define a composite type
that is a container for instances (of composite or P/T net nature). The abstract contract is introduced to
allow a composite type to contain instances of elementary orcomposite nature homogeneously.

The definitions of this section are new with respect to the conference version of this paper [14]. The
definitions we use here are both more generic and better detailed. They reflect a mature formalization of
compositionality and hierarchy that closely matches the capabilities of SDD.

3.1. Instantiable Types

The generic definition of an Instantiable Petri NEt (IPN) builds upon the notion of model type and
instance. It uses a composition mechanism based solely on transitionsynchronization(no explicit shared
memory or channel). Definition3.1sets an abstract contract or interface that must be realizedby concrete
IPN types. The definition is split in two parts: we first define aabstract contract, then two concrete
realizations of this contract for Petri nets and a compositetype.

Notations: Bag(A) denotes a multiset over a setA. Let⊕ designate a commutative operationA×A 7→
A. Let τ ∈ Bag(A), we noteS =

⊕

a∈τa where if an elementa ∈ A occursn times inτ it will be ⊕-edn
times inS.

Definition 3.1. (IPN Concepts)
An IPN type must provide a tupletype= 〈S, InitStates,T,Locals,Succ〉:

• S is a set of states;

• InitStates⊆ S is a finite subset of designated initial states;

• T is a finite set of public transition labels;

• Locals: S 7→ 2S is the local successors function.

• Succ: S×Bag(T) 7→ 2S is the transition function satisfying∀s∈ S,Succ(s,∅) = {s}.

Let Types denote a set of IPN types. AnIPN instance i is defined by its IPN type, notedtype(i) ∈
Types. We will further usetype(i).S (resp.type(i).InitStates, . . . ) to refer to the states (resp. initial states,
. . . ) of an instance’s type.

(Reachability) A states′ is reachable by an instancei from the states0 iff. ∃s1, . . . sn ∈ type(i).S s.t.
s′ = sn∧∀1≤ j ≤ n, sj ∈ type(i).Locals(sj−1).
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InitStatesis introduced to avoid violating encapsulation: to initialize an instance we need to be able
to designate its initial configuration(s) without knowing the internal structure of the instance.

Localswill typically return states reachable through occurrenceof local events. It represents transi-
tions that may occur within an instance autonomously or independently from the rest of the system.

The functionSuccallows to obtain successors by explicitly synchronizing over a multiset of public
transition labels. Synchronizing on an empty multiset of transitions leaves the state of the instance locally
unchanged. Note thatSuccis the only way to control the behavior of a (sub)system from outside. Thus
the transition relation of a full system can only be defined interms of transition synchronizations using
Succand of independent local behaviors.

A full system is defined by an instance of a particular type in aspecific initial state. As a full system
is self-contained, the definition of reachability only depends on the definition ofLocals.

As an example, figure1 presents two IPN type declarations. They could be used to model the
classical dining philosophers. For each type declared (Fork and Philo), only elements that are publicly
visible are represented:InitStatesandT. Of course, the transition relation itself (SuccandLocals) is not
represented, as this part is defined in the implementation ofa type (e.g a Petri net, see figure2).

available

Fork

get
idle

PhilogetL getR

eat

Type name Initial StatesPublic transition labels

put

Figure 1. Type declarations for the dining philosophers. AFork which one canputor get. A Philo with transition
labels allowing interaction with other types when he gets his left (resp. right) fork withgetL(resp.getR) or returns
them (simultaneously in this version) witheat. Philo are initially idle andFork areavailable. An implementation
of these types using Petri Nets is provided in figure2.

3.2. Petri Nets as Elementary Type

We show here how to adapt classic labeled P/T definitions to match this IPN type contract. In practice,
any finite state machine based formalism could be used as realization of IPN.

Definition 3.2. A labeled Petri net (LPN) is a tuple〈Pl, Tr, Pre, Post, L , label, m0〉 where

• Pl is a finite set of places,

• Tr is a finite set of transitions (withPl∩Tr = ∅),

• PreandPost: Pl×Tr→N are the pre and post functions labeling the arcs.

• L ⊆ Tr is a set of labeled transitions

• M0 ⊂N
Pl is a set of designatedmarkingsof the net.

So that LPN fulfill the IPN type contract, we further define:
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• S =NPl

• InitStates= M0

• T = L

• Locals: S 7→ 2S is defined by∀m,m′ ∈ S,m′ ∈ Locals(m) iff ∃t ∈ Tr \ L, ∀p ∈ Pl,m(p) ≥ Pre(p, t)
and thenm′(p) =m(p)−Pre(p, t)+Post(p, t);

• Succ: S×Bag(L) 7→ 2S: is defined by∀m,m′ ∈ S,∀τ ∈ Bag(L),m′ ∈ Succ(m,λ) iff

∀p ∈ Pl,m(p) ≥
∑

t∈τ

Pre(p, t) (enabling)

and then
m′(p) =m(p)+

∑

t∈τ

(Post(p, t)−Pre(p, t)) (firing)

As an example, figure2 represents an implementation of the types introduced in figure 1 for the
Philosophers dinner. Note the use of private (Tr \L) and public (L) transitions. Public transitions cannot
be fired in isolation (byLocals), but they are offered to the environment as transition labels.

arc

place

« private »
transition

labeled
transition

IPN
graphical
notation

available = {Res = 1}

Fork

Idle = {Think=1}

Philo

Type name

Initial states

put

get

Res

HasR

WaitR

Think

HasL

WaitL

eat

GetL GetR

hungry

Figure 2. Implementation of the types defined in figure1.

