
A Factory To Design and Build
Tailorable and Verifiable Middleware

Jérôme Hugues1, Fabrice Kordon2, Laurent Pautet1, and Thomas Vergnaud1

1 GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

jerome.hugues@enst.fr, thomas.vergnaud@enst.fr, laurent.pautet@enst.fr
2 Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe 4, place

Jussieu, F-75252 Paris CEDEX 05, France
fabrice.kordon@lip6.fr

Abstract. Heterogeneous non-functional requirements of Distributed Real-Time
Embedded (DRE) system put a limit on middleware engineering: the middleware
must reflect application requirements, with limited runtime impact. Thus, build-
ing an application-tailored middleware is both a requirement and a challenge.
In this paper, we provide an overview of our work on the construction ofmid-
dleware. We focus on two complementary projects: the definition of middleware
that provides strong support for both tailorability and verification of its internals;
the definition of a methodology that enables the automatizing of key steps of
middleware construction.
We illustrate how our current work on PolyORB, Ocarina and the use of Petri Nets
allows designer to build the middleware that precisely matches its application
requirements and comes with precise proof of its properties.

1 Introduction

Middleware first emerged as a general solution to build distributed applications. Models
and abstractions such as RPC, distributed objects hide the intrinsic of distribution from
the user, and provide a programming model close to the local case.

In the meantime, the need for Distributed Real-Time Embedded systems (DRE)
increases regularly. Such systems require execution infrastructures that have specific
capabilities, some of which conflict with “plain old middleware technology”:

– Distribution cannot remain hidden from the developer. The semantics of the dis-
tribution models must be adapted to real-time application needs. For instance, the
application entity should be well adapted to scheduling analysis such as the pub-
lish/subscribe model [RGS95]. Besides the impact of runtime entities (e.g. com-
munication channels, memory management) on timeliness or determinism must be
fully assessed.

– Real-Timeengineering guidelines must be supported by the middleware. This mid-
dleware follows a clear and precise design so as to guaranteeits determinism and
its temporal properties; it comes with complete proofs thatit does not withdraw
the properties of the application [Bud03]. Finally, a methodological guide, support

tools and Quality of Service (QoS) policies help to tailor the middleware with re-
spect to the application requirements.

– Embeddedtargets that have strong constraints on their resources (e.g. CPU, mem-
ory, bandwidth) or limited run-time support by a real-time kernel (no exception, no
dynamic memory, limited number of threads, etc). So, middleware must cope with
strong limitations; and scale down to small targets. In somecases, new functions or
QoS policies are added to cope with platform limitations, e.g. data compression for
systems with a narrow bandwidth.

So, there is a need to 1/ make available to the developer some internals of the mid-
dleware to allow its tailoring and adaptation; 2/ define a development process and sup-
porting tools to ease this adaptation and ensure its is correct with respect to middleware
constraints.

Let us note a DRE is usually composed of several components for with differ-
ent requirements. Therefore, both functional interoperability and compatibility of non-
functional policies must be contemplated. Such assessmentcapability is seldom con-
templated by middleware architects.

Another common pitfall when designing DRE is the use of “Commercial Off-The-
Shelf” (COTS) components. This allows to reduce costs and potential errors by reusing
already tested components. But this puts a strong limit on middleware tuning, verifica-
tion and performance capabilities.

Engineers of DRE systems require middleware that have good performance (includ-
ing efficient marshaling), real time (use only deterministic constructs), fit embedded
constraints. Besides, they also need to ensure their use of the middleware is correct (no
deadlock, deadline are respected, etc). Hence, this calls not only for a middleware, but
also for a design process and tools that allow the user to carefully tune the middleware
it to needs, instead of selecting a “best effort” middleware.

The objective of the PolyORB project is to elaborate both a middleware and a design
process. We propose an innovative architecture that aims atproviding better control on
the configuration of the middleware, and enables the carefulanalysis of its properties.
This paper presents an overview of our work in this area for the past years.

In the next section, we motivate our work by reviewing major issues when designing
middleware for DRE systems, revolving around tailorability and verification concerns.
Then, we present our current results in middleware architecture, and how we efficiently
address both concerns by defining an original architecture.We note that another limit to
the adoption of middleware is the lack of tool support; we then discuss our current re-
search work around Architecture Description Language to build tool that help building
and verifying application-specific middleware configurations.

2 Tailorable and Verifiable Middleware: State of the Art

In this section, we discuss limits and trade-offs when considering tailorable and ver-
ifiable middleware. Even though both capabilities are of interest for the application
designers, we note that there is usually little support provided by the middleware.

2.1 From Tailorability to Verification

The many and heterogeneous constraints of distributed applications deeply impact the
development of distribution middleware. Middleware should support developers when
designing, implementing and deploying such systems in heterogeneous environments
and evaluate so called “non functional” requirements (suchas QoS or reliability).

The design and implementation of tailorable middleware is now a (almost) mastered
topic. Design patterns, frameworks have proved their valueto adapt middleware to a
wide family of requirements [SB03].

In the mean time, middleware platforms have shown in variousprojects they can
meet stringent requirements. They are now used in many mission-critical applications,
including space, aeronautics and transportation.

Building distribution platform for such systems is a complex task. One has to cope
with the restrictions enforced to achieve high integrity standards, or to meet certifica-
tion requirements, such as DO-178B. Thus, one has to be able to assert middleware
properties, e.g. functional behavioral properties such asabsence of deadlocks, request
fairness, or correct resource dimensioning; but alsotemporalproperties.

Hence, verifying middleware is now becoming a stringent requirement in many
DRE systems. The developer must ensure beforehand that its application design is com-
patible with middleware capabilities.

We claim middleware engineering should now provide provisions for some verifi-
cation mechanisms as defined by the ISO committee [ISO94] as“[the] confirmation by
examination and provision of objective evidence that specified requirements have been
fulfilled. Objective evidence is information which can be proved true, based on facts
obtained through observation, measurement, test or other means.”

However, we note there is a double combinatorial explosion when considering mid-
dleware as a whole: the number of possible execution scenarios for one middleware
configuration increases with the interleaving of threads and requests; the number of
possible configurations increases with middleware adaptability and versatility. Finally,
the behavior of a middleware highly depends on the configuration parameters selected
by the user. Thus, verifying a middleware is a complex task.

