Formal Modeling of a Generic Middleware to
Ensure Invariant Properties’

Xavier Renault!, Jérome Hugues?, and Fabrice Kordon!

! Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France
xavier.renault@lip6.fr,fabrice.kordon@lip6.fr
? GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France
jerome.hugues@enst.fr

Abstract. The complexity of middleware leads to complex Applica-
tion Programming Interfaces (APIs) and semantics, supported by con-
figurable components in the middleware. Those components are selected
to provide the desired semantics. Yet, incorrect configuration can lead to
faulty middleware executions, detected late in the development cycle.
We use formals methods to tackle this problem. They allow us to find
appropriate composition of middleware components and the use of their
APIs, and to detect valid or faulty sequences. To provide reusable results,
we modeled a canonical middleware architecture using Z.

We propose a validation scenario to verify middleware’s invariants. We
define invariants to exhibit inconsistent usage of these APIs. The speci-
fication has been checked with the Z/EVES [13] theorem prover.

1 Introduction

Middleware is now a central piece of many applications. Therefore, expectations
about middleware reliability increase. To meet this goal, their architecture is
being revisited, cleaned to exhibit structuring patterns. For example, TAO [12]
or Zen [10] take advantage of Design Patterns to provide a safer design. Based
on this architecture, the middleware can be tuned to operate dedicated policies
(tasking management, memory allocation, etc.).

Yet, these complex assemblies of design patterns has never been formally
proved in an easy and efficient way. Thus, components interactions may lead to
faulty configurations lately detected. A way to tackle this problem is to define
and check invariants [5]. This is a way to express stability conditions on software
components. For example, one can use OCL [9] to declare such invariants.

Should the middleware architecture be formally specified and its invariants
formally expressed, one can define use case scenarios to verify the system. We
aim to model middleware’s components to ensure their composition. We specify
invariants (e.g. array size of some internal structures, unicity of identifiers) for
each component and check if they are verified for the selected assembly.

" This work is funded in part by the ANR/RNTL Flex-eWare project.

Z [13] is an algebraic specification language, based on the mathematical typed
set theory. It has a schema notation, which allow one to specify structures in
the system. It relies on a decidable type system, allowing one to automatically
perform well-formedness checking (e.g. interface matching, resource usage).

In this paper we use Z to specify middleware services. We compose them as
a middleware developer or user would do. Then we formally prove that query
identifiers are consistent.

Section 2 sketches the use of formal methods for middleware. Then Section
3 presents the canonical middleware we selected. Section 4 details its modeling
with Z, and section 5 shows how we prove important properties on the system.

2 Applying Formal Methods to Middleware

Middleware provides a set of mechanisms to support distribution functions. Its
typical architecture is made of components, each of which supports a particular
step in the processing of interactions. Interactions are supported by the exchange
of messages between a client and a server, representing the caller and the callee.

Middleware’s architecture is a set of components supporting the different
steps of this interaction. The use of components (and their variations, imple-
menting different configurations or policies) allows developers to tune or to select
configurations/policies to configure and deploy a middleware that meet applica-
tion requirements. A middleware configuration is defined as a set of components
implementation selected to fulfill requirements.

So far, middleware are described through their components and the service
they implement. Components are often described with semi-formal notation such
as UML. These notations allow to express invariants (e.g. OCL in UML).

However, very few middleware specification is based on formal methods. This
is a problem because formal specification of components and their related prop-
erties is needed to formally ensure that invariants are still valid for a given
configuration (e.g. the selected implementation of components respect the mid-
dleware invariants).

Related Works There are two main approaches using formal methods in such
context: dynamic and static.

Dynamic Verification deals with the system’s behavior. It is the enumeration
and analysis of all the states the system can reach during its execution. It is of
interest to check if the system is deadlock or livelock free (model-checking).
For example, in [11], LOTOS is used to build a formal framework to specify a
middleware behavior based on its architecture [2]. Petri Nets [14] are also used
to verify that PolyORB’s core is both livelock and deadlock free [6].

Static Verification deals with structural aspects of a system and relies on
predicate logic [5]. It is appropriate to analyse systems architectures, such as
composition of interfaces from a typing theory point of view. It is also useful
to check that invariants defined in the specification remains when components
are composed. For example, in [1] the Z algebraic notation is used to verify

the CORBA [4] object model: this study exhibits inconsistencies in the OMG
CORBA Security Services. Similar work has been achieved on the CORBA Nam-
ing Service [7] or on parts of the POSIX real-time standard [3]. They both char-
acterize potential problems in the use of components (such as logical naming or
messages typing). Z is also used in [8] to specify the architecture of a cognitive
application for redesign.