3.3. A Composite Type

We now define a composite IPN type to offer support for the hierarchical composition of IPN instances.
Notations: Let I = {i1, . . . , in} designate a set of IPN instances.CSI is the settype(i1).S× . . .×

type(in).S andSyncsI designates the set Bag(type(i1).T)× . . .×Bag(type(in).T). We will note∀i ∈ I ,πi

the projection operatorSyncsI 7→ Bag(type(i).T). The sum⊕ : SyncsI ×SyncsI 7→ SyncsI is defined as:
t = t0⊕ t1 iff ∀i ∈ I ,πi(t) = πi(t0)+πi(t1) where+ designates the standard sum of multisets.

Intuitively, CSI represents composite states, andSyncsI represents synchronizations of public labels
of the setI of subcomponents. The sum⊕ represents an operation cumulating the effects of two syn-
chronizations. For instance, letI = {i0, i1}. Let t, t′ ∈ SyncsI , t = (t0+ 2′t1)× (∅); t′ = (t0)× (t3). Then
t′′ = t⊕ t′ =⇒ t′′ = (2′t0+2′t1)× (t3).
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We define the next state functionNextI , which is used when definingLocalsandSuccbelow,NextI :
CSI ×Bag(SyncsI ) 7→ 2CSI .∀s, s′ ∈CSI ,∀τ ∈ Bag(SyncsI ),

s′ ∈ NextI (s, τ) iff ∀i ∈ I , s′(i) ∈ type(i).Succ(s(i),πi(
⊕

t∈τ

t))

In words, the successors by a multiset of synchronizations is computed as the states obtained by
applying the projection of their cumulated effects (obtained with (

⊕

t∈τ t)) to the current state of each
instance i in the set I.

Definition 3.3. (Composite)
A compositeis a tupleC = 〈I , IS,S T,V〉:

• I is a finite set of IPN instances, said tobe containedby C. We further require that the type of each
IPN instance preexists when defining these instances, in order to prevent circular or recursive type
definitions.

• IS ⊆ {s∈CSI | ∀i ∈ I , s(i) ∈ type(i).InitStates} is a finite set of designated initial states

• S T⊂ SyncsI is the finite set of synchronizations;

• V : S T 7→ {public,private} assigns a visibility to each synchronization

The IPN type corresponding to a composite, is defined as:

• S =CSI

• InitStates= IS

• T = {st∈ S T | V(st) = public}

• Locals: S 7→ 2S. ∀s, s′ ∈ S, s′ ∈ Locals(s) iff

∃i ∈ I , s′(i) ∈ type(i).Locals(s(i))∧∀ j ∈ I , j , i, s′( j) = s( j)

or ∃t ∈ S T,V(t) =private, s′ ∈ NextC.I (s, {t})

• Succ: S×Bag(T) 7→ 2S. ∀s, s′ ∈ S,∀τ ∈ Bag(T),Succ(s, τ) = NextC.I (s, τ)

Definition3.3is a realization of the generic IPN type contract. It contains either elementary subcom-
ponents (see section3.2), or recursively other instances of composite nature.

Locals is defined as states reachable through the occurrence of local transitions of any nested com-
ponent (without affecting the other subcomponents) or states reachable through occurrence of any given
private synchronization.

Succis realized by “summing” the impact of the multiset of transitions given as its argument using
the⊕ operator defined overSyncsI , and synchronously updating the state of each subcomponent.

Concerning our running example, consider Figure3 defines a module that groups onePhilo and one
Fork to build a composite type PhiloFork.

We can then consider in Fig.4 a composite type built to represent the Philosophers systemwith three
instances of PhiloFork.
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get

put

initial = {p->idle, f->available}

PhiloFork

p:Philo

getRgetL

getL

getInt

f:Fork

get

puteat
eat

Type name

Public
synchronizations

private synchronization

an instance

Figure 3. A PhiloFork composite type representing a Philo and the Fork to his right as a block. Note that
synchronizationeat synchronizes the philosopherp.eat eating and releasing his right forkf .put but is declared
public to allow synchronization with the release of the leftfork. getL, get andput are simply exported (made
visible). An internal event exists to represent the philosopher getting his right fork (synchronizep.getRandf.get).
This event is not visible to the environment (it is fired viaLocals).

pf1:PhiloFork

getL

pf2:PhiloFork

put

getL

initial = {pf1->initial, pf2->initial, pf3->initial} 

main (3 PhiloFork modules)

eat

eat1

eat

get

get2

eat2put

get

getL

eat

get

put

eat3

get3get1

pf3:PhiloFork

Figure 4. A model for the dinner of 3 philosophers. The composite type declaration contains three instances and
six private synchronizations. For instance, private synchronizationeat2 synchronizespf2.eatandpf1.put.

Other encodings can be defined. For example, instances ofphilo andFork could be directly assem-
bled as a ring, without defining the PhiloFork type. Or the PhiloFork could be directly implemented by
a P/T net. Or as we will show in section8 PhiloFork can be implemented by a different composite type
that represents several philosophers. This example shows that hierarchical specification of a system is
possible. Such a feature is of particular interest to describe distributed systems that can be seen as a
hierarchical composition of elementary modules. It also allows to exhibit a certain type of symmetry of
in system, which can be exploited by SDD.

4. Building a Model-Checker for IPN with Set Decision Diagrams

To build a model-checker for a given formalism using SDD, oneneeds to perform the following steps:

1. Adapt the formalism to a hierarchical encoding,

2. Define a representation of states,

3. Define a transition relation using homomorphisms,
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4. Define a verification goal.