Some projects consider testing some scenarios, on multipletarget platforms. The
Skoll Distributed Continuous Q&A project [MPY+04] relies on the concepts of dis-
tributed computing to test TAO many configurations and scenarios on computers around
the world. This provides some hints on the behavior of the middleware, but cannot serve
as a definite proof of its properties.

One may instead contemplate the verification of middleware properties. Yet this is
usually done on a limited scale, restricted to the very specific scenarios of the applica-
tion to be delivered and the semantics of the distribution model used (e.g. RT CORBA),
for instance using the Bogor model checker [DDH+03]. But the middleware must be
considered as part of the application and must not be discarded from the verification
process as a blackbox would be.

However, middleware implementations of the same specifications may behave dif-
ferently [BSPN00]. Some properties may be withdrawn by implementation issues, such
as the use of COTS, that are hidden by this modeling process, or by different inter-
pretation of the same specifications. Besides, such a verification process usually does

not take into account implementation-defined configurationoptions, and target capabil-
ities. Finally, such methods may be limited by combinatorial explosion that arise when
building the system state-space.

Thus, we note it is hard (if not infeasible) to verify existing middleware as a whole.
One should go forward and integrate verification to the design of middleware.

2.2 Addressing Verification Concerns

The formal-based verification of distributed application behavioral properties is usually
the domain of verification-domain experts, using specific verification techniques, e.g.
calculi, formal methods. However, such a verification process is usually used only to
verify the semantics of the application (e.g. set of correctmessage sequences) [Jon94].

Turtle-P [AdSSK03] defines a UML profile for the validation ofdistributed ap-
plications, linked with code generation engines and validation tools built around RT-
LOTOS [LAA04]. Validation is done either through simulation or verification of timed
automata. However, this provides no information on the underlying distribution frame-
work or middleware integrated to the system; and thus reduces the scope of the proper-
ties proved for the application under study.

Finally, it should be noted that complex semantics of distribution models is difficult
to model and usually reduced: complex request dispatching policies, I/O or memory
management are simplified. This reduces verification cost but also interest in the mid-
dleware modeled that looses many configuration capabilities.

Thus, we claim the verification process of a distributed application should also focus
on the middleware as a building block, and thus middleware architecture should be
made verification-ready so as to ease this process, without impeding its configurability.

Still, this increases the complexity of the verification process: one should focus on
the actual configuration being used. This means that models of the configuration should
be built “on demand”, and that a strong link between model andimplementation exists.

From the previous analysis, we conclude that a dedicated process to build and verify
tailorable middleware is required. This process should be defined around well-grounded
engineering methods and foster reusable and tailorable software components. Besides,
verification techniques should be included in the process toassert strong properties of
complex configurations, using the most suitable methods, depending on the nature of
the property (causal, time, dependability, etc.).

3 The Schizophrenic Architecture: a Tailorable and Verifiable
Middleware

In this section, we discuss our approach to design middleware dedicated to the require-
ments of a given application. This approach can be viewed as aco-design between the
application and its supporting middleware. As an illustration of the feasibility of this
design process, we provide a highly generic middleware architecture (also known as
the “schizophrenic” architecture) and a methodological guide to instantiate it.

3.1 From system requirements to a dedicated middleware

Actual middleware has to fulfill the system requirements. Some solutions are based on
standardized “rigid” specifications; this is the case for most CORBA implementations
and its many extensions (RT-, FT-, minimum CORBA. . .). Such middleware architec-
tures are targeted to a certain application domain, and usually add many configuration
parameters to partially control its resource or request processing policies.

Yet, implementations are not as efficient as specifically designed middleware [KP05].
The cost to deploy specific features is high due to the API to manipulate. Many opti-
mization options cannot be implemented because of the heterogeneity of requirements
and the number of (possibly useless) functions to support. Besides, verification or test-
ing is not addressed and under the control of the middleware vendor. It is a direct con-
sequence of the absence of a “one size fits all" middleware architecture.

Therefore, one should not contemplate middleware as a whole, but instead design
middleware components and the process to combine them as a safe and affordable solu-
tion to system requirements. Thus, it becomes possible to build the distribution infras-
tructure built for specific requirements.

In the following, we describe the different steps we followed to define one such
process built around a highly tailorable middleware architecture, a set of middleware
components.

3.2 Defining a new tailorable middleware architecture

Solutions have been proposed to design tailorable middleware. Configurablemiddle-
ware defines an architecture centered on a given distribution model [SLM98] (e.g. dis-
tributed objects, message passing, etc.); this architecture can be tuned (tasking policy,
etc.).Genericmiddleware [DHTS98] provides a general framework, which components
have to be instantiated to create middleware implementations. Those implementations
are calledpersonalities. Generic middleware is not bound to a particular middleware
model; however, various personalities seldom share a largeamount of code.

Generic functions propose a coarse grain parametrization (selection of components).
Configuration is fine grain parametrization (customizationof a component). Verification
is possible through behavioral descriptions (attached to components).

Configurable and generic middleware architectures addressthe tailorability issue,
as they ease middleware adaptation. However, they do not provide complete solutions,
as they are either restricted to a class of distribution model; or their adaptation requires
many implementation levels, thus becomes too expensive.

3.3 Decoupling middleware components

To enhance middleware adaptation at a reduced implementation cost, we proposed
the “schizophrenic middleware architecture” [VHPK04]. Its architecture separates con-
cerns between distribution models, API, communication protocols, and their implemen-
tations by refining the definition and role of personalities.

The schizophrenic architecture consists of three layers:application and protocol
personalities built around aneutralcore. Application interacts with application person-
alities; protocol personalities operate with the network.

Application personalitiesconstitute the adaptation layer between application com-
ponents and middleware through a dedicated API or code generator. They provide APIs
to interface application components with the core middleware; they interact with the
core layer in order to allow the exchange of requests betweenentities. Application per-
sonalities can either support specifications such as CORBA,the Java Message Service
(JMS), etc. or dedicated API for specific needs.

Protocol personalitieshandle the mapping of personality-neutral requests (repre-
senting interactions between application entities) onto messages exchanged using a cho-
sen communication network and protocol. Protocol personalities can instantiate middle-
ware protocols such as IIOP (for CORBA), SOAP (for Web Services), etc.

