
Mastering Complexity in Formal Analysis of Complex Systems:
Some Issues and Strategies Applied to Intelligent Transport Systems

Fabrice KORDON

Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe
4, place Jussieu, F-75252 Paris CEDEX 05, France

fabrice.kordon@lip6.fr

Abstract

Modern Intelligent Transport Systems are large, dis-
tributed, and at least partially embedded systems. They
raise new challenges through safe design because of their
characteristics that are not easily managed in formal meth-
ods.

The purpose of this paper is to set up a methodology that
selects appropriate techniques for the modeling and anal-
ysis of such systems. Our methodology relies on Symmet-
ric Nets (formerly known as Well Formed Petri Nets). We
make intensive use of this formalism’s capabilities to scale
up analysis and set up a roadmap for the design of dedi-
cated model checkers.

1 Introduction

Future systems tend to be distributed and at least par-
tially embedded. Distribution brings a huge complexity and
a strong need to deduce possible (good and bad) behaviors
on the global system, from the known behavior of its actors.
When such systems are embedded, new constraints of time
and space may also occur as well as a strong relationship
with more physical constraints (such as measures provided
by DSP on the environment).

For such systems, we know that classical development
methods are not adequate since the coverage of possible ex-
ecutions is too low [21]. This is an old observation that
leads people to investigate the use of formal methods. How-
ever, these still lack in user friendly languages and tools that
can enable their use by non-specialists. So, if major actors
in companies or institutions dealing with critical applica-
tions acknowledge that formal methods are necessary, they
also agree on the fact they must be able to scale up: today,
only parts of systems are formally analyzed.

So far, there are two types of formal methods:algebraic
approaches andmodel checking. Algebraic approaches such

as B [8] allow to describe a system using axioms and then
to prove a property on the specification as a theorem to be
demonstrated from these axioms. These methods are very
interested because the proof is parameterized. However,
theorem provers that are required to elaborate the proof are
difficult to use and still require highly skilled and experi-
enced engineers.

In contrast, model checking [17] is the exhaustive inves-
tigation of a system’s state space and can be automated very
easily. This technique is theoretically limited by the combi-
natorial explosion and can mainly address finite systems.
However, recent techniques based on so called symbolic
techniques1 allow to scale up to more complex systems.

So, if formal verification techniques are getting more
mature, our capability to build even more complex systems
also grows quickly. To catch up with problems’ complexity
and get fair results with formal analysis, we must fight the
complexity at every stage of the process: from specification
to verification itself. This requires a methodology that often
make apragmaticuse of formal methods. By "pragmatic",
we mean that assumptions are made to simplify the system.
Usually, such assumptions are domain specific. So, counter
to the current trend that aims to unify process development,
some variations must be investigated.

This paper proposes to summarize the design method-
ology and techniques we use to handle very large sys-
tems throughout the modeling and verification process. We
will illustrate these techniques in the context of Intelligent
Transport Systems (ITS) or, in other words, mechanisms
that provide driving assistance to a vehicle. This applica-
tion domain is very representative of tomorrow’s distributed
systems where traditional programming approaches must be
adapted to provide the required security. The techniques
presented in this paper correspond to years of modeling and
verification experience on large systems.

1The wordsymbolicis associated with two different techniques. The
first one is based on state space encoding and was introduced in [13].
The second one relies on set-based representations of states having sim-
ilar structures and was introduced in [14].

1

The paper is structured as follow. Section 2 presents the
problems of ITS and the associated problems for verifica-
tion. Then, section 3 describes the formal notation selected
to model such systems. We elaborate a design methodol-
ogy in section 4 and show how such specifications can be
verified using appropriate model checkers (section 5).

2 Intelligent Transport Systems

In Intelligent Transport Systems (ITS), road operators,
the infrastructure, vehicles, their drivers and other road
users must cooperate to provide an efficient and secure sys-
tem. Such systems are even more complex to analyze than
previous distributed systems and require more reliability
since lives can be lost. Development of such systems is a
challenge supported by string research programs in Europe,
USA and Japan [10].