These steps are presented here using the IPN formalism defined in the previous section.

4.1. Step 1: Define a hierarchical formalism

This step is not strictly necessary to enable saturation, however, it allows to profit from a hierarchical
state encoding.

The easiest way to do this given our definitions of section3 is to adapt a formalism to match the IPN
type contract. In this way, new elementary types can be defined (e.g. a simple labeled transition system,
or any variant of automata). They can then reuse the composite type definition to allow hierarchical
modelling.

One could also extend the composite definition, for instanceby adding other types of synchroniza-
tions (e.g. reset transitions, UML-style history to returnto a previous state, non deterministic synchro-
nizations, etc.).

We use as running example the IPN definition of section3, which is already hierarchical. So this
step consisted in adapting the definitions of a P/T net to match the IPN type contract, as presented in
section3.2.

4.2. Step 2: State Encoding

For any IPN type, we need to define an SDD representation of anyset of states as an SDD.
IPN To encode the state of an IPN withn= |P| places, we use an SDD withn integer domain SDD

variables. Given a total ordering of the places, for any state m∈ S, we can define a stateσ(m) ∈ S such

thatσ(m) = p0
{m(p0)}
−−−−−→ ·· · pn−1

{m(pn−1)}
−−−−−−−→ 1.

CompositeA states∈ CSI of a compositeC will be represented by an SDD of|I | variables, each
representing the state of an instancei ∈ I . The domain of each variable is determined by the type of the
instance.

Figure5 shows this type of encoding for the philosopher example (we consider three philosophers).
This encoding reproduces the structure of the IPN specification. We thus find three levels:

• The main level describes the states of the three instancesp f1, p f2 and p f3 of figure4. Each
instance is represented by one variable. The arcs are labeled using SDD of thePhiloFork level.

• ThePhiloFork level describes the possible states of aPhiloFork module (see figure3). The state
of aPhiloFork is decomposed into the state of the forkf and thePhilo instancep.

• The elementary levelcontains IPN states. For more clarity we have represented left the SDD
corresponding to Philo states and right the SDD representing Fork states (see figure1). These
SDD use integer domain variables, and one variable per placeof the net.

At each level, the possibility of sharing representation isintroduced. The labels of the arcs of the
upper levels refer to nodes of lower levels. Let us outline inFigure5 how we can read a state from the
structure. In themain SDD, bold gray arcs (labeled withm2) are linked to them2 entry point in the
PhiloFork SDD. Similarly, bold black arcs in thePhiloFork SDD (labeled withf 0) are linked to thef 0
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Figure 5. Hierarchical encoding of the full state-space for3 philosophers

entry in the fork SDD. Finally, double gray arc (labeled withp2) are connected to thep2 entry in the
one philosopherSDD. The state where allPhiloFork instances are in statem2 corresponds to a deadlock
state:m2 is a state where the fork is not available (f 0) and the philosopher is in statep2 whereWaitR
andHasLare marked (he has the left fork and waits for the right one).

This example clearly shows that parts of the representationare shared at each level thanks to these
relationships between hierarchical levels. For example, them2 entry of thePhiloFork level is referenced
four times in themain level. With “classical” decision diagrams, this type of sharing between parts of
the state space could not be achieved.

4.3. Step 3: Transition Encoding:

The IPN formalism defines two types: IPN and composite. For each of these concrete realizations of the
IPN type contract, we need to defineSuccandLocalsas homomorphisms.
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IPN The two following homomorphisms are defined to deal respectively with the pre (notedh−) and
post (notedh+) conditions. Both are parameterized by the connected place(p) as well as the valuation
(v) labeling the arc entering or outingp .

h−(p,v)(ω, s) =


















ω
{n−v|n∈s∧n≥v}
−−−−−−−−−−−→ Id ifω = p

ω
s
−→ h−(p,v) otherwise

h−(p,v)(1)= 0

h+(p,v)(ω, s) =


















ω
{n+v|n∈s}
−−−−−−−→ Id ifω = p

ω
s
−→ h+(p,v) otherwise

h+(p,v)(1)= 0

Note that this definition arc by arc of the semantics is well-adapted to the further combination of arcs
of different net sub-classes (e.g. inhibitor arcs, reset arcs, capacity places, queues. . . ). Homomorphisms
allowing to represent these extensions were previously defined in [12], and are not presented here for
sake of simplicity.

LocalsandSuccare then defined as compositions of these inductive homomorphisms. We use©h∈H

to denote the composition by◦ of the homomorphismsh in the setH.

Locals=
∑

t∈T\L

(©p∈Ph+(p,Post(p, t))◦h−(p,Pre(p, t)))

Succ(τ) =©p∈P(©t∈τ(h
+(p,Pre(p, t))◦©t∈τ(h

−(p,Pre(p, t)))))

For instance the transitionhungryin the model of Fig.1, would have as homomorphism :

hTrans(hungry)h+(WaitL,1)◦h+(WaitR,1)◦h−(Idle,1)

When on a path a precondition is unsatisfied, theh− homomorphism will return 0, pruning the path from
the structure. Thus theh+ are only applied on the paths such that all preconditions aresatisfied.

Composite TheNextI function is defined using theL homomorphism introduced in section2.2. For
anyτ ∈ Bag(T):

NextI (τ) =©i∈IL(i, type(i).Succ((
⊕

t∈τ

t)(i)))

The homomorphisms representingLocalsandSucc, ∀τ ∈ BagT, are encoded:
Locals =

∑

i∈I L(i, type(i).Locals)+
∑

t∈S T,V(t)=privateNextC.I ({t})

Succ(τ) = NextC.I (τ)
To handle synchronization of transitions bearing the same label in different nets of a compositional

net definition we use the local application construction of SDD homomorphisms. The fact that this
definition as a composition of local actions is possible stems from the simple nature of the synchro-
nization schema considered. A transition relation that is decomposable under this form has been called
Kronecker-consistent in various papers on MDD by Ciardo et al like [10].