However there is no approach that really deals with middleware architecture
issues. They only describe high-level services or behavior.

Our Approach We first analyse the architecture of a middleware to find rele-
vant abstractions of the system. We also specify properties: 1) inside components,
2) at components interfaces, and 3) at the composition level.

The chosen architecture (presented in Section 3) is modular and versatile. It
provides de facto a set of interesting abstractions for formal description. This
work is complementary to the state of the art because we focus on the verification
of properties for a given components assembly.

In an idealistic middleware development process, architecture verification ap-
pears after static verification (that deals with service specification) and before
the dynamic verification (that ensures behavior of the system). It aims at build-
ing a middleware correct by construction. For example, we want to ensure that
a configuration (i.e. a specific instantiation of selected components expressed by
their formal specification) will not lead to a non-functionnal middleware (for
instance one that cannot process requests).

3 Middleware Architectures

New architectures based on design patterns and genericity ease middleware adap-
tation by enhancing their configurability capabilities[12][10]. However their de-
velopment process is not clearly specified and remains complex because it re-
quires the implementation of most of the middleware functions.

We present in this section the characteristics of a specific middleware archi-
tecture we chose for our study.

The Schizophrenic architecture [15] is based on a Neutral Core Middleware
(NCM), on which we can plug application-level and protocol-level personalities.

The Neutral Core Middleware (NCM) provides a set of canonical services on
which we can build higher level services. The former are generic components
for which a general implementation is provided. They are sufficient to describe
various distribution models.

Application personalities are the adaptation layer between application com-
ponents and middleware through a dedicated API or code generator. They reg-
ister application components within the NCM; they interact with it to enable
the exchange of requests between entities at the application-level.

Protocol personalities handle the mapping of personality-neutral requests
(representing interactions between application entities) onto messages transmit-
ted through a communication channel.

We chose the Schizophrenic architecture because the core of the middleware
fits to formally specify services and invariants in the system: main services are
grouped in this core, easing the formal analysis of the middleware.

PolyORB implements a schizophrenic architecture presented in [15]. It demon-
strates the concept is sound: it implements multiple personalities like CORBA,
GIOP, Distributed Systems Annex of Ada, a Message Oriented Middleware de-
rived from Java’s JMS and SOAP. From the NCM, we identify seven steps in
the processing of a request, each of which is defined as a fundamental service.
Their associated level is the middleware is depicted in Figure 1.

We present these fundamental services and their specific roles: first, the client
looks up server’s reference using the addressing service (a). Then, it uses the
binding factory (b) to establish a connection with the server, using one commu-
nication channels (e.g. sockets, protocol stack). Request parameters are mapped
onto a representation suitable for transmission over network, using the repre-
sentation service (c) (e.g. CORBA CDR). A protocol (d) is implemented for
transmissions between the client and the server nodes, through the transport (e)
service; it establishes a communication channel between the two nodes. Then the
request is sent through the network and unmarshalled by the server. Upon the
reception of a request, the middleware instance ensures that a concrete entity
is available to execute the request, using the activation service (f). Finally, the
execution service (g) assigns execution resources to process the request.

Host S Host C
ClientObj .

) Adressing (a)
Execution (g) Binding (b)

.
ctivation (D Representation (c)
|Su || Map| Protocol (d)
EXEES £ Transport (e)

@ Access Points | Endpoint (s

[Reference Repository);'/

Fig. 1. Inside a schizophrenic middleware: PolyORB

Figure 1 also depicts the standard interaction between these fundamental
services. It presents two hosts, each having the same underlying middleware:
PolyORB. We present the main interactions between services from the export

of a service from the server, to the sending of a request from the client. The
object “Se” is called a Servant (from server side) or a Surrogate (object “Su”
from client side). It belongs to the Binding service and is, for the client, the local
interface of the remote service.