The neutral core layeracts as an adaptation layer between application and protocol
personalities. It manages execution resources and provides the necessary abstractions to
transparently pass requests between protocol and application personalities in a neutral
way. It is completely independent from both application andprotocol personalities.

The neutral core layer enables the selection of any combination of application and/or
protocol personalities. Several personalities can be collocated and cooperate in a given
middleware instance, leading to its “schizophrenic” nature.

3.4 PolyORB, a schizophrenic middleware

In [VHPK04], we present PolyORB our implementation of a schizophrenic middleware.
PolyORB a free software middleware supported by AdaCore3, PolyORB’s research
activities are hosted by the ObjectWeb consortium4.

We assessed its suitability as a middleware platform to support general specifica-
tions (CORBA, DDS, Ada Distributed Systems Annex, Web Applications, Ada Mes-
saging Service close to Sun’s JMS) as well as profiled personalities (RT-CORBA, FT-
CORBA) and as a COTS for industry projects.

In the remainder of this section, we provide a review of the key elements of Po-
lyORB’s architecture, implementation, and its capabilities to address middleware tai-
lorability and verification.

3.5 A Canonical Middleware Architecture

Our experiments show that a reduced set of services can describe various distribution
models. We identify seven steps in the processing of a request, each of which is defined
as one fundamental service. Services are generic components for which a basic imple-
mentation is provided. Alternate implementation may be used to match more precise
semantics. Such an implementation may also come with its behavioural description for
verification purposes. Each middleware instance is one coherent assembling of these en-
tities. TheµBroker component coordinates the services : it is responsible for the correct
propagation of the request in the middleware instance. Figure 1 illustrates the coopera-
tion between PolyORB services.

3 http://www.adacore.com
4 http://polyorb.objectweb.org

Request propagation

tra
ns

po
rt(

5)addressing (1)

binding(2)

protocol(4)

transport(5)

representation(3) re
pr

es
en

ta
tio

n(
3)

pr
ot

oc
ol(

4)

ac
tiv

at
ion

(6
)

ex
ec

ut
ion

(7
)

object
Server

µBroker µBroker

Client

Fig. 1.Request propagation in the schizophrenic middleware architecture

First, the client looks up server’s reference using theaddressingservice (1), a dic-
tionary. Then, it uses thebinding factory (2) to establish a connection with the server,
using one communication channels (e.g. sockets, protocol stack).

Request parameters are mapped onto a representation suitable for transmission over
network, using therepresentationservice (3), this is a mathematical mapping that con-
vert a data into a byte stream (e.g. CORBA CDR).

A protocol (4) supports transmissions between the two nodes, through the trans-
port (5) service; it establishes a communication channel between the two nodes. Both
can be reduced tofinite-state automata. Then the request is sent through the network
and unmarshalled by the server.

Upon the reception of a request, the middleware instance ensures that a concrete
entity is available to execute the request, using theactivationservice (6). Finally, the
executionservice (7) assigns execution resources to process the request. These services
rely on thefactoryandresource managementpatterns.

Hence, services in our middleware architecture arepipes and filters: they compute
a value and pass it to another component. Our experiments with PolyORB showed all
implementations follow the same semantics, they are only adapted to match precise
specifications. They can be reduced to well-known abstractions.

The µBroker handles the coordination of these services: it allocates resources and
ensures the propagation of data through middleware. Besides, it is the only component
that controls the whole middleware: it manipulates critical resources such as tasks and
I/Os or global locks. It holds middleware behavioral properties.

Hence, the schizophrenic middleware architecture provides a comprehensive de-
scription of middleware. This architecture separates a setof generic services dedicated
to request processing from theµBroker.

3.6 µBroker: core of the schizophrenic architecture

TheµBroker component is the core of the PolyORB middleware. It isa refinement of
the Broker architectural pattern defined in [BMR+96]. The Broker pattern defines the
architecture of a middleware, describing all elements fromprotocol stack to request
processing and servant registration.

TheµBroker relies on a narrower view of middleware internals: the µBroker coop-
erates with other middleware services to achieve request processing. It interacts with
theaddressingandbindingservices to route the request. It receives incoming requests

from remote nodes through thetransportservice;activationandexecutionservices en-
sure request completion.

Hence, theµBrokermanages resources and coordinates middleware services to en-
able communication between nodes and the processing of incoming requests. Specific
middleware functions are delegated to the seven services wepresented in previous sec-
tion. TheµBroker is the dispatcher of our middleware architecture.

Several “strategies” have been defined to create and use middleware resources: in
[PSCS01], the authors present different request processing policies implemented in
TAO; the CARISM project [KP04], allows for the dynamic reconfiguration of commu-
nication channels. Accordingly, theµBroker is configurable and provides a clear design
to enable verification. Figure 2 describes the basic elements of theµBroker.

Fig. 2. Overview of theµBroker

TheµBroker Core APIhandles interactions with other middleware services.
The µBroker Tasking Policycontrols task creation in response to specific events

within the middleware, e.g. new connection, incoming requests;
The µBroker Controllermanages the state automaton associated to theµBroker.

It grants access to middleware internals (tasks, I/O and queues) and schedules tasks
to process requests or run functions in theµBroker Core. Several policies control it:
the Asynchronous Event Checkingpolicy sets up the polling and data read strategies
to retrieve events from I/O sources; theBroker Schedulerschedules tasks to process
middleware jobs (polling, processing an event on a source ora request). TheRequest
Schedulercontrols the specific scheduling of requests; theLane_Rootcontrols request
queueing; theRequest Schedulercontrols thread dispatching to execute requests.

These elements are defined by their interface and a common high-level behavioral
contract. They may have multiple instances, each of which refines their behavior, al-
lowing for fine tuning. We implemented several instances of these policies to support
well-known synchronization patterns.

The schizophrenic middleware architecture proposes one comprehensive view of
one middleware architecture. This architecture is defined around a set of canonical com-
ponents, one per key middleware’s function, and theµBroker component that coordinate
and allocates resources to actually execute them.

This allows for an iterative process to build new distribution feature and support
new models: one can build new services and bind them to theµBroker. These services
form the root of the distribution feature, exported to the user through dedicated API or
code generator. We detail the later in the next section.