Figure2 present a PhiloFork module. The private synchronizationgetInt of this composite net syn-
chronizes transitionp.getL with f .get. This transition corresponds to the philosopherp picking up the
fork to his right.
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The homomorphism encoding this transitiongetInt is written :

NextI ({getInt}) = L(Succ(get), f )◦L(Succ(getL), p)

= L(h−(Res,1), f )◦L(h+(HasR,1)◦h−(WaitL,1), p)

4.4. Defining the Verification Goal

The last task remaining is to define a set of target (usually undesired) states, and check whether they
are reachable, which involves generating the set of reachable states using afixpoint over the transition
relation. The user is then free to define a selection inductive homomorphism that only keeps states that
verify an atomic property. This is quite simple, using homomorphisms similar to the pre condition (h−)
that do not modify the states they are applied to. Any booleancombination of atomic properties is easily
expressed using union, intersection and set difference.

A more complex CTL logic model-checker can then be constructed using nestedfixpoint construc-
tions over the transition relation or its reverse [5]. Efficient algorithms to produce witness (counter-
example) traces also exist [11] and can be implemented using SDD.

5. Transitive Closure : State of the Art

The previous section has allowed us to obtain an encoding of states using SDD and of transitions using
homomorphisms. We have concluded with the importance of having an efficient algorithm to obtain the
transitive closure or fixpoint of the transition relation over a set of (initial) states, as this procedure is
central to the model-checking problem.

Such a transitive closure can be obtained using various algorithms, some of which are presented in
Algorithm 1. Varianta is a naive algorithm,b [5] andc [19] are algorithms from the literature. Variant
d, together with automatic optimizations, is our contribution and will be presented in the next section.

5.1. Symbolic transitive closure (1991) [5]

Variationa is adapted from the natural way of writing a fixpoint with explicit data structures: it uses a set
todoexclusively containing unexplored states. Notice the slight notation abuse: we noteT(todo) when
we should note (

∑

t∈T t)(todo).
Variantb instead applies the transition relation to the full set of currently reached states. Variantb is

actually much more efficient than varianta in practice. This is due to the fact that the size of DD is not
directly linked to the number of states encoded, thus thetodoof varianta may actually be much larger
in memory. Varianta also requires more computations (to get the difference) which are of limited use to
produce the final result. Finally, applying the transition relation to states that have been already explored
in b may actually not be very costly due to the existence of a cache.

Variantb is similar to the original way of writing a fixpoint as found in[5]. Note that the standard
encoding of a transition relation uses a DD with two DD variables (before and after the transition) for
each DD variable of the state. Keeping each transition DD isolated induces a high time overhead, as
different transitions then cannot share traversal. Thus the union of transitionsT is stored as a DD, in
other approaches than in SDD. However, simply computing this unionT has been shown in some cases
to be intractable (leading to more elaborate partitioning algorithms [6]).
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Algorithm 1 : Four variants of a transitive closure loop.
Data: {Hom} T : the set of transitions encoded ashTrans homomorphisms
S s0 : initial state encoded as an SDD
S todo : new states to explore
S reach: reachable states

a) Explicit reachability style
begin

todo := s0

reach:= s0

while todo, 0 do
S tmp:= T(todo)
todo := tmp\ reach
reach:= reach+ tmp

end

b) Standard symbolic BFS loop
begin

todo := s0

reach:= 0
while todo, reachdo

reach:= todo
todo:= todo+T(todo) ≡ (T+ Id)(todo)

end

c) Chaining loop
begin

todo := s0

reach:= 0
while todo, reachdo

reach:= todo
for t ∈ T do

todo := (t+ Id)(todo)

end

d) Saturation enabled
begin

reach:= (T + Id)⋆(s0)
end

5.2. Chaining (1995) [19]

An intermediate approach is to use clusters. Transition clusters are defined and a DD representing each
cluster is computed using union. This produces smaller DD, that represent the transition relation in parts.
The transitive closure is then obtained by algorithmc, where eacht represents a cluster. Note that this
algorithm no longer explores states in a strict BFS order, aswhent2 is applied aftert1, it may discover
successors of states obtained by the application oft1. The clusters are defined in [19] using structural
heuristics that rely on the Petri net definition of the model,and try to maximize independence of clusters.
This may allow to converge faster than ina or b which will need as many iterations as the state-space is
deep. While this variant relies on a heuristic, it has empirically been shown to be much better thanb.

5.3. Saturation (2001) [10]

Finally the saturation method is empirically an order of magnitude better thanc. Saturation consists
in constructing clusters based on the highest DD variable that is used by a transition. Any time a DD
node of the state space representation is modified by a transition it is (re)saturated, that is the cluster that
corresponds to this variable is applied to the node until a fixpoint is reached. When saturating a node,
if lower nodes in the data structure are modified they will themselves be (re)saturated. This recursive
algorithm can be seen as particular application order of thetransition clusters that is adapted to the DD
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representation of state space, instead of exploring in BFS order the states.
The saturation algorithm is not represented in the algorithm variants figure because it is described

(in [10]) on a full page that defines complex mutually recursive procedures, and would not fit here.
Furthermore, DD packages such asCUDD or Buddy [20, 17] do not provide in their public API the
possibility of such fine manipulation of the evaluation procedure, so the algorithm of [10] cannot be
easily implemented using those packages.