This object is created (1) when an object Object, which belongs to an applica-
tion personnality, wants to provide a service. It is registered in a map managed
by an Object Adapter (OA), which is associated to an Object Request Broker
(ORB). In order to share this service, a Reference R is built (2) and shared (3)
to the system. A Reference contains information to locate and identify a service
in the network. When a client object wants to invoke this service, the client ORB
should get the specific reference (4) and extract from it a Surrogate, managed
by the client OA. Then, a Request is built (5) from this Reference, and send
through the local Endpoint managed by the client ORB. It uses protocol chosen
from the Reference. This protocol belongs to a protocol personnality. The Re-
quest is received (6) through an Access Point, managed by the server ORB. The
Request is then analysed (7): if it is valid, the Activation service is involved (8),
using the OA, to select the local object which provides the service. Finally, the
Execution service allocates needed resources.

4 Modeling Middleware with Z

We present the modeling in Z of the Neutral Core Middleware and related ser-
vices, as presented in the previous section.?

The System Several ORBs run into an heterogeneous system. At the specifi-
cation level, the system is a collection of ORBs. Each ORB has to have unique
name in this system. Furthermore, References on available services are shared
through the system. The following Z schema specifies this system:

__ ORB_System
orbs : F ORB
ref _repository : P Reference_Info
#orbs <1 =
(Vol,02: ORB

| 01 # 02 A {01, 02} C orbs
® 01.ORB_TSAP # 02.0RB_TSAP)

A 7 schema is divided into two parts (with an horizontal line as separator): the
first one presents attributes names and type of a schema. The second presents
invariants on these attributes. Schemas are a modular way to realize a specifi-
cation, allowing one to split into small parts a system, and to compose them.

3 An extended version of this work is available at http://pagesperso-systeme.1lip6.
fr/Xavier.Renault/pub/research/techreport/ZPoly0ORB_08.pdf

The invariant of the ORB_System schema states that if there is more than
one ORB in the system, they must have different names (ORB_TSAP, see the
definition of the ORB schema below).

The orbs set is theoretically infinite, but to specify the invariant related to
names (which involves the cardinality), it is finite (F symbol). The ref_repository
attribute is a infinite set of References. Each reference is unique.

Neutral Core Middleware Components We present the main components
of the NCM: the ORB and its associated Object Adapter.

The ORB manages several resources in the system: resources allocation, task
scheduling, event priorities and request handlers. On one side, the ORB has to
serve requests to applications entities, using an “Object Adapter”. On the other
side, it has to send and receive requests from other nodes, through Transport
Access Points (TAP). Each TAP is bound to a specific protocol. Furthermore,
the ORB is uniquely identified over the network. Hence the following Z schema:

ORB
ORB_TSAP : TSAPType
Request_Queue : seq Request

Transport_Access_Points : Transport_Access_Point + ProtocolStack
RootPOA : Object_Adapter

The ORB_TSAP attribute is the network identifier of each ORB.

Each ORB has a request queue, which is in our specification a sequence of
Request. This allow us to keep the order of incoming requests, since it is an
intrinsic properties of sequences in the Z notation.

The Transport_Access_Points attribute is the set of TAPs, each bounded to
a specific ProtocolStack. It is a partial function of TAPs to ProtocolStack.

The Object Adapter (the RootPOA attribute) manages all objects which ex-
port services (named Servant), provided by the application. These servants have
a unique identifier on their host. The Object_Adapter (OA) manages the map-
ping between these servants and their identifiers. It affects a unique identifier to
each registered servant:

__ Object_Adapter
Objects_Map : ServantType — Ident

Vs : dom Objects_Map
e Objects_Map(s) # NULLId

In this Object_Adapter schema, Objects_Map models the binding between some
servant to a unique identifiant. This is a total function between sets ServantType
and Ident (symbolized by —).

The invariant part of this schema states that it is not allowed to have entries
in the map which have a NULLId (which means the Servant may not have been

initialized for example).

A Reference is used to identify an application entity within the global system,
as CORBA’sIOR. It is a finite collection of Profiles. A profile carries the identifier
of the target host in the system, and the identifier of the service within this host.
It defines available protocols to contact the remote target, it is a subset of the
protocols managed by both the client and the server.

NULLRefSet : P Reference_Info

NULLRefSet =
{r : Reference_Info
| r.Profiles = 0}

Reference_Info
FPmﬁles : F(Profile)

— Profile NULLProfileSet : P Profile
TSAPName : TSAP Type
Objectld : Ident NULLProfileSet =
Continuation : ProtocolStack {P : Profile |

— p. TSAPName = NULLTSAP V
Objectld # NULLId p.Continuation = NULLPStack}

A Profile could not be bound to a servant whose identifiant is NULL. For
specification purpose, we define the set of all null references (which have an
empty set of Profiles) and the set of null profiles.