In this section, we first illustrate some ITS issues by
means of a simple example and then, discuss the major
problems raised by formal modeling of such systems.

2.1 ITS Example: Safe Insertion in a Motorway

We provide a typical example for a "black-spot" (a dan-
gerous section in the motorway). It is a freeway entrance in
which we want to preserve a "Safe Insertion". Figure 1 con-
siders a motorway with two lanes: L1 (the rightmost one)
and L2. An entrance to the motorway, L0, is connected to
L1. Vehicles are using the two lanes. We use the notation
V i, j , wherei is the lane number andj is the vehicle iden-
tifier. V0, j , vehicles are entering the motorway. We want
to study a cooperative insertion of vehicles arriving in the
entrance lane.

L1

L2 V2,2

V1,1

Vo
,1

V1,2

road-side center

V2,1

beginning of the black spot end of the black spot

L0

Figure 1. Safe Insertion in a motorway.

We want to let V0, j vehicles get into the main traffic
without violating the following properties:

1. the distance between two vehicles in the same lane
must be greater than a minimum safe distance to let
drivers react to sudden events;

2. V0, j vehicles must eventually get into the motorway;

3. Vi, j vehicles should not have to stop.

We propose to esure a safe entrance thanks to the follow-
ing strategy:

(a) The motorway has aroad-side center(RSC) that en-
ables communication with vehicles and can compute
commands related to safety or flow control.

(b) Vehicles receive their positions thanks to a satellite lo-
calization technology [11] (it may be combined with
ground installations and digitized maps) and send them
periodically to the infrastructure. Subsequently, the in-
frastructure is able to maintain a dynamic map of all
vehicles in its range of communication.

(c) The infrastructure, vehicles behaviors and interactions
follow an interaction cycle divided in three main steps:
1) vehicles get their positions from the satellite local-
ization system, 2) they send this information to the in-
frastructure and 3) when the infrastructure has all po-
sitions of all vehicles, it issues commands according to
its strategy.

Let us suppose to simplify the problem that all vehicles
V i, j are equipped with communication devices and that the
drivers follow instructions provided by the road-side center
(currently, non equipped vehicles are also considered and
modeled differently).

2.2 Modeling Issues for ITS

In such systems, two types of properties are of interest:
quantitative(i.e. performance) andqualitative(possibility
of having a wrong behavior). We focus here on qualitative
properties on the system. The main goal is to understand the
system’s behavior in order to elaborate successful strategies.
Implementation details will follow later on.

Modeling and verifying this type of system raise the fol-
lowing concerns:

(i) we must manage dynamic actors like cars that enter
and leave the black-spot,

(ii) there are physical aspects to be modeled,

(iii) we must preserve a fair progression of the system in
order to avoid having an actor perform several actions
while others do nothing.

2.3 Solving ITS Modeling Issues

There are several modeling issues to solve. We first have
to select an appropriate notation to model the system. We
then have to elaborate a design methodology based on this
notation.

It is obvious that UML is not suitable for a formal anal-
ysis of a system’s behavior. It is useful to structure the sys-
tem. However, the relationship between UML class, be-
havior and state diagrams is not yet sufficiently precise to
enable formal analysis of the model’s behavior. If recent
evolutions of UML bring a more precise semantics, the con-
nection between diagrams is still variously interpreted.

Algebraic techniques such as B can be useful for the ver-
ification of behavioral components as Siemens proved in the
METEOR project [1]. However, it was also known as a dif-
ficult technique to automate compared to model checking
based approaches. We thus selected the latter type of tech-
niques to provide more automated tools.

Model checking could be performed on tools managing
time such as UPPAAL [7] that relies on timed automata or
TINA [6] that relies on Timed Petri Nets. However, we do
not need explicit time management and verification of tim-
ing constraints prevents us from analyzing larger systems
based on our very latest techniques.

We selected Symmetric Nets. Symmetric Nets were for-
merly known as Well-Formed Nets, a subclass of High-level
Petri Nets. The name "Symmetric Nets" have been chosen
in the context of the ISO standardization [23]. This nota-
tion provides facilities that are of interest for the analysis
of complex systems if we select an appropriate modeling
methodology and techniques.