3.7 A methodology to design new personalities

A methodological guide details the different steps to instantiate PolyORB (figure 3)
from a specific set of application requirements and the implied distribution model (step
1). It is intended to give the user the proper knowledge to tailor PolyORB. There are
several ways to adapt PolyORB to the application requirements (step 2):

– Use an existing personality. PolyORB already comes with CORBA, RT-CORBA,
DSA, MOMA (Ada-like JMS), DDS and the existing configurationparameters;

– Design a new personality: design or refine some of the fundamental components,
by re-using fundamental components already developed fromexisting personalities
or from the neutral core; overloading them or designing new variant of fundamental
components from scratch.
Note that when a new personality is designed, we get back to the generic architec-
ture (step 3) to decide whether the new features would be useful for other person-
alities. In this case, there are two possible policies:

– This feature has a simple and generic enough implementationthat can be reused by
other personalities, then the feature is integrated in the pool of neutral core layer
components, e.g. concurrency policies, low-level transport;

– This feature is intrinsically specific to a personality, theimplementation enhance-
ment is kept at the level of the protocol or application personalities, e.g. GIOP
message management, DDS specific API.

Finally the user derives one assembly of components: the fine-tuned middleware
adapted to its initial needs (step 4).

This procedure may also be repeated to adapt more precisely components, allowing
for evolving design of some core elements without impeding the whole assembly.

In this section, we have defined the middleware architectureand associated method-
ology used to implement middleware. We enforce a strong separation of concerns be-
tween the different functions involved in the middleware and we combine them to form
the required implementation. Such a process proved its efficiency when implementing
DDS on top of PolyORB [HKP06].

3.8 Formal verification

In this section, we discuss the formal techniques used to model theµBroker, and then
verify some of its expected properties using model-checking.

R e p o s i t o r yo f P o l y O R Bc o m p o n e n t s S e l e c t e x i s t i n gc o m p o n e n t sA d a p t / C r e a t ec o m p o n e n t sA p p l i c a t i o n � t u n e dm i d d l e w a r e
A p p l i c a t i o nr e q u i r e m e n t s D i s t r i b u t i o nm o d e l(1)(2)(3) (4)

Fig. 3.Designing new personalities

Modeling one middleware configuration We propose to use formal methods to model
and then verify our system. We selectedWell-formed colored Petri nets[CDFH91] as
an input language for model checking. They are high-level Petri nets, in which tokens
are typed data holders. This allows for a concise and parametric definition of a system,
while preserving its semantics. Using these methods, we cannow model our architec-
ture using Petri nets as a language for system modeling and verification (figure 4).

Communication
places

Initial Marking
for scenario

1. Models library

2. Assembling a configuration 3. Evalutating one configuration

Fig. 4.Steps of theµBroker modeling

Step 1:we build one Petri net for each middleware components variation. Petri net
transitions represent atomic actions; Petri net places areeither middleware states or
resources. Common places between different modules define interactions between Petri
nets modules, they act aschannel places[Sou89].

Step 2:for one configuration of theµBroker, some Petri net modules are selected
to produce the complete model. Communications places (outlined in black) represent
links to otherµBroker functions or to middleware services.

Step 3:the selected modules are merged to produce a global model, itrepresents one
middleware configuration. This model and one initial marking enable the verification
of the middleware properties.

Then, middleware functions can be separately verified and then combined to form
the complete Petri net model. Many models can be assembled from a common library
of models. Thus, we can test for specific conditions (policies and settings).

The initial marking of the Petri Net defines available resources (e.g. threads, I/Os);
or sets up internal counters. Its state space covers all possible interleaving of atomic
actions; thus all possible execution orders are tested.

µBroker configurations and models In this section, we review the key parameters
that characterize theµBroker, and some of the properties one might expect from sucha
component.

TheµBroker is defined by the set of policies and the resources it uses. These settings
are common to a large class of applications. We consider one middleware instance, in
server mode, that processes all incoming requests. We studytwo configurations of the
µBroker:Mono-Tasking(one main environment task) andMulti-Tasking(multiple tasks,
using the Leader/Followers policy described in [PSCS01]).The latter allows for parallel
request processing.

We assume that middleware resources are pre-allocated: we consider a static pool of
threads; a bounded number of I/O sources and one pre-allocated memory pool to store
requests. This hypothesis is acceptable: it corresponds totypical engineering practices
in the context of critical systems. Our implementations andthe corresponding models
are controlled by three parameters:

Smax is the upper bound of I/O Sources listening for incoming data;
Tmax is the number of Threads available within the middleware;
Bsize is the size of the Buffer allocated to read data from I/O sources.
Smax andTmax define a workload profile for the middleware node,Bsizedefines con-

straints on the memory allocated by theµBroker to process requests. These parameters
control middleware throughput and execution correctness.

We list three essential properties of our component. They represent basic key prop-
erties our component must verify to fulfill its role.

P1, no deadlockthe system process all incoming requests;
P2, consistencythere is no buffer overflow;
P3, fairnessevery event on a source is detected and processed.
P1, P3 are difficult to verify only through the execution of some test cases: one has

to examine all possible execution orders. This may not be affordable or even possible
due to threads and requests interleaving. Besides, the adequate dimensioning of static
resources to ensure consistency (P2) is a strong requirement for DRE systems, yet it is
a hard problem for open systems such as middleware. Thus, we propose to verify them
for some configuration of theµBroker: each property is expressed as a LTL formula,
then verified by model-checker tools.

Achieving formal analysis One known limit to the use of Petri Nets as model checker
is the combinatorial explosion when exploring the system’sstate space.

We tackle this issue using recent works carried out at the LIP6. By detecting of
the symmetries of a system [TMDM03], and exploiting the symmetries allowed by a
property [BHI04]. In most favorable cases, these methods require exponentially smaller

memory space than traditional method based on full enumeration, and thus more amenable
to computations within reasonable delays.

Thus, we claim that the analysis of PolyORB could not have been performed with-
out the use of model checking because of the large number of states. As an illustration,
even for common middleware configurations (up to 17 threads)the system presents over
6.56×1017 states, but we could compute and evaluate its properties on the model using
advanced tools.