A Reference is built by a server host: a client has read-only access to this
kind of resource: by construction, a Reference refers only to one service, and lists
the different ways to reach it.

Neutral Core Middleware Services To provide services as described in Sec-
tion 3, different functions have to be defined in the middleware internals. We
present them in the following order: first, from the server side, we define oper-
ations to share a service in the system; second, the functions used by a client
to get information and send a request to the remote server; third, we present
functions used by the server host to handle an incoming request.

From a server application, there are three mains steps to share and provide
services in the network:
— The middleware exports the servant (Export procedure);
— The middleware produces a reference for this servant (Create_Reference);
— The middleware notifies other nodes about the availability of the service to
the system, using a naming service for example.

Exporting a service (Server Side) The Export procedure registers Servants
in the Object Adapter (OA). This procedure should respect the fact that Ser-
vants are not managed twice in the OA map. Given a Servant, it creates a new

entry in the map with an available identifier. This procedure fails if the Servant
is already managed by the OA.

__ Export_OK
AORB_System
O?: ORB

Obj? : ServantType
0id! : Ident

O? ¢ NULLORBSet
A O? € orbs
A Obj? # NULLServant
A Obj? ¢ dom O7.RootPOA.Objects_Map
0id! ¢ ran O?.RootPOA.Objects_Map N Oid! # NULLId

orbs’ = (orbs \ {O7}) U{0ORB|
ORB_TSAP := O?.ORB_TSAP,
RootPOA := 0 Object_Adapter|
Objects_Map = {0bj? — 0id!} & O?.RootPOA.Objects_Map],
Transport_Access—Points := O7.Transport_Access—_Points,
Request_Queue := O7.Request_Queue]}

The A symbol indicates that Export_OK changes the state of ORB_System.
Modified attributes of ORB_System are decorated with a single quote, as orbs’.

A 7 schema can also be parametrized: input variables are decorated with
a ’?’” symbol; output variables are decorated with the ’!” symbol.

The 6 symbol indicate an instantiation of a Z schema with specific values,
affected by the ":=’ symbol. Here, the Export_OK operator removes the input
ORB variable from the system and inserts a new one with modified attributes.
The intrinsic type of a total function X — Y is a set of pairs P(X x Y). The
@ symbol adds a pair (z,y) into the set if there is no already existing pair as
(z,2). In the later case, it overrides the old pair.

Notice the name of the presented operator ends with the “_OK” suffix. In
order to avoid undefined predicates in the specification, each operator schema
is divided into two schemas: one specifying preconditions to a successfull appli-
cation of the operator (name ending with “_OK”), and the other specifying the
dual preconditions of the first schema (name ending with “_ERR”). The final
operator is build as a combination of these two schemas, and is then called ro-
bust. All operators in our specification are robust, but for sake of clarity we only
present the “_OK” part of each of them.

Creating a Reference (Server Side) As previously defined, a Reference
contains all information to contact and identify a service in the system. It carries
information on the different protocols available to contact the remote node.
These protocol are bound to a particular Transport Access Point. To create a
reference, we need to build all information for each TAP. We need to set the

local identifier of the service, and the global identifier of the host in the system.
Figure 4 presents the related operator schema.

— Create_Reference_OK
O?: ORB

0id? : Ident

PSet! : Reference_Info

0? ¢ NULLORBSet
0id? # NULLId
A 0id? € ran O7.RootPOA.Objects_Map
PSet!. Profiles = {
TAP : dom O?. Transport_Access_Points
e 0 Profile]
TSAPName := O?.ORB_TSAP,
Objectld := Oid?,
Continuation := O?.Transport_Access_Points(TAP)|}

Fig. 2. The Create Reference operator

Since PSet!.Profiles is a set of profile, we can use the Z notation to build a set
comprehension: the pattern is {x : T | C e P}, where x is of type T. For each
x under the condition C, then the predicate P holds. Here, a Profile set is built
as follow: for each TAP in the input ORB’s TAP, an instantiation of a Profile
schema is made with specific value.

This operator fails if no Servant is bound to the input local identifier.

Sharing a Service (Server Side) Sharing a service is to notify the system
that a new service is available.

Broadcast_Reference_Ok adds the input reference to the system’s references
repository. Each ORB in the system may then access to this repository to retrieve
specific references.