In the remainder of this paper, we present the Symmet-
ric Net formalism in section 3. Then, section 4 describes
our proposal for a methodology selecting efficient modeling
strategies to solve the problems mentioned in section 2.2.
Section 5 finally presents how our verification techniques
can scale in the description of state spaces for this type of
systems.

3 Symmetric Nets, a Formal Modeling Tech-
nique

The goal of this section is to provide an informal view
of Symmetric Nets. Formal definitions can be found in [14,
20].

3.1 Basics on Symmetric Nets

Let us introduce Symmetric Nets (SN) by means of a
small example. The Petri net in figure 2 represents a class
of threads (identified by an identity in typeP) accessing a
critical resourceCR. Threads can get a value within the
typeVal from CR. ConstantsPR andV are parameters for
the system.

The class of threads is represented by placesout and
compute. The placecompute corresponds to some com-
putation on the basis of the value provided byCR. At this
stage, each thread holds a value that is replaced when the

Class
 P is 1..PR;
 Val is 1..V;
Domain
 D is <P,Val>;
Var
 p in P;
 v, v2 in Val;

Mutex1

out
P

<P.all>

InCS

compute
D

outCS

CR
Val

<Val.all>

<v>

<p>

<p, v>

<p, v>
<v>

<p>

Figure 2. Example of Symmetric Net.

calculus is finished. PlaceMutex handles mutual exclu-
sion between threads. Placeout initially holds one token
for each value inP (the marking is then noted< P.all >)
and placeCR holds one value for each value inVal. Place
Mutex only contains one token with no value.

Transitions represents evolution of the system. A tran-
sition is fired when all precondition places hold a sufficient
marking. For example, TransitioninCS can be fired if there
is one token inout, one token inCR and one token inMu-
tex. When it fires, it is associated to a binding represented
by the values ofp andv (placeMutex has no type). When
this transition is fired, the tuple< p,v> is dropped into the
postcondition place.

3.2 Correspondence with Place/Transition Nets

Simple Petri Nets are of interest since it is possible to
compute structural properties. Structural properties arefor-
mulas that can be computed without exploring the full state
space [20]. Here are two examples of interesting properties:

• invariants: a conservative formula on tokens in places
or transitions

• bounds: the minimum and maximum number of tokens

compute_1_1

compute_2_1compute_1_2

compute_2_2

CR_1

•

CR_2
•

Mutex

•out_1• out_2 •

outCS_1_1 outCS_2_1outCS_1_2 outCS_2_2

InCS_1_1 InCS_2_1InCS_1_2 InCS_2_2

Figure 3. Unfolded P/T Net from figure 2.

It is of interest to note that such properties can be com-
puted after anunfolding. This operation deploys the SN into

an equivalent PTN to enable the computation of structural
properties.

The principle of unfolding is simple: an SN-place is
transformed into a set of PTN-places where each PTN-place
represents a possible value stored in the SN-place. Let us il-
lustrate this correspondence in Figure 3 that represents the
PTN associated with the SN of figure 2 withP = [1..2] and
Val = [1..2]. Thanks to specialized decision diagram based
techniques, unfolding of large models can be handled [25].

What makes this technique interesting is that it allows
computing of some structural properties that are difficult
to compute in SPNs. In the model of figure 2, it is obvi-
ous that the formulacard(out) + card(compute), where
card(p) represents the number of tokens in placep remains
constant all over the state space. There is a projection in
the unfolded model with the formulacard(card(out_1)+
card(out_2) + compute_1_1) + card(compute_1_2) +
card(compute_2_1) + card(compute_2_2). Section 4
provides details on how and when such properties can be
used.

3.3 Symbolic Reachability Graph

Besides computation of structural properties, Petri Nets
allow elaboration of the state space of the systems for model
checking, thanks to the firing rule. The state space is usually
calledreachability graphand represents all concrete states
of the system. Figure 4 presents the reachability graph for
the Petri net of figure 2 with constantsPR andV equal to 2.
This state space has 5 states (the initial state is represented
by a double circle) ; it will grow following the cardinality
of the cartesian productP×Val.