This verification experience is a proof of feasibility. New tools are a prerequisite to
ease the structuring, and production of a formal specification of a middleware dedicated
to application requirements. Such a specification would enable both the verification and
the code generation the corresponding implementation

In the following, we illustrate how an architecture definition language such as the
AADL enables us to define such a process and support tools.

4 A Process to Build Tailorable and Verifiable Middleware

The schizophrenic architecture allows for a fine tailoring of the middleware. It also per-
mits formal verification on a given middleware instance. In order to help the configura-
tion of the middleware, we need a way to capture the application needs and then build
the corresponding middleware. In this section we explain our methodology to design
and build a distributed application with its particular middleware, using the AADL.

4.1 Overview of the AADL

A few ADLs explicitly deal with real-time systems. Examplesare ROOM [RSRS99]
and AADL [Lew03]. An AADL model can incorporate non-architectural elements:
embedded real-time characteristics of the components (execution time, memory foot-
print. . .), behavioral descriptions, etc. Hence it is possible to use AADL as a backbone
to describe all the aspects of a system.

“AADL” stands for Architecture Analysis & Design Language.It aims at describing
DRE systems [FLV00] by assembling blocks separately developed. In this section we
describe the AADL and show how it can be used to describe application components.

The AADL [SAE04b] allows for the description of both software and hardware
parts of a system. It focuses on the definition of clear block interfaces, and separates the
implementations from these interfaces. It can be expressedusing graphical and textual
syntaxes; an XML representations is also defined to ease the interoperability between
tools.

An AADL description is made ofcomponents. The AADL standard defines soft-
ware components (data, threads, thread groups, subprograms, processes), execution
platform components (memory, buses, processors, devices)and hybrid components
(systems). Components model well identified elements of theactual architecture.Sub-
programsmodel procedures like in C or Ada.Threadsmodel the active part of an appli-
cation (such as POSIX threads).Processesare memory spaces that contain thethreads.

Thread groupsare used to create a hierarchy among threads.Processorsmodel micro-
processors and a minimal operating system (mainly a scheduler).Memoriesmodel hard
disks, RAMs, etc.Busesmodel all kinds of networks, wires, etc.Devicesmodel sensors,
etc. Unlike other components,systemsdo not represent anything concrete; they actually
create building blocks to help structure the description.

Component declarations have to be instantiated into subcomponents of other com-
ponents in order to model an architecture. At the top-level,a system contains all the
component instances. Most components can have subcomponents, so that an AADL
description is hierarchical. A complete AADL description must provide a top-level sys-
tem that will contain the other components, thus providing the root of the architecture
tree. The architecture in itself is the instantiation of this system.

The interface of a component is calledcomponent type. It providesfeatures(e.g.
communication ports). Components communicate one with another byconnectingtheir
features. To a given component type correspond zero or several implementations. Each
of them describe the internals of the components: subcomponents, connections between
those subcomponents, etc. An implementation of a thread or asubprogram can specify
call sequencesto other subprograms, thus describing the execution flows inthe archi-
tecture. Since there can be different implementations of a given component type, it is
possible to select the actual components to put into the architecture, without having to
change the other components, thus providing a convenient approach to configure appli-
cations.

The AADL defines the notion ofpropertiesthat can be attached to most elements
(components, connections, features, etc.). Properties are attributes used to specify con-
straints or characteristics that apply to the elements of the architecture: clock frequency
of a processor, execution time of a thread, bandwidth of a bus, etc. Some standard prop-
erties are defined; but it is possible to define one’s own properties.

Refining Architectures The AADL syntax allows for great flexibility in the precision
of the descriptions. In the listing 1.1, we describe a process that receives messages
(modeled by an event data port). Such a description is very vague, since we do not
give any details about the actual structure of the process (e.g. how many threads?). Yet
it is perfectly correct regarding the AADL syntax, and provides a first outline of the
architecture specification.

1 data message
2 end message;
3

4 process receiver_process
5 features
6 msg : in event data port message;
7 end receiver_process;

Listing 1.1. Simple example of an AADL description

We can refine the architecture by providing an implementation of the process. Here
we choose a very simple implementation, with one single thread that calls the user ap-
plication (listing 1.2). We use an AADL standard property toindicate that the thread is
dispatched aperiodically. The thread is to be executed uponthe reception of a message.

We could also define other implementations, with several threads to process the
incoming messages or perform other tasks. This facilitatesthe refinement of a given
architecture: We can start by defining the outline of the architecture (listing 1.1), and
then create implementations of the components (listing 1.2).

9 process implementation receiver_process.implem
10 subcomponents
11 thr1 : thread receiver_thread.implem;
12 connections
13 connect1 : event data port msg -> thr1.msg;
14 end receiver_process.implem;
15

16 thread receiver_thread
17 features
18 msg : in event data port message;
19 properties
20 dispatch_protocol => aperiodic;
21 end receiver_thread;
22

23 thread implementation receiver_thread.implem
24 calls
25 {user_app : subprogram application};
26 connections
27 parameter msg -> user_app.msg;
28 end receiver_thread.implem;
29

30 subprogram application
31 features
32 msg : in parameter message;
33 end application;

Listing 1.2. Implementation of the process

Our model is partial and does not include any hardware component: we do not spec-
ify on what processor the process is running, etc. Such information should be provided
when designing the complete architecture: the processes that send messages, the pro-
cessors, associated memories and potential buses if there are several processors. The
model is precise enough for the scope of this paper, though. In the following sections,
we focus on the receiver thread.

4.2 Overview of the Methodology

Given its ability to describe both software and hardware components, the AADL per-
fectly fits our needs. We can use it to completely describe distributed architectures and
capture all the necessary parameters. In addition, it has the ability to support a step-
by-step design process based on the refinement of architecture. Thus it allows for a
progressive approach in the architecture modeling.

The figure 5 illustrates our approach to design the middleware. We use the AADL
to describe the application. From the application description, we can deduce the re-
quired parameters for the middleware (scheduling policy, data types, etc.) and extract

Fig. 5.Application generation based on the AADL

an adequate configuration; it is then possible to create an AADL description of the un-
derlying middleware. We can then generate formal description from the AADL model
and perform model checking. Once verifications have been performed, we can generate
the code for the application and the middleware.