__ Broadcast_Reference_ OK
AORB_System
PSet? : Reference_Info

ref _repository’ = ref _repository U { PSet?}

Sending a request (Client Side) We present operations that a client has
to do in order to send a request to a remote server. The client should 1) get a

Reference on the targeted service; 2) build the Request; 3) select the appropriate
Profile and associated Protocol; 4) send its request to the remote host.

The Reference may be get using the reference repository, or with alternative
mecanisms such as IORs.

The Request is the structure containing information to invoke the remote service.
It is sent through the network, and carries a Reference on the targeted server
object and the identifier for this server service.

It is a simplified view of a request, which may contain more parameters and
additional QoS information.

— Create_Request_OK
Target? : Reference_Info
Request Operation? : OperationlD Type
Target : Reference_Info Req! - Request
Operation : OperationlD Type Req! = 0 Request|

Target := Target?,
Operation := Operation?]

The Create_Request_OK operator acts as a request factory: given a reference
and a service identifiant, it builds the appropriate request.

Request Send operation first selects the appropriate profile (and the asso-
ciated protocol) to contact the remote host; then it sends this request using
the selected profile, adding the request to the targeted ORB queue. The send
operator fails if the Request is malformed.

__Send_Request_OK
AORB_System
Req? : Request

M __Select_Profile_OK
Req? ¢ NULLReqSet Req? : Request
Jwar : ORB P! : Profile
| var € orbs

Req? ¢ NULLReqSet

A .ORB_TSAP = P?.TSAPN
var e Req?. Target. Profiles # ()

e orbs’ = (orbs \ {var}) U{0ORB]

ORB_TSAP := var.ORB_TSAP, p : Profile
RootPOA := var.RootPOA | p € Req?. Target. Profiles
7 ePl=p

Transport_Access_Points :=
var. Transport_ Access_Points,
Request_Queue :=
var.Request_Queue ™ (Req?)]}

The Select_Profile_OK operator specifies a simple selection algorithm: it ran-

domly picks one Profile among available ones.

In the Send_Request_OK operator, an incoming request is added to the tar-

geted ORB queue (using sequence concatenation operator ™).

Receive and process requests (Server Side) When receiving a request,
the ORB checks, using the Activation service, that the request is valid and the
targeted object is managed by its Object Adapter. Then, the Execution Service

allocates resources for request execution.

__Process_OK

AORB_System
O?: ORB
FOid! : Ident
var : Request

0?7 ¢ NULLORBSet
A O? € orbs
A O?.Request_Queue # ()
var = head O?.Request_Queue
dp : Profile
| p € var.Target. Profiles

e F'Oid! = p.Objectld

orbs’ = (orbs \ {O7}) U{0ORB|
ORB_TSAP := O?.ORB_TSAP,
RootPOA := O?7.RootPOA,

A p.Objectld € ran O7.RootPOA.Objects_Map

Transport_Access_Points := O?.Transport_Access_Points,
Request_Queue := tail O7. Request_Queue]}

This operator dequeues an incoming request (using sequence operator like
“head” and “tail”, which respectively return the first element of a sequence and

all the sequence but the first one).

__ Find_Servant_OK
OA? : Object_Adapter
id? : Ident

s!: Servant Type

OA? ¢ NULLOASet
A id? # NULLId
A id? € ran OA?.Objects_Map
I s : ServantType
| ss € dom OA?.Objects_Map
N OA?.Objects_Map(ss) = id?
o sl =gss

__ Find_Servant_ERR
OA? : Object_Adapter
id? : Ident

sl : ServantType

E!: Exception

OA? € NULLOASet
V id? = NULLId
V id? ¢ ran OA?. Objects_Map
s! = NULLServant
E! = FAILURE

The Find_Servant operator checks if the input identifier is related to a man-
aged servant, and activates it. We have shown for the later operator the ro-
bust schema, including its “_OK” and “_ERR” parts. We present the robust
Find_Servant operator (a combination of the two prevous ones):

Find_Servant = (Find_Servant_OK A Success) V Find_Servant_ERR

5 Verifying Invariants in the Middleware Specification

We have defined the main components of a middleware. For the sake of place,
this section presents only one system configuration, where only one client host
and one server host are set. We present their associated initialization schema and
then a scenario where the client host sends a oneway request to the server host.
Such a request is sent with the “best-effort” semantic, for which the client host
does not wait for any answer. In this scenario, we expose that some properties
hold in the system, ensuring its consistency.