 Mutex: <..>
 out: <.1.> + <.2.>
 CR: <.1.> + <.2.>

 out: <.2.>
 compute: <.1,1.>
 CR: <.2.>

 out: <.2.>
 compute: <.1,2.>
 CR: <.1.>

 out: <.1.>
 compute: <.2,1.>
 CR: <.2.>

 out: <.1.>
 compute: <.2,2.>
 CR: <.1.>

outCS
 p = 2
 v = 2

outCS
 p = 2
 v = 1outCS

 p = 1
 v = 2

outCS
 p = 1
 v = 1

InCS
 p = 2
 v = 2

InCS
 p = 2
 v = 1

InCS
 p = 1
 v = 2InCS

 p = 1
 v = 1

Figure 4. Reachability graph for the model of
Figure 2.

The main interest of SN resides in their potential to ex-
press symbolic states in a system using thesymbolic reacha-
bility graph. A state in the symbolic reachability graph does
not represent a concrete state but a set of concrete states
that have a similar structure. This is well illustrated in fig-
ure 5. The symbolic reachability graph is composed with
two nodes only and will not grew when the typesP andVal
get more values.

 out: <P_01>
 compute: <P_00,Val_01>
 CR: <Val_00>

 out: 1<><P_00> |P_00|=2 |Val_00|=2
 CR: <Val_00> |P_00|=2 |Val_00|=2

InCS outCS

Figure 5. Symbolic reachability graph for the
model of Figure 2.

The definition of states in figure 5 must be read as follow.
In the initial state, all possible values in typeP are stored in
placeout and all possible values in typeVal are stored in
placeCR. In the other state (when transitionInCS fires),
all possible values of typeP but one are in placeout and all
possible values of typeVal but one are in placeCR. Place
computethen contains one token composed with one value
of typeP (the one that is not in placeout) and one value of
typeVal (the one that is not in placeCR). Thus, this sym-
bolic state represents all possible permutations of the cou-
ple of tokens extracted from placesout andCR when fir-
ing transitionInCS. This symbolic technique, based on the
computed symmetries in a symmetric net [28], is success-
ful when representing very large state space: it provides an
exponential gain compared to the construction of concrete
states [24]. This set-based representation is very efficient,
especially when systems are symmetric, which is the case in
numerous distributed and embedded systems. This is partic-
ularly the case in Intelligent Transport Systems since similar
algorithms are supposed to be executed in each car.

4 Modeling Methodology and Techniques

This section presents our proposal for modeling and ana-
lyzing ITS-like systems. We first sketch a methodology and
then put some emphasis on the modeling techniques that are
optimal for this type of systems.

4.1 Design Methodology

A notation like Petri Nets should be associated with
another notation to keep some structure to maintain the
specification coherence with a minimum effort for the de-
signer. We propose to haveSN-modulesthat are "UML-
like classes" containing sequential automata with interfaces
expressed using basic Petri nets composition mechanisms:
place fusion (asynchronous communication) or transition
fusion (synchronous communication).

Figure 6 illustrates this design approach. The architec-
ture of the specification is performed using SN-modules.
The internals of these modules are assembled according to
the places and/or transitions to be fusioned into a larger
model to be analyzed. Of course, several hierarchical levels
may be considered.

SN spec.

SN modules

Assembling

Figure 6. Overview of the design methodol-
ogy.

Each SN-module may have several internals, each one
corresponding to a strategy or to a given configuration to
be experimented for the system. So, exploration of the sys-
tem’s behavior can be performed easily, similar to switching
a class implementation by another one in programming lan-
guages.

To solve the specific problems identified in section 2.2,
we must select appropriate modeling techniques.

4.2 Managing Dynamicity

Theoretically, the number of vehicles passing into the
black-spot is potentially infinite. However, we can consider
that vehicles leaving the black-spot are recycled to come
back into it. Thus, we can consider a finite number of vehi-
cles according to the scenario (for example heavy traffic or
light traffic). This is of particular interest since, similar to
embedded systems using a thread pool, we only manage a
vehicles pool.