5.4. Our Contribution

All these algorithm variants, including saturation (see [13]), can be implemented using SDD. However
we introduce in this paper a more natural way of expressing a fixpoint through theh⋆ unary operator,
presented in variantd. The application order of transitions is not specified by theuser in this version,
leaving it up to the library to decide how to best compute the result. By default, the library will thus
apply the most efficient algorithm currently available: saturation. We thus overcome the limits of other
DD packages, by implementing saturationinsidethe library.

6. Automating Saturation

This section presents how using simple rewriting rules we automatically create a saturation effect. This
allows to embed the complex logic of this algorithm in the library, offering the power of this technique
at no additional cost to users. At the heart of this optimization is the property oflocal invariance.

6.1. Intuition

The key idea behind exploiting local invariance is thepropagationof operations. Indeed, often opera-
tions representing transitions do not affect all variables of the state signature. Thus the homomorphism
representing the transition can be propagated, skipping the variables which are not relevant for the tran-
sition. This allows to limit the number of (useless) intermediate nodes created during an application of a
transition relation.

Let us consider the two following homomorphismsleqandinc. leq returns all assignments sequences
in which all values of the variabled are less or equal thank, while incd increments all values ofd.

leq(x,k)(ω, s) =



















ω
{n|n∈s∧n≤k}
−−−−−−−−−−→ Id ifω = x

ω
s
−→ leq(x,k) else

leq(x,k)(1) = 1

inc(x)(ω, s) =



















ω
{n+1|n∈s}
−−−−−−−→ Id ifω = x

ω
s
−→ inc(x) else

inc(x)(1) = 1

Suppose we have the transitionfd = leq(d,2)◦ inc(d) to apply onS1 of the figure6. We want the
full state space, i.e. (fd + Id)⋆(S1). A basic BFS application would produce intermediate SDDS2 to
S4. However, if the evaluation mechanism could know that variablesa, b andc are not relevant for the



A. Hamez, Y. Thierry-Mieg, F. Kordon/Efficient Model Checkers using Hierarchical Set Decision Diagrams 17

1

a

b

c

d

{0}

{3}

{2}

{1}

S
1

1

a

b

c

d

{1}

{3}

{2}

{1}

S
2

1

a

b

c

d

{0,1}

{3}

{2}

{1}

S
3

1

a

b

c

d

{1,2}

{3}

{2}

{1}

S
4

1

a

b

c

d

{0,1,2}

{3}

{2}

{1}

S
5

+ +

ƒ
d

ƒ
d

Figure 6. Effects of propagation

operation, we could propagate (fd+ Id)⋆ down to thed node ofS1, work on that node until the⋆ fixpoint
is reached, then reconstruct the top of the SDD ofS5. This avoids creation of all the intermediate nodes
outlined in grey.

The next subsections formalizes this intuition, allowing to embed this logic in the SDD library.

6.2. Local Invariance

A minimal structural information is needed for saturation to be possible: the highest variable operations
need to be applied to must be known. To this end we define :

Definition 6.1. (Locally invariant homomorphism)
An homomorphismh is locally invariant on variableω iff

∀δ = 〈ω,π,α〉 ∈ S, h(δ) =
∑

〈s,δ′〉∈αω
s
−→ h(δ′)

Concretely, this means that the application ofh doesn’t modify the structure of nodes of variableω,
andh is not modified by traversing these nodes. The variableω is a “don’t care” w.r.t. operationh, it is
neither written nor read byh. A standard DD encoding [10] of h applied to this variable would produce
the identity. The identity homomorphismId is locally invariant on all variables.

For an inductive homomorphismh locally invariant onω, it means thath(ω, s) = ω
s
−→ h. A user

defining an inductive homomorphismh should provide a predicateSkip(ω) that returnstrue if h is locally
invariant on variableω. This minimal information will be used to reorder the application of homomor-
phisms to produce a saturation effect. It is not difficult when writing an homomorphism to define this
Skippredicate since the useful variables are known, it actuallyreduces the number of tests that need to
be written.

For example, theh+ andh− homomorphisms of section4 can exhibit the locality of their effect on
the state signature by definingSkip, which removes the testω = p w.r.t. the previous definition sincep is
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the only variable that is notskipped:

h−(p,v)(ω, s) = ω
{n−v|n∈s∧n≥v}
−−−−−−−−−−−→ Id

h−(p,v).Skip(ω) = (ω , p)

h−(p,v)(1)= 0

h+(p,v)(ω, s) = ω
{n+v|n∈s}
−−−−−−−→ Id

h+(p,v).Skip(ω) = (ω , p)

h+(p,v)(1)= 0

An inductive homomorphismφ’s application toδ = 〈ω,π,α〉 is defined byφ(δ) =
∑

〈s,δ′〉∈αΦ(ω, s)(δ′).

But whenΦ is invariant onω, computation of this union produces the expression
∑

〈s,δ′〉∈αω
s
−→ Φ(δ′).

This result is known beforehand thanks to the predicateSkip.
From an implementation point of view this allows us to createa new node directly by copying the

structure of the original node and modifying it in place. Indeed the application ofφ will at worst remove
some arcs. If aφ(δ′) produces the 0 terminal, we prune the arc. Else, if twoφ(δ′) applications return the
same value, we need to fuse the arcs into an arc labeled by the union of the arc values. We thus avoid
computing the expression

∑

〈s,δ′〉∈αφ(ω, s)(δ), which involves creation of intermediate single arc nodes

ω
s
−→ ·· · and their subsequent union. The impact on the efficiency of this “in place” evaluation is already

measurable, but more importantly it enables the next step ofrewriting rules.