Our specification is checked using the Z/EVES theorem prover. Z/EVES is
an interactive system for composing and analysing Z specifications. It helps the
modeler to prove theorems on the specification, but for complex specification
it only provides guidelines for proving: the modeler has to finish the proof and
guide Z/EVES to get a “true” or “false” result.

System Instantiation Both the client and the server hosts have an ORB. We
present the initialization of one ORB, the server one. Since it is a transaction
oriented architecture, server and client are identified only when one sends a
request to the other. We introduce the global identifier of an ORB:

| SHost : TSAPType

The definition of an Object Adapter sets initially its map to an empty set (no
servant managed).

S_OA : Object_Adapter

S_OA.Objects_Map = ()
We define, for this case study, only one Transport Access Point and its associated
Protocol Stack for each ORB:

S_TAP : Transport_Access_Point
S_Protocol : ProtocolStack

We now instantiate an ORB, setting its name, Object Adapter, TAPs and Re-
quest_Queue:

S_ORB : ORB

S_ORB = 00RB|
ORB_TSAP := SHost,
Request_Queue := (),
RootPOA := S_0OA,
Transport_Access_Points := {S_TAP + S_Protocol}]

The previous initialization process holds for all hosts in the network. Once
these hosts are set, we can initialize the whole environment: initializing the set
of ORBs in the system and the references repository:

__ InitEnvironment
ORB_System’

orbs’ = {S_ORB} U {C_ORB}
ref _repository’ = ()

The system contains two running ORBs, with no request pending at the ini-
tialization time. Figure 5 introduces a Servant, named “Object”, which will be
managed by the server host for a transaction, and its associated service “Echo”:

| Object : ServantType echo : OperationID Type

Fig. 3. Z model of a Servant providing the Echo Service

Validation scenario and associated proofs We present a use-case scenario
that corresponds to a typical activation of services. In this scenario, a server
hosts an object which provides a service. The server application registers the
object with its local middleware, creates a reference and shares it. A client host
gets this reference, builds a request, and sends it to the remote entity. Finally,
the server middleware handles the request.

As presented before, all operations that a server has to do in order to export a
service are sequentialized as follow in a new schema Server_Op: it has to export
the Servant to the Object Adapter, to create a reference on this Servant and to
notify the system of the new service availability:

Server_OP =
Ezport[O? := S_ORB, Obj? := Object]
>> Create_Reference[O? := S_ORB]
>> Broadcast_Reference_ OK

The >> symbol indicates operations are chained, where the output of one is the
input of the other. These operations must be robust, to avoid undefined state.

In order to emit a request to the server host, a client should extract the remote
object’s reference, create a request targeting this object, adding request payload
and select a profile to contact the remote host and finally send the request:

Client_OP =
GetReference
>> Create_Request[Target?, Operation? := echo]
>> Select_Profile
>>Send_Request

The GetReference schema is an operator defined in the scope of the case study.
It is defined as:

— GetReference
Z ORB_System
Target! : Reference_Info

Target! € ref _repository

This schema is pretty simple since in our case study there is only one reference
in the repository.

We restrict our case study to Oneway Request: for these later, the client does
not wait for an answer. In this scenario, the server exports a service, the client
sends a request, and the server checks this request before processing it.

ONEWAY = InitEnvironment § Server—OP § Client—OP § Process

The g symbol expresses a call sequence of operators.

In our scenario, we want to ensure that the request sent by the client contains
the same id as the one exported by the server at the beginning.
To make this verification, we define the following test schema:

ONEWAYTest = ONEWAY >> Find_Servant[OA? := S_ORB.RootPOA, Foid?/id?)

The Process operator is invoked with the id sent with the request, and it returns

the id of the activated object; we pipe it with the Find_Servant operator to check
if it the same as Object . To verify this property, we express the theorem shown
in Figure 4

theorem tOneWayReliable (... Z/EVES output ...)
ONEWAYTest = s! = Object Proving gives ...
true

Fig. 4. Theorem: a Oneway Request is reliable

Analysis For sake of clarity and readability, we do not present the whole inter-
action with Z/EVES. To achieve this proof, we needed to prove intermediates
theorems, such as precondition reachability of each operators, schemas consis-
tency and domain checking. We needed to set rules to help Z/EVES to finish
the proof: typing related rules, transformation rules (predicate equivalence, etc.).
Each rule has been proved in order to be used.