The same technique can be used for any type of "unlim-
ited resources". This is relevant since we do not care about
resources as entities but about all possible situations they
are involved in.

This technique also brings an interesting feature. The
corresponding system is not expected to deadlock. Thus, a
deadlock may correspond either to a property violation or
to some mistake in the model itself. This is useful during
the verification process.

4.3 Modeling Complex Functions

The main problem of SN is to provide only a limited
set of mathematical functions to the system designer. This
is required to keep the mathematical structure that enables
the computation of symmetries in the specification, thus en-
abling the use of the symbolic reachability graph [28]. To
cope with the modeling of complex functions (for example,
computation of braking distance according to the current
speed of a vehicle), we must discretize and represent them
in a specific place. Such a place can be held in an SN-
module ; it then represents the function and can be stored in
a dedicated library.

Class
 Cx is 0..5;
 Cy is 0..6;
Domain
 D is <Cx,Cy>;
Var
 x, in Cx;
 y in Cy;

y

0

2

4

6

2 4 x

(a) (b)

result
Cy

param
Cx

values
D

<0,0>, <1,1>,
<2,1>, <3,2>,
<4,3>, <5,6>

<x>

<y>

<x,y>

<x,y>

Figure 7. Example of complex function dis-
cretization.

Figure 7 represents an example of function discretiza-
tion. Left side of the figure (a) shows a function that is dis-
cretized and the right side (b) shows the corresponding Petri
net model. The function discretization is stored in placeval-
ues; y is obtained thanks to the unification of variablex in
the two input arcs of the transition. Please note thatvalues’
markings remain constants.

This technique can be generalized to any functionx =
f (x1,x2, ...,xn), regardless of its complexity. Non determin-
istic functions can also be specified the same way (for ex-
ample, to model potential errors in the system). Let us note
that:

• the discretization of any function becomes a modeling
hypothesis and must be validated separately (to evalu-
ate the impact of imprecision due to discretization),

• given a programmed function, it is easy to automati-
cally generate the list of values to store in the initial
marking of the place representing the function.

The only drawback of this technique is a loss in precision
compared to continuous systems that require appropriate
hybrid techniques [15]. If such a discretization enables the
use of more user-friendly techniques, they must be checked.
For example, if we consider distances in our black-spot ex-
ample, we must ensure that uncertainty remains in a safe
range. This means that our metrics must be compliant with
the precision to ensure, for example, that ifV1,1 followsV1,2,
the minimum distance ensures that no intersection between
the associated volumes is possible.

4.4 Preserving a Fair Execution

In this type of system, all actors simultaneously behave
in parallel. It is thus not reasonable to exhibit problems
related to the fact that one actor progress while all others
are not executed. The modeling solution is there to relate
the model to a timeline that beat the execution of the system.

This timeline can be modeled explicitly or be implemented
in the firing rule that includes fairness execution of the Petri
Net token game.

If we consider our black-spot example, the cycle can
be trivially extracted from the behavior of a vehicle as de-
scribed in point (c) in section 2.1. Here the timeline en-
sure a sliced execution of the specification. At each time
unit (not necessarily counted), all vehicle make a move and
the infrastructure takes decisions to be executed during the
next slice. Communication delays can also be implemented
when required.

5 Towards Analysis of ITS System

Let us note that the type of system we describe here are
very symmetric: vehicles can be permuted easily. Thus,
the computation of symmetries that enable the use of the
SN’s symbolic reachability graph (see section 3.3) can be
operated successfully.

Nevertheless, analysis remains quite difficult since cur-
rently implemented model checkers are not sufficient. The
ones that implements a concrete state space cannot handle
more than a few 108 states.

GreatSPN [3], a model checker implementing the sym-
bolic reachability graph was successfully used to analyze a
middleware core having about 1018 concrete states [24] but
it seems inadequate for the complexity of ITS systems when
discretization is realistic and requires types with many val-
ues (in [12], only small configurations could be analyzed).
This is also observed for model checker that support a sym-
bolic encoding of the state space such as SVM [5].