6.3. Union and Composition

For built-in homomorphisms the value of theSkippredicate can be computed by querying their operands:
homomorphisms constructed using union, composition and fixpoint of other homomorphisms, are locally
invariant on variableω if their operands are themselves invariant onω.

This property derives from the definition (given in [12, 13]) of the basic set theory operations on
DDD and SDD. Indeed for two homomorphismsh andh′ locally invariant on variableω we have:∀δ =
〈ω,π,α〉 ∈ S,

(h+h′)(δ) = h(δ)+h′(δ)

=
∑

(s,δ′)∈αω
s
−→ h(δ′)+

∑

(s,δ′)∈αω
s
−→ h′(δ′)

=
∑

(s,δ′)∈αω
s
−→ h(δ′)+h′(δ′)

=
∑

(s,δ′)∈αω
s
−→ (h+h′)(δ′)

A similar reasoning can be used to prove the property for composition.
It allows homomorphisms nested in a union to share traversalof the nodes at the top of the structure

as long as they are locally invariant. When they no longerSkipvariables, the usual evaluation defini-
tion h(δ)+ h′(δ) is used to affect the current node. Until then, the shared traversal implies better time
complexity and better memory complexity as they also share cache entries.

We further support natively the n-ary union of homomorphisms. This allows to dynamically create
clusters by top application level as the union evaluation travels downwards on nodes. When evaluating
an n-ary unionH(δ) =

∑

i hi (δ) on a nodeδ = 〈ω,π,α〉 we partition its operands intoF = {hi |hi .Skip(ω)}
andG = {hi |¬hi .Skip(ω)}. We then rewrite the unionH(δ) = (

∑

h∈F h)(δ)+ (
∑

h∈G h)(δ), or more simply
H(δ) = F(δ)+G(δ). TheF union is thus locally invariant onω and will continue evaluation as a block.
TheG part is evaluated using the standard definitionG(δ) =

∑

h∈G h(δ)
Thus the minimalSkippredicate allows us to automatically create clusters of operations by adapting

to the structure of the SDD it is applied to. We still have no requirements on the order of variables, as the
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clusters can be created dynamically. To obtain efficiency, the partitionsF+G are cached, as the structure
of the SDD typically has limited variation during construction. Thus the partitions for an n-ary union are
computed at most once per variable instead of once per node.

The computation using the definition ofH(δ) =
∑

i hi(δ) requires eachhi to separately traverseδ, and
forces to fully rebuild all thehi(δ). In contrast, applying a unionH allows sharing of traversals of the
SDD for its elements, as operations are carried to their application level in clusters before being applied.
Thus, when a strict BFS progression (like algorithm 1.b) is required this new evaluation mechanism has
a significant effect on performance.

6.4. Fixpoint

With the rewriting rule of a unionH = F +G we have defined, we can now examine the rewriting of an
expression (H + Id)⋆(δ) as found in algorithm 1.d :

(H + Id)⋆(δ) = (F +G+ Id)⋆(δ)

= (G+ Id+ (F + Id)⋆)⋆(δ)

The (F + Id)⋆ block by definition is locally invariant on the current variable. Thus it is directly
propagated to the successor nodes, where it will recursively be evaluated using the same definition as
(H + Id)⋆.

The remaining fixpoint overG homomorphisms can be evaluated using the chaining operation order
(see algorithm 1.c), which is reported empirically more effective than other approaches [9], a result also
confirmed in our experiments.

The chaining application order algorithm 1.c can be written compactly in SDD as :

reach= (©t∈T (t+ Id))⋆(s0)

We thus finally rewrite:

(H + Id)⋆(δ) = (©g∈G(g+ Id)◦ (F + Id)⋆)⋆(δ)

6.5. Local Applications

We have additional rewriting rules specific to SDD homomorphisms and theL local construction (see
section2.2):

L(h,var)(ω, s) = ω
h(s)
−−−→ Id

L(h,var).Skip(ω) = (ω , var)

L(h,var)(1) = 0

Note thath is an homomorphism, and its application is thus linear to thevalues ins. Further aL op-
eration can only affect a single level of the structure (defined byvar). We can thus define the following
rewriting rules, exploiting the locality of the operation :
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(1) L(h,v)◦L(h′,v) =L(h◦h′,v)

(2) L(h,v)+L(h′,v) =L(h+h′,v)

(3) v, v′ =⇒ L(h,v)◦L(h′,v′) =L(h′,v′)◦L(h,v)

(4) (L(h,v)+ Id)⋆ =L((h+ Id)⋆,v)

Expressions (1) and (2) come from the fact that a local operation is locally invariant on all variables
exceptv. Expression (3) asserts commutativity of composition of local operations, when they do not
concern the same variable. Indeed, the effect of applyingL(h,v) is only to modify the state of variable
v, so modifyingv thenv′ or modifyingv′ thenv has the same overall effect. Thus two local applications
that do not concern the same variable are independent. We exploit this rewriting rule when considering a
composition oflocal to maximize applications of the rule (1), by sorting the composition by application
variable. A final rewriting rule (4) is used to allow nested propagation of the fixpoint. It derives directly
from rules (1) and (2).