This global proof ensures that for this call sequence, invariants specified
within each schema hold: names of ORBs are unique, no uninitialized objects
are managed by Object_Adapters. Furthermore, preconditions for each operators
are reachable and allow to produce valid postconditions as specified. These post-
conditions are checked and ensure that this combination of operators will lead
to the seeked goal: identifiants consistency through a OneWay Request Process.

6 Conclusion and future work

In this paper, we presented the use of Z as formal notation to specify the archi-
tecture of a canonical middleware, based on a schizophrenic middleware archi-
tecture. This allows us to build abstraction of the middleware components, and
to express properties and invariants upon each component of the system.

To elaborate the Z specification, we choose a well-structured architecture that
relies on a canonical middleware core that concentrate all important services.
Since these services are well-specified, it is possible to formally express them in
Z. Moreover the execution path of these services is also well-identified by use-case
scenarios that can serve as a basis for verification.

Once the canonical middleware core specified in Z, we have identified typical
invariants for each components. These invariants are used to ensure that a given
component configuration will not lead to inconsistencies in the middleware.

We experimented a well-identified use-case scenario on this architecture, and
show its validity. Doing so with all use-case, we proved that our canonical archi-
tecture is consistent by construction.

One can enrich this specification, and add new contraints and invariants both
deduced from a given implementation’s caracteristics. Thus, our Z specification
can serve as a framework to verify several variations based on our canonical
middleware core.

The next step of our work is to express more invariants for each components,
and to enrich the model with more details. We aim to analyse the impact of
various QoS strategies on the middleware invariants. These QoS strategies will
be expressed in Z to be bound to our current specification for analysis purpose.
Categories of cases study will be defined and improved.

References

1. D. Basin, F. Rittinger, and L .Vigano. A Formal Analysis of the CORBA Security
Service. In Didier Bert, Jonathan P. Bowen, Martin C. Henson, and Ken Robinson,
editors, ZB, volume 2272 of Lecture Notes in Computer Science, pages 330—349.
Springer, 2002.

11.

12.

13.

14.

15.

. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language

LOTOS. Comput. Netw. ISDN Syst., 14(1):25-59, 1987.

L. Freitas. Posix 1003.21 standard — real time distributed systems communication
(in Z/Eves). Technical report, University of York, 2006.

Object Management Group. Corba component model 4.0 specification. Specifica-
tion Version 4.0, Object Management Group, April 2006.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
26(1):53-56, 1983.

. J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir, and T. Vergnaud.

On the Formal Verification of Middleware Behavioral Properties. In Proceedings of
the 9th International Workshop on Formal Methods for Industrial Critical Systems
(FMICS’04), Linz, Austria, September 2004.

D. Kreuz. Formal specification of corba services using object-z. In ICFEM ’98:
Proceedings of the Second IEEE International Conference on Formal Engineering
Methods, page 180, Washington, DC, USA, 1998. IEEE Computer Society.

B. Milnes, G. Pelton, R. Doorenbos, M. Laird, P. Rosenbloom, and A. Newell. A
specification of the soar cognitive architecture in z. Technical report, Pittsburgh,
PA, USA, 1992.

OMG. OCL 2.0 Specification - Version 2.0 ptc/2005-06-06. OMG, June 2005.

K. Raman, Y. Zhang, M. Panahi, J. Colmenares, R. Klefstad, and T. Harmon.
Rtzen: Highly predictable, real-time java middleware for distributed and embedded
systems. 2005.

N. Rosa and P. Cunha. A formal framework for middleware behavioural specifica-
tion. SIGSOFT Softw. Eng. Notes, 32(2):1-7, 2007.

D. C. Schmidt, D. L. Levine, and S. Mungee. The design of the TAO real-time
object request broker. Computer Communications, 21(4):294-324, 10 April 1998.
J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

R. Valk. Basic definitions, chapter 4, pages 41-51. Springer Verlag, Petri nets and
system engineering (Claude Girault and Rudiger Valk Eds), first edition, 2003.
T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: a schizophrenic
middleware to build versatile reliable distributed applications. In Proceedings of
the 9th International Conference on Reliable Software Techologies Ada-Europe 2004
(RST’04), volume LNCS 3063, pages 106 — 119, Palma de Mallorca, Spain, Jun
2004. Springer Verlag.