Our diagnosis, according to an analysis of the model
checkers’ behaviors shows that current techniques are not
yet able to scale up for these systems. There is also some
side effect from the modeling technique that must be con-
sidered in the model checker as domain specific optimiza-
tions.

However, we are confident that model checkers will soon
be able to analyze ITS-like systems thanks to the following
techniques:

• the use of symbolic/symbolic techniques,

• the design of parallel model checkers in clusters of ma-
chines,

• the management of stable marking,

• the use of hierarchical encoding techniques.

5.1 Symbolic/Symbolic Techniques

We already mentioned the symbolic reachability graph
in section 3.3. Symbolic reachability graph provides sim-
ilar performance in mastering the complexity of large

state spaces to the encoding of states using decision dia-
grams [13] (also calledsymbolic techniques).

a b c d e f

0 1 1 0 0 1

0 1 1 0 1 1

0 1 1 1 0 1

0 1 1 1 0 0

10

0

0 01 1

1 1

0

1 1

(a) (b)

a b c d e f

Figure 8. Principles of symbolic encoding of
states.

The principle of state encoding is illustrated in figure 8.
Let us consider that a state in the system is represented as
a Boolean vector defining the values of a set of variablesa
to f (part (a)). If we assume that an action in the system
does not change the entire vector, we can consider a differ-
ential encoding of states. In our example, variablesa to c do
not change : it is unnecessary to represent their value more
than once. The Binary Decision Diagram (BDD) (partb))
encodes this system and promote share of common parts in
the system. The main drawback of this technique is that its
efficiency is strongly related to the variable order ; if we en-
code the BDD fromg to a, sharing performances are very
poor.

This techniques was successfully elaborated to analyze
hardware systems. It has been enhanced and numerous de-
cision diagram based techniques are now available. One
of these technique, Data Decision Diagrams (DDD) [18],
has been elaborated to encode discrete values instead of bi-
nary ones. It is a basis to support symbolic/symbolic tech-
niques [29]: thesymbolic encodingof thesymbolic reach-
ability graph. This technique seems promising for the stor-
age of very large state spaces.

5.2 Parallel model checking on a cluster

As shown before, the main problem of model checking
is memory consumption. However, with diagram decision
based techniques, another problem arises. The principle of
these techniques is to trade memory against CPU. As a typ-
ical example, when a new symbolic state is computed, it
has to be compared to existing ones. This requires all states
to be canonized in order to have a common and compara-
ble representation suitable for comparison. Even optimized,
such an operation requires CPU.

So, distributing a model checker on a cluster of machine
brings two advantages:

• states are generated in parallel thanks to an appropriate
hash function,

• the model checkers takes advantage of the CPU and
memory available in the whole system.

Expected results are promising and the research commu-
nity is currently working in this direction. As an example,
the famous SPIN model checker has already been exper-
imented in a parallel way [26, 9]. We also successfully
implemented a parallel version of GreatSPN that provides
supra-linear acceleration factor for many examples in our
benchmark [22].

5.3 Management of Stable Marking

The technique presented in section 4.3 generate places
for which marking is large and remains constant. This
should be taken into consideration by model checkers. In
fact, a model checker like GreatSPN does not handle such
cases and thus, this stable marking is reproduced for each
generated state, thus leading to a huge memory consump-
tion.

For model checkers using symbolic encoding of states
(as well as for a symbolic/symbolic model checker), such
places should be detected since their marking is highly
shared by all states in the system. A pre-analysis of the
specification can easily detect such configuration and pro-
vide hints for an appropriate encoding technique.

5.4 Hierarchical Encoding Techniques and Re-
cursive Folding

Symbolic encoding of a state space (concrete or sym-
bolic) relies on the sharing of state patterns in the state space
of a system. Recent work investigates a hierarchical repre-
sentation that could increase the sharing of such patterns
on a larger scale. For that purpose, new representations,
such as Set Decision Diagrams (SDD) [19] are being inves-
tigated.