With these additional rewriting rules defined, we slightly change the rewriting of (H + Id)⋆(δ) for
nodeδ = 〈ω,π,α〉: we considerH(δ) = F(δ)+ L(δ)+G(δ) whereF contains the locally invariant part,
L = L(l,ω) represents the operations purely local to the current variableω (if any), andG contains
operations which affect the value ofω (and possibly also other variables below). Thanks to rule (4)
above, we can write :

(H + Id)⋆(δ) = (F + L+G+ Id)⋆(δ)

= (G+ Id+ (L+ Id)⋆ + (F + Id)⋆)⋆(δ)

= (©g∈G(g+ Id)◦L((l + Id)⋆,ω)◦ (F + Id)⋆)⋆(δ)

As the next section presenting performance evaluations will show, this saturation style application
order heuristically allows to gain an order of magnitude in the size of models that can be treated.

7. Efficiency of Automatic Saturation

SDD and automatic saturation have been implemented in the C++ libddd library [18], available un-
der the terms of GNU LGPL. Hereafter reported results were obtained with this library on a Xeon @
1.83GHz with 4GB of memory.

We have run the benchmarks on 4 parametrized models, with different sizes: the well-known Dining
Philosophers and Kanban models; a model of the slotted ring protocol; a model of a flexible manufactur-
ing system. We have also benchmarked a LOTOS specification obtained from a true industrial case-study
(it was generated automatically from a LOTOS specification –8,500 lines of LOTOS code+ 3,000 lines
of C code – by Hubert Garavel from INRIA).

7.1. Impact of Propagation

We have first measured on these models how the propagation alone impacts on memory size, that is
without automatic saturation. We have thus measured the memory footprint when using a chaining loop
with propagation enabled or not. We have observed a gain from15% to 50%, with an average of about
40%. This is due to the shared traversal of homomorphisms when they are propagated, thus inducing
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much less creation of intermediary nodes. Although by itself this is a good optimization, automatic
saturation allows to gain orders of magnitude in both memoryand time.

7.2. Impact of Hierarchy and Automatic Saturation

Table1 shows the results obtained when generating the state spacesof several models with automatic
saturation (Algo.1.d) compared to those obtained using a standard chaining loop (Algo. 1.c). Moreover,
we measured how hierarchical encoding of state spaces perform compared to a flat encoding. A such
encoding means that we do not use the intrinsic hierarchy of models.

Final Hierarchical Flat Hierarchical

# Chaining Loop Automatic Sat. Automatic Sat.

Model States Flat Hier. T. Mem. Peak T. Mem. Peak T. Mem. Peak

Size # (s) (MB) # (s) (MB) # (s) (MB) #

LOTOS Specification

9.8×1021 – 1085 – – – – – – 1.47 74.0 1.1×105

Dining Philosophers

100 4.9×1062 2792 419 1.9 112 2.8×105 0.2 20 18040 0.07 5.2 4614

200 2.5×10125 5589 819 7.9 446 1.1×106 0.7 58.1 36241 0.2 10.6 9216

1000 9.2×10626 27989 4019 – – – 14 1108 1.8×105 4.3 115 46015

4000 7×102507 – 16019 – – – – – – 77 1488 1.8×105

Slotted Ring Protocol

10 8.3×1009 1283 105 1.1 48 90043 0.2 16 31501 0.03 3.5 3743

50 1.7×1052 29403 1345 – – – 22 1054 2.4×106 5.1 209 4.6×105

100 2.6×10105 – 5145 – – – – – – 22 816 1.7×106

150 4.5×10158 – 11445 – – – – – – 60 2466 5.6×106

Kanban

100 1.7×1019 11419 511 12 145 2.6×105 2.9 132 3.1×105 0.4 11 14817

200 3.2×1022 42819 1011 96 563 1×106 19 809 1.9×106 2.2 37 46617

300 2.6×1024 94219 1511 – – – 60 2482 5.7×106 7 78 1.0×105

700 2.8×1028 – 3511 – – – – – – 95 397 5.2×105

Flexible Manufacturing System

50 4.2×1017 8822 917 13 430 5.3×105 2.7 105 2.2×105 0.4 16 23287

100 2.7×1021 32622 1817 – – – 19 627 1.3×106 1.9 50 76587

150 4.8×1023 71422 2717 – – – 62 1875 3.8×106 5.3 105 1.6×105

300 3.6×1027 – 5417 – – – – – – 33 386 5.9×105

Table 1. Impact of hierarchical decision diagrams and automatic saturation

All “–” entries indicate that the state space’s generation did not finish because of the exhaustion of
the computer’s main memory. We have not reported results forflat representation with a chaining loop
generation algorithm as they were nearly always unable to handle models of big size.

The “Final” grey columns show the final number of decision diagram nodes needed to encode the
state spaces for hierarchical and flat encoding. Clearly, flat DD need an order of magnitude of more
nodes to store a state space. This shows how well hierarchy factorizes state spaces. The efficiency of
hierarchy also show that using a structured specification can help detect similarity of behavior in parts of
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a model, enabling sharing of their state space representation (see figure5).
But the gains from enabling saturation are even more important than the gains from using hierarchy

on this example set. Indeed, saturation allows to mostly overcome the “peak effect” problem. Thus“Flat
Automatic Saturation”performs better (in both time and memory) than“Hierarchical Chaining Loop”.

As expected, mixing hierarchical encoding and saturation brings the best results: this combination
enables the generation of much larger models than other methods on a smaller memory footprint and in
less time.

8. Recursive Folding

In this section we show how SDD allow us in some cases to gain anorder of complexity: we define
a solution to the state-space generation of the philosophers problem which has complexity in time and
memorylogarithmic to the number of philosophers. The philosophers system is highly symmetric, and
is thus well-adapted to techniques that exploit this symmetry. We show how SDD allow to capture this
symmetry by an adapted hierarchical encoding of the state-space. The crucial idea is to use a recursive
“folding” of the model withn levels of depth for 2n philosophers.