4.3 Modeling the middleware architecture using the AADL

The schizophrenic architecture provides a clear structureto create tailorable middle-
ware. A notation such as the AADL syntax can be used to describe a schizophrenic
middleware instance, in order to rapidly configure and deploy a tailored middleware
that meets the application requirements.

Architectural description of the middleware components Middleware is the lower
part of an application; it can be viewed as a software component (or a set of soft-
ware components) on which the user application relies. Given its modular structure, the
schizophrenic architecture shall be modeled by a set of AADLsoftware components.

Overall design Middleware is a part of the application. Hence a middleware architec-
ture shall be described using software components: a set ofsubprogramscalled by one
or morethreads(depending on the middleware configuration);datacomponents model
the data structures exchanged between the subprograms.

The subprograms should be organized so that they reflect the seven canonical ser-
vices and theµBroker of the schizophrenic architecture.

Subprograms cannot be subcomponents of a system, since theydo not model “au-
tonomous” components. Hence the schizophrenic architecture cannot be represented
as a set of systems. Consequently, the description is to be organized as a collection
of packages containing subprograms and data; the packages should reflect the logical
organization of the architecture.

Basically, the model should then have seven packages containing the subprograms
associated with the seven basic services; the components ofthe µBroker, which con-
stitutes the middleware “heart”, should also be materialized as a package. Finally, the

different subprograms and data modeling the personalitiesshould be defined into sep-
arate packages. Other “tools”, such as socket managers, could be defined into separate
packages.

Each service can actually be modeled as a few main subprograms that are called
from other parts of the architecture. Such subprograms shall be placed into the public
sections of the packages, while more internal subprograms shall be defined into the
private part.

Middleware configuration The middleware configuration is either given by its archi-
tectural description, or by some properties associated to the components.

The personalities to use for a given configuration are materialized by the actual
packages and components used to describe the architecture.The actual number of
threads to use is set by describing them in the architecture.

Some configuration elements such as the tasking policy deal with the behavioral
description of the system, not its architecture; yet it is possible to specify them within
theµBroker, using user-defined properties.

The configuration of some services can be specified by providing a particular com-
ponent implementation. For example, the activation service can either be a mere list as-
sociating references to procedures, or or more evolved mechanism with priorities, like
CORBA’s POA. Those two possibilities correspond to two different implementations of
the same subprogram type.

4.4 Using AADL to verify the middleware

We now explain how to convert the AADL description into a Petri net and in source
code; we show how to integrate existing behavioral descriptions associated with AADL
components into the generated Petri net.

Using the AADL to support the construction of verifiable systems The AADL in
itself only focuses on the description of the system architectures. Hence, unlike the
UML, it does not aim at providing a complete and integrated set of syntaxes to describe
all aspects of a model. Instead, the AADL facilitates the integration of other description
paradigms within the architectural description, the latter one providing containers for
the former ones. This allows for the reuse of “legacy” paradigms instead of imposing a
specific syntax.

The integration of third-party languages within the AADL isdone through proper-
ties or annexes. We privilege the use of AADL properties since it facilitates the use of a
repository of behavioral descriptions that can be referenced by the AADL components.
This allows for a clear separation between the architectural and behavioral descriptions.

Mappings must be defined in order to describe how to merge behavioral description
into the AADL elements. The AADL standard defines mappings for Ada and C lan-
guages [SAE04a]. Translations have also been defined between the AADL error model
and Petri nets [RKK06], thus allowing the use of existing verification and dependability
evaluation tools.

Fig. 6.Principle of an architecture-driven mapping for the AADL

Our approach focuses on the integration of behavioral descriptions within AADL ar-
chitectures. Thus, behavioral implementations are controlled by the runtime built from
AADL descriptions, which helps ensure the consistency between AADL model and re-
sulting application. The figure 6 illustrates the principles of our mappings: behavioral
descriptions (in white) are encapsulated by a runtime generated from the AADL de-
scription (in grey). We now give an overview of a mapping fromAADL constructions
to Petri nets and Ada.

Mapping AADL constructions to Petri Nets and source codeWe aim at using the
AADL to coordinate formal verification and code generation.To do so, we defined rules
to produce a Petri net or Ada code from AADL descriptions. Using these mappings we
can generate a complete Petri net from the assembly of AADL components, each of
them characterized by its own Petri net (such the nets described in section 3.8); once
we ensure the architectural constructions are valid, we cangenerate the correspond-
ing source code. This allows to perform verification on the whole system before code
generation.

The AADL elements to map into Petri nets are the software components. Indeed,
execution platform components are used to model the deployment of the software com-
ponents; such deployment information is not to in the scope of Petri nets. AADL threads
and AADL subprograms are the most important components, since they describe the
actual execution flows in the architecture. AADL processes and systems are actually
boxes containing threads or other components, and do not provide any “active” seman-
tics; data components are not active components either.

The mapping for source code takes the same components into account. However,
some components, such as AADL threads and processes, represent the AADL runtime.
Thus they do not exactly correspond to code generation; the configuration of the AADL
runtime is set from the information provided by these components. The table 1 lists the
main rules of the mappings.

The Petri net mapping mainly consists of translating the AADL execution flows.
Components that do not have any subcomponents nor call sequences are modeled by a
transition that consumes inputs and produces outputs. Component features are modeled
by places.

AADL corresponding Petri net corresponding Ada code
data data_type
end data_type ; not translated in Petri nets type data_type is null record;

subprogram a_subprogram
features

input_1 : in parameter;
input_2 : in parameter;
output : out parameter;

enda_subprogram;

c o m p o n e n t _ o p e r a t i o ni n p u t _ 1c o n t r o l _ e n t r y
c o n t r o l _ e x i t o u t p u t

i n p u t _ 2
procedurea_subprogram

(input_1 : in data_type ;
input_2 : in data_type ;
output : out data type)

is
begin

null ;
end;

process a_process
features

input_1 : in data port data_type ;
input_2 : in data port data_type ;
output : out data port data_type ;

end a_process ;

c o m p o n e n t _ o p e r a t i o ni n p u t _ 1
o u t p u t

i n p u t _ 2
correspond to a middleware instance

connection :
data port output −> input; < v >< v > i n p u to u t p u tc o n n e c t i o n

handled by the middleware

connection :
connect : parameter output−> input;

< v >< v 2 >o u t p u t _ v a r1 < c , v >< c , v >< c , v > s u b p r o g r a m
i n p u to u t p u tc o n n e c t i o n −− procedure subprogram_a (output: out data_type);

−− procedure subprogram_b (input : in data_type);
subprogram_a (connect);
subprogram_b (connect);

Table 1.Main patterns of the mapping between the AADL Petri nets and source code

We model a place per feature. This systematic approach help the user identify the
translation between AADL models and corresponding Petri nets. In addition, it facili-
tates the expansions of the feature places. For example, we might want to describe the
queue protocols defined by the AADL properties: in this case we would replace each
place by Petri nets modeling FIFOs or whatever type of queue is specified by the AADL
properties.