In some favorable case (i.e. very regular symmetries in
the system), the results are fantastic. Let us analyze what
can be provided for the dining philosopher problem [2], as
experienced in [27].

N philosophers

1 table

2 half-table

4 fourth-table

8 heigth-table

exponential gainlinear gain

Figure 9. Possible structuring of the dining
philosopher problem.

Figure 9 shows the structure of the table in the dining
philosopher. ForN philosophers, the symbolic reachability

graph provides a linear factor: the philosopher pattern is au-
tomatically extracted and the gain is thus linear, leading to
the analysis of just a few 103 philosophers, like in [16] (left
side of the figure). Based on SDD, a recursive folding of the
problem can be easily encoded. Instead of repeating a pat-
tern N times, we consider a philosopher table as being two
1/2 tables or four 1/4 tables, etc. (right side of the Figure).
Using this recursive encoding technique, we were able to
store the state space for to 210000 in a 512 Mbyte machine.

Generalization of such a technique is still a challenge but
since peer-to-peer approaches, like in ITS, are usually very
symmetric (as for the philosopher problem), we are confi-
dent that, in some cases, such a representation is possible.

6 Conclusion

In this paper, we have summarized the design method-
ologies and techniques we have developed to model and
analyze very large systems. We are currently working on
problems similar to the ITS case study that was presented
as an illustration of future complex systems to be designed,
analyzed and implemented.

To scale up in the formal analysis of such complex sys-
tems, we must work "vertically". It means that all phase of
the modeling and analysis process must cooperate. This can
be done in two ways:

• Some model checking techniques can be stacked to
handle larger systems, as in symbolic/symbolic model
checking techniques.

• When possible, a modeling technique should be cou-
pled with the corresponding model checking technique
that enables reduction of the state space. For example,
the discretization of complex functions by means of a
SN-place having a stable marking must be consider-
ing to encode a state by means of decision diagram to
represent the marking of this place once.

Our methodology and techniques should provide better
facilities to engineers who have to cope with such prob-
lems. We use these advanced model checking techniques
and emphasize domain specific optimizations in associated
tools. Most of the techniques presented in this paper have
been implemented, either as prototypes or in CPN-AMI [4].
The objective is to provide a prototype for a CASE environ-
ment dedicated to the design and analysis of complex sys-
tems that includes all these techniques in one single model
checker.

Later on, we can imagine that model checkers will be
elaboratedon the fly, according to the techniques enabled to
analyze a specification according to domain specific char-
acteristics.

References

[1] Atelier B, http://www.atelierb.societe.com/index_
uk.htm, 2006.

[2] Dining philosophers problem,http://en.wikipedia.
org/wiki/Dining_philosophers_problem, 2006.

[3] GreatSPN V2.0,http://www.di.unito.it/~greatspn/
index.html, 2006.

[4] The CPN-AMI Home page, url :http://www.lip6.fr/
cpn-ami, 2006.

[5] The SMV System, http://www.cs.cmu.edu/
~modelcheck/smv.html, 2006.

[6] TINA, TIme petri Net Analyzer,http://www.laas.fr/
tina, 2006.

[7] UPPAAL home page,http://www.uppaal.com/, 2006.
[8] J.-R. Abrial.The B book - Assigning Programs to meanings.

Cambridge University Press, 1996.
[9] J. Barnat, V. Forejt, M. Leucker, and M. Weber. Di-

vSPIN - a SPIN compatible distributed model checker. In
M. Leucker and J. van de Pol, editors,4th International
Workshop on Parallel and Distributed Methods in verifiCa-
tion (PDMC’05), Lisbon, Portuga, 2005.

[10] R. Bishop. Intelligent Vehicle R&D: a review and contrast of
programs worldwide and emerging trends. In J. Ehrlich, ed-
itor, Annals of Telecommunications - Intelligent Transporta-
tion Systems, volume 60, pages 228–263. GET-Lavoisier,
March-April 2005.

