
An approach to model variations of a scenario:

Application to Intelligent Transport Systems

Fabien Bonnefoi2, Lom Messan Hillah1, Fabrice Kordon1, and Guy Frémont2

1 Université P. & M. Curie, LIP6-CNRS, 4 Place Jussieu, 75005 Paris, France
lom-messan.hillah@lip6.fr, fabrice.kordon@lip6.fr

2 Cofiroute DSO/R&D, 6 - 10 rue Troyon, 92310 Sèvres - France
fabien.bonnefoi@cofiroute.fr, guy.fremont@cofiroute.fr

Summary. Modern distributed systems tend to integrate more and more features
and components that increase their complexity and size. This often leads to the
decomposition of such systems into multiple parts to overcome the complexity of
their modeling and analysis. In this paper, we present a modeling methodology
for systems engineering based on a modular approach. The methodology relies on
the definition of components and assembling rules to model complex systems. It
is founded on formal specification formalisms and tools to enable model checking.
This paper proposes an example by which we apply this methodology on a complex
system from the domain of Intelligent Transport Systems.

1 Introduction

Modern distributed systems tend to integrate more and more features that
increase their complexity such as mobility, a variable number of components
during execution or complex physical and time constrained mechanisms (i.e.
braking distance or any similar complex function).

An excellent example of such systems is illustrated in Intelligent Transport

Systems (ITS) where road operators, the infrastructure, vehicles, their drivers
and other road users must cooperate for an efficient and secure system. Such
systems are even more complex to analyze than previous distributed systems
and require more reliability.

These distributed systems have such specific strategies that it is useless to
imagine a short-term solution ”in the large” that will fit numerous applica-
tions. We prefer to take into consideration the specificities of the application
domain by selecting the appropriate model and designing an accurate meth-
odology. Then, it is of interest to consider that these distributed systems are
centered on the notion of ”case studies” where execution scenarios are elabor-
ated and analyzed. This approach is practiced in ITS projects [3]. Moreover,
paradigms such as client/server, that allow the reuse of Object Oriented Ap-
proach, cannot scale up to the needs of such systems.



2 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

Major actors in companies or institutions dealing with critical applications
acknowledge that formal methods are necessary, but that new techniques are
needed to face the combinatorial explosion problem when dealing with large
industrial systems [11]. Consequently, there is a need for specific methodology
and tools to design and analyze them.

The purpose of this paper is to present a modeling methodology based
on formal methods and tools that allow the assessment of implementation
choices in distributed systems. We focus on techniques to easily change com-
ponents and assembling operations to define new models, thus allowing for the
reuse of components in different model architectures or case study scenarios.
Thanks to these techniques, the definition of variations of scenarios within a
short time, with minimum effort and maximum reusability can be performed.
This methodology enables formal verification of complex systems composed
of discrete and continuous events.

Our approach focuses on:

• a modular design centered on a model architecture;
• a way to integrate complex physical functions into the system specification;
• a connection to formal methods to achieve qualitative analysis.

The paper is structured as follows. The first part presents an analysis of
Intelligent Transport Systems context and some related work on formal meth-
ods in Sect. 2. Section 3 presents our methodology based on formal methods.
Then, Sect. 4 details a safe insertion case study, its architecture and scenario.
In Sect. 5 we present modeled components and the assembling operations.
Finally, the analysis of the system is discussed in Sect. 6.

2 Related work

In this paper we are mainly interested in qualitative analysis of systems and
quantitative evaluation is not considered yet. However, these systems also have
continuous characteristics we must cope with.

Here, we first present the context of intelligent Transport Systems as a
good example of such modern complex systems. After which, we present a
brief overview of the ongoing work around modeling and analysis using formal
methods.

2.1 The context of ITS

Several recent Intelligent Transport Systems projects aim at providing assist-
ance to drivers and deal with partially automated motorways. The community
investigated first a full automated infrastructure and vehicles approach (like
in the PATH [15] project) in the 1990’s. This approach was then dropped in
favor of a new line of research and development activities, more centered on



An approach to model and analyze variations of a scenario 3

safety strategies in various “problem areas”, such as “Lane Change and Merge
Collision Avoidance”, “Intersection Collision Avoidance” or “Safety Margin
for Assistance Vehicles” [17].

This vision relies on Cooperative Systems where “road operators, infra-
structure, vehicles, their drivers and other road users will cooperate to deliver
the most efficient, safe, secure and comfortable journeys” [5]. Implementing
these systems components then follows a peer-to-peer organization where each
actor or component must fully cooperate in a time-constrained and safety-
critical environment. Many different implemented features need the particip-
ation of all or some of the components and the use of complex algorithms.

Such systems are even more complex to analyze than previous distributed
systems. Moreover, they require more reliability. Consequently, there is a need
for specific methodology and tools to design and analyze them.

2.2 Formalisms for systems modeling and analysis

There exists a wide range of specification languages to model and analyze sys-
tems, at various levels of abstraction. For example, for sequential processes,
it is possible to use transition systems or automata. When considering co-
operative concurrent processes, process algebras or Petri nets are interesting
choices.

We are working on the behaviors of large hierarchical distributed systems
composed of cooperative systems on which we want to apply formal methods.
The fundamental underlying approach is to perform formal verification of
safety properties on those systems. Since we are quite familiar with Petri nets
formalism which brings an extensive theory with a well developed mathemat-
ical model, we have decided to consider its modeling and analysis capabilities.

It is known that colored Petri nets [22] are suitable to formally specify the
behavior of distributed systems. The proposed approach in this paper aims
at verifying complex and hierarchical distributed systems in which we should
cope with discrete concurrent events as well as their continuous aspects.

Therefore, the choice of a modeling formalism or a combination of modeling
formalisms must take into account qualitative analysis, along with continuous
characteristics. Petri Nets are suitable for such an approach by providing
properties like boundness, liveness, evaluation of temporal logic formulae, etc.
They were developed to allow for efficient verification techniques associated
with a powerful expressivity [12].

There are other approaches combining Petri Nets with semi-formal nota-
tions, such as UML [2] or AUML [6]. Typically, in [2], systems are described by
means of Statecharts and Sequence Diagrams, “emphasizing specific patterns
of interactions among Statecharts”. A translation to Generalized Stochastic
Petri Nets (GSPNs) is then provided. Compositionality is a key concept to
build the final model. Using such a technique, validation and performance
evaluation are the chief objectives.



4 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

An important technique related to qualitative analysis we want to evaluate
and improve is the encoding of complex functions in Petri nets through dis-
cretization (discussed in section 3.3). High Level Petri Nets [18] seem from the
first standpoint an interesting notation to put into work. They provide much
flexibility in terms of types definition as well as functions definition. However,
these capabilities induce