Connections between features are modeled by transitions. We distinguish connec-
tions between subprograms parameters and between other component ports.

Tokens stored in input features are to be consumed by component or connection
transitions; tokens produced by component or connection transitions are stored in output
features. Components that have subcomponents are modeled by merging the component
transition with the subcomponent nets.

If an AADL port is connected to several other ports at a time, the Petri net transition
shall be connected to all the corresponding places: a token will be sent to each target
place, thus modeling the fact that each destination port receives the output of the initial
port.

Call sequences are made of subprograms that are connected. We use an extra token
to model the execution control. There is a single execution control token in each thread

or subprogram, thus reflecting the fact that there is no concurrency in call sequences,
and in threads and subprograms in general.

It is important to note that this mapping only provides a solution to transform AADL
construction into Petri nets. Therefore it cannot produce accurate description of the
behaviors of the components, since it is out of the scope of the AADL. Proper behavioral
description is achieved by inserting existing Petri nets into the framework generated
from the AADL description. It consists of merging the descriptions of the components
and the net generated, thus merging the transitions and places of the AADL threads
and subprograms with the ones contained in the behavioral Petri net. The Petri net
descriptions that corresponds to the behaviors of the AADL components should be set
using AADL properties.

Defining a mapping between AADL constructions and Petri netsallows to perform
verification on the structure of the architecture. Yet, it ismandatory to ensure the actual
source code of the system will conform to the Petri net. This implies that the map-
ping between AADL and programming languages must be consistent with the Petri net
mapping.

To ensure this consistency, the mapping we provide for source code relies on the
same principles as for Petri nets [VZ06]. We only only give a very brief and incomplete
overview of it in table 1. The source code mapping is basically a translation between the
AADL subprogram constructions and Ada. Using both mappingsin conjunction ensure
that the Petri net used for the model checking of the AADL architecture effectively
reflects the actual source code implementation of the architecture.

4.5 Using AADL to generate the middleware

We showed how the AADL and the definition of mappings from AADLto formal no-
tations allow us to define a prototyping-based process of DREsystem conception.

The initial AADL description can then be refined, according to the feedback pro-
vided by the model checking performed on the Petri nets. Oncethe behavior has been
validated, we can generate the corresponding source code and then perform tests on the
actual system. The AADL architecture can again be refined, according to the results of
the tests.

In order to validate our approach, we created a complete AADLtool suite, Oca-
rina [VZ06], which can be used as a compiler for the AADL. As a support tool for
verifying AADL model, Ocarina can take AADL descriptions asinput and perform
various operations, such as the expansion of architecturaldescriptions or the genera-
tion of Petri net description as well as compilable source code. It can also be integrated
within other applications to provide AADL functionalities.

The code generator of Ocarina can produce Petri net models described in PetriScript [HR].
PetriScript is a text language that facilitates the description of Petri nets and allows to
automate building operations, such as fusion of places or transitions, etc.

Ocarina can generate Ada source code that can be run by an instance of PolyORB.
It also generates a tailored application personality and configures PolyORB to embed
all the required features. We use PolyORB as an AADL runtime and allows one to build
distributed applications defined as an AADL model.

Hence, Ocarina helps us to support the generation of tailored middleware, as illus-
trated on figure 5: from the AADL description of a distributedapplication, we can infer
the description of the middleware instances for each application node, and then produce
the corresponding Petri net and source code.

5 Conclusions and Perspectives

Although middleware is now a well-established technology that eases the development
of distributed applications, many challenges remain opened. We noted that two key
issues are the tailorability of the middleware to versatileapplication requirements, and
the capability of the middleware to provide full proofs of its properties. In this paper,
we provided an overview of our ongoing research work on thesetwo aspects.

We first noted that middleware architecture impedes tailorability and verification.
Therefore, we proposed and validated the “schizophrenic” middleware architecture.
This architecture is a high-level model of middleware that gathers key concepts in mid-
dleware, addressing the definition of the key functions and the way to combine them.

Its genericity allows one to derive specific distribution models. PolyORB, our im-
plementation demonstrates how this architecture can help designer to easily build mid-
dleware. This middleware is now used as a COTS in industrial projects, providing sup-
port for CORBA, DDS and still providing a high level of tailorability.

A methodological guide exists to help this adaptation work.Our measures show that
the performance of the adapted middleware are close to existing middleware. Besides,
the adaptation work is greatly reduced by the high-level of code reuse.

Finally, the schizophrenic architecture allows formal verification techniques. We
illustrated how Petri nets allowed us to provide the first formal proofs of the behavioral
properties of our COTS middleware. We consider that The middleware is not a blackbox
that should be discarded from the verification process.

However, this remains a complex task that belongs to middleware or verification
expert domains. Then, we noted that tools are required to conduct these two important
steps in building tailored middleware.

We chose the AADL as a backbone language to help the user specify its applica-
tion requirements. Dedicated tools are applied to the modelto 1/ verify it is correct,
2/ generate the corresponding code and configuration of the support middleware. This
provides a first step towards the definition of a “middleware factory” that would enable
application designers to instantiate the middleware they actually need. This would re-
duce complexity in the design of distributed applications by removing the complexity
in configuring and using middleware APIs.

Future work will complete and evaluate the benefits of such middleware factory as
a supporting process to build specific middleware configuration for DRE systems.

References

[AdSSK03] L. Apvrille, P. de Saqui-Sannes, and F. Khendek. TURTLE-P: Un profil UML pour
la validation d’architectures distribuees. InColloque Francophone sur l’Ingénierie
des Protocoles (CFIP), Pparis, France, October 2003. Hermes.