[11] J.-M. Blosseville. Driving assistance systems and road
safety: State-of-the-art and outlook. In J. Ehrlich, editor,
Annals of Telecommunications - Intelligent Transportation
Systems, volume 60, pages 281–298. GET-Lavoisier, March-
April 2005.

[12] F. Bonnefoi, L. Hillah, F. Kordon, and G. Frémont. An ap-
proach to model variations of a scenario: Application to In-
telligent Transport Systems. InWorkshop on Modelling of
Objects, Components, and Agents (MOCA’06), Turku, Fin-
land, June 2006.

[13] J. Burch, E. Clarke, and K. McMillan. Symbolic model
checking: 1020 states and beyond. Information and
Computation (Special issue for best papers from LICS90),
98(2):153–181, 1992.

[14] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad.
On well-formed coloured nets and their symbolic reacha-
bility graph. In K. Jensen and G. Rozenberg, editors,Pro-
cedings of the 11th International Conference on Application
and Theory of Petri Nets (ICATPN’90). Reprinted in High-
Level Petri Nets, Theory and Application.Springer-Verlag,
1991.

[15] P. Christofides and N. El-Farra.Control Nonlinear And Hy-
brid Process Systems: Designs for Uncertainty, Constraints
And Time-delays. SPringer Verlag, 2005.

[16] G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficient sym-
bolic state-space construction for asynchronous systems.In
M. Nielsen and D. Simpson, editors,Application and The-
ory of Petri Nets, volume 1825 ofLecture Notes in Computer
Science, pages 103–122. Springer-Verlag, 2000.

[17] E. Clarke, O. Grumberg, and D. Peled.Model Checking.
MIT Press, 2000.

[18] J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud,
and P.-A. Wacrenier. Data decision diagrams for Petri net
analysis. InProc. of ICATPN’2002, volume 2360 ofLec-
ture Notes in Computer Science, pages 101–120. Springer
Verlag, June 2002.

[19] J.-M. Couvreur and Y. Thierry-Mieg. Hierarchical decision
diagrams to exploit model structure. In25th International
Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE’05). Springer Verlag, to be pub-
lished, October 2005.

[20] C. Girault and R. Valk.Petri Nets for Systems Engineering.
Springer Verlag - ISBN: 3-540-41217-4, 2003.

[21] J. Gogen and Luqi. Formal methods: Promises and prob-
lems. IEEE Software, 14(1):75–85, 1997.

[22] A. Hamez, F. Kordon, and Y. Thierry-Mieg. libDMC: a
Library to Operate Efficient Distributed Model checking.
Technical report, Master’s thesis, LIP6, Université P. & M.
Curie, 2007.

[23] L. Hillah, F. Kordon, L. Petrucci, and N. Trèves. PN
standardisation : a survey. InInternational Conference
on Formal Methods for Networked and Distributed Sys-
tems (FORTE’06), pages 307–322, Paris, France, September
2006. IFIP.

[24] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middle-
ware Behavioral Properties. In9th International Work-
shop on Formal Methods for Industrial Critical Systems
(FMICS’04), pages 139–157. Elsevier, September 2004.

[25] F. Kordon, A. Linard, and E. Paviot-Adet. Optimized
Colored Nets Unfolding. InInternational Conference on
Formal Methods for Networked and Distributed Systems
(FORTE’06), pages 339–355, Paris, France, September
2006. IFIP.

[26] F. Lerda and R. Sisto. Distributed-memory model checking
with SPIN. InProc. of the 5th International SPIN Workshop,
volume 1680 ofLNCS. Springer-Verlag, 1999.

[27] Y. Thierry-Mieg.Techniques for the model checking of high-
level specifications. PhD thesis, Université P. & M. Curie,
2004.

[28] Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. Auto-
matic symmetry detection in well-formed nets. InProc. of
ICATPN 2003, volume 2679 ofLecture Notes in Computer
Science, pages 82–101. Springer Verlag, June 2003.

[29] Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud. A sym-
bolic symbolic state space representation. In24th Interna-
tional Conference on Formal Techniques for Networked and
Distributed Systems (FORTE’04), pages 276–291. Springer
Verlag, LNCS 3235, July 2004.