8.1. A group of Philosophers

We now introduce a composite type definitionPhiloForkGroup to represent agroup of philosophers
(figure7 left), so that it is identical to a singlePhiloFork as defined in figure3 (from the point of view of
the IPN type contract).

get

put

pf1:PhiloFork

getL

pf2:PhiloFork

put

getL

initial = {pf1->initial, pf2->initial} 

PhiloForkGroup(2)

eat

eat

eat

get

get2

eat2

put

get

getL

initial = {p->initial}

PhiloRing

p:PhiloForkGroup

get

put

getL

closeGet

eat

closePut

Figure 7. Module containing oneFork and onePhilo

We further introduce (figure7 right) a composite type definitionPhiloRingto “close the loop”, and
connect the first and last philosophers of a group.

These two type definitions can be adapted by setting the type of the instances they contain. In
particular, sincePhiloFork andPhiloForkGrouphave the same transition labels and initial states, one can
build aPhiloForkGroup(like in figure7) that contains instances of (smaller)PhiloForkGrouprather than
instances ofPhiloFork.

Such an encoding can be extremely compact. Suppose the initial state of onePhiloFork is noted (P0).
The initial state of aPhiloForkGroup(2)is notedM2 = (P0)� (P0). Then the state ofPhiloForkGroup(4)
is notedM4 = (M2) � (M2). The state ofPhiloForkGroup(8)would beM8 = (M4) � (M4), etc... Thus,
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sharing is extremely high : the initial state of the system for 2n philosophers only requires 2n+k (k ∈N)
nodes to be represented.

We can easily adapt this encoding to treat an arbitrary number n of philosophers instead of powers
of 2, by decomposingn into it’s binary encoding. For instance, for 5= 20+22 philosophers with a group
definition containing a single PhiloFork and a PhiloFrokGroup(4). Such unbalanced depth in the data
does not increase computational complexity.

8.2. Experimentations

We show in table2how SDD provide an elegant solution to the state-space generation of the philosophers
problem, for up to 220000 philosophers. The complexity both in time and space is roughly linear to n,
with empirically 8n nodes and 12n arcs required to represent the final state-space of 2n philosophers.

Nb. Philosophers States Time (s) Final Peak

210 1.02337×10642 0.0 124 814

231 1.63233×101346392620 0.02 282 2347

21000 N/A 0.81 8034 73084

210000 N/A 9.85 80034 730084

220000 N/A 20.61 160034 1460084

Table 2. Performance evaluation of recursive folding with 2n philosophers . The states count is notedN/A when
the large number library GNU Multiple Precision (GMP) we usereports an overflow.

What is surprising in this problem instance, is that each half of the philosophers at any level actually
behaves in the same way as the other half. This is beyond a structural symmetry to global behavioral
symmetry. Also when the system is evolving, few system-widedependencies emerge, the evolution of a
Philo depends on its immediate neighbors, not much on peopleacross the table.

The solution presented here is specific to the philosophers problem, though it can be adapted to other
symmetric problems. Its efficiency here is essentially due to the inherent properties ofthe model under
study. In particular the strong locality, symmetry and the fact that even in a BDD representation, adding
philosophers does not increase the “width” of the DDD representation – only it’s height –, are the key
factors.

The encoding presented here can be used for other very regular systems. However even when such
a recursive encoding is possible, logarithmic complexity is not guaranteed. Even when the memory
complexity is low, an asymmetry of the initial state may bound optimal complexity to linear (n iterations
to pass a token around a ring for instance).

Our current research direction consists in defining a translation pattern from higher level notations
that express symmetries (e.g. Well-Formed Nets [8]) to IPN. Such a translation could help recognize this
pattern and obtain the recursive encoding automatically.

In any case, this example reveals that SDD are potentially exponentially more powerful than other
decision diagram variants without hierarchy.
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9. Conclusion

In this paper, we have presented the latest evolutions of hierarchical Set Decision Diagrams (SDD), that
are suitable to master the complexity of very large systems.We think that such diagrams are well-adapted
to process hierarchical high-level specifications such as Net-within-Nets [7] or CO-OPN [2].

We have presented how we optimize evaluation of user operations to automatically produce a satu-
ration effect. Moreover, this automation is done at a low cost for users, since it uses aSkippredicate that
is easy to define. We thus generalize the extremely efficient saturation approach of Ciardo et al. [10]
by giving a definition that is entirely based on the structureof the decision diagram and the operations
encoded, instead of involving a given formalism. Furthermore, the automatic activation of saturation
allows users to concentrate on defining the state and transition encoding.

We have shown how to build a symbolic model-checker that exploits a hierarchical model definition.
To this end we introduced Instantiable Petri Nets, based on ageneral compositional notion of type and
instance. Petri nets were used as elementary component type.

Finally, we have shown how recursive folding allows in very efficient and elegant manner to generate
state spaces of some regular and symmetric models, with up to220000 philosophers in our example.
Although generalization of this application example is left to further research, it exhibits the potentially
exponentially better encoding SDD provide over other DD variants for regular examples.

SDD and the optimizations described are implemented inlibddd, a C++ library freely available
under the terms of GNU LGPL. With growing maturity since the initial prototype developed in 2001
and described in [12], libddd is today a viable alternative to Buddy [17] or CUDD [20] for developers
wishing to take advantage of symbolic encodings to build a model-checker.
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