[BHI04] Soheib Baarir, Serge Haddad, and Jean-Michel Ilié. Exploiting Partial Symmetries
in Well-formed nets for the Reachability and the linear Time Model Checking Prob-
lems. InProceedings of the 7th Workshop on Discrete Event Systems (WODES’04),
Reims, France, septembre 2004.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. Pattern-Oriented Software Architecture: A System of Patterns. John Wiley &
Sons, New York, 1996.

[BSPN00] R. Bastide, O. Sy, P. Palanque, and D. Navarre. Formal specifications of corba
services: Experience and lessons learned. InProceedings of the ACM Con-
ference on Object-Oriented Programmng, Systems, Languages and Applications
(00PSLA’2000), Minneapolis, Minnesota, USA, 2000.

[Bud03] T. J. Budden. Decision Point: Will Using a COTS Component Helpor Hinder Your
DO-178B Certification Effort. STSC CrossTalk, The Journal of Defense Software
Engineering, November 2003.

[CDFH91] G. Chiola, C. Dutheillet, G. Franceschini, and S. Haddad. On Well-Formed Coloured
Nets and their Symbolic Reachability Graph.High-Level Petri Nets. Theory and
Application, LNCS, 1991.

[DDH+03] William Deng, Matthew B. Dwyer, John Hatcliff, Georg Jung, Robby, and Gurdip
Singh. Model-checking middleware-based event-driven real-time embedded soft-
ware. InProceedings of the First International Symposium on Formal Methods for
Components and Objects (FMCO 2002), March 2003.

[DHTS98] B. Dumant, F. Horn, F. Dang Tran, and J-B. Stefani. Jonathan: an open distributed
processing environment in java. InProceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing. Springer-Verlag,
1998.

[FLV00] P. H. Feiler, B. Lewis, and S. Vestal. Improving predictability in embedded real-time
systems. Technical Report CMU/SEI-2000-SR-011, université Carnegie Mellon, De-
cember 2000. http://la.sei.cmu.edu/publications.

[HKP06] Jérôme Hugues, Fabrice Kordon, and Laurent Pautet. A framework for DRE middle-
ware, an application to DDS. InProceedings of the 9th IEEE International Sympo-
sium on Object-oriented Real-time distributed Computing (ISORC’06), pages 224–
231, Gyeongju, Korea, Avril 2006. IEEE.

[HR] A. Hamez and X. Renault.PetriScript Reference Manual. LIP6,http://www-src.
lip6.fr/logiciels/mars/CPNAMI/MANUAL_SERV.

[ISO94] ISO. Quality management and quality assurance - vocabulary. ISO, 1994. ISO
8402:1994.

[Jon94] Bengt Jonsson. Compositional specification and verification of distributed systems.
1994.

[KP04] M. Kaddour and L. Pautet. A middleware for supporting disconnections and multi-
network access in mobile environments. InProceedings of the Perware workshop
at the 2nd Conference on Pervasive Computing (Percom), Orlando, Florida, USA,
March 2004.

[KP05] F. Kordon and L. Pautet. Toward next-generation toward next-generation middle-
ware?IEEE Distributed Systems Online, 5(1), 2005.

[LAA04] LAAS. The RT-LOTOS Project, 2004.http://www.laas.fr/RT-LOTOS.
[Lew03] B. Lewis. architecture based model driven software and system development

for real-time embedded systems, 2003. available athttp://la.sei.cmu.edu/
aadlinfosite/LinkedDocuments/.

[MPY+04] Atif Memon, Adam Porter, Cemal Yilmaz, Adithya Nagarajan, DouglasC. Schmidt,
and Bala Natarajan. Skoll: Distributed Continuous Quality Assurance. InPro-

ceedings of the 26th IEEE/ACM International Conference on Software Engineering
(ICSE), Edinburgh, Scotland, May 2004.

[PSCS01] I. Pyarali, M. Spivak, R. Cytron, and D. C. Schmidt. Evaluating and Optimizing
Thread Pool Strategies for RT-CORBA. InProceedings of the ACM SIGPLAN work-
shop on Languages, compilers and tools for embedded systems. ACM, 2001.

[RGS95] R. Rajkumar, M. Gagliardi, and L. Sha. The Real-Time Publisher/Subscriber Inter-
Process Communication Model for Distributed Real-Time Systems: Designand Im-
plementation. InProceeding of the 1st IEEE Real-Time Technology and Applications
Symposium, Denver, Colorado, USA, May 1995.

[RKK06] A.-E. Rugina, K. Kanoun, and M. Kaâniche. Aadl-based dependability modelling.
Technical Report 06209, LAAS-CNRS, apr 2006.

[RSRS99] B. Rumpe, M. Schoenmakers, A. Radermacher, and A. Schürr. UML + ROOM as a
standard ADL? InProc. ICECCS’99 Fifth IEEE International Conference on Engi-
neering of Complex Computer Systems, 1999.

[SAE04a] SAE. Aadl, annex d: Language compliance and application program interface. avail-
able athttp://www.sae.org, sep 2004.

[SAE04b] SAE. Architecture Analysis & Design Language (AS5506). available athttp:
//www.sae.org, sep 2004.

[SB03] D.C. Schmidt and F. Buschmann. Patterns frameworks and middleware: Their syner-
gistic relationships. InProceedings of the 25th International Conference on Software
Engineer ing, 2003.

[SLM98] D. Schmidt, D. Levine, and S. Mungee. The design and performance of real-time
object request brokers.Computer Communications, 21, april 1998.

[Sou89] Y. Soussy. Compositions of Nets via a communication medium. In10th International
Conference on Application and theory of Petri Nets, Bonn, Germany, June 1989.

[TMDM03] Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. Automatic symmetry detection
in well-formed nets. InProc. of ICATPN 2003, volume 2679 ofLecture Notes in
Computer Science, pages 82–101. Springer Verlag, juin 2003.

[VHPK04] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB: a schizophrenic mid-
dleware to build versatile reliable distributed applications. InProceedings of the
9th International Conference on Reliable Software Techologies Ada-Europe 2004
(RST’04), Palma de Mallorca, Spain, June 2004.

[VZ06] T. Vergnaud and B. Zalila. Ocarina: a Compiler for the AADL. Technical report,
Télécom Paris, 2006. available athttp://ocarina.enst.fr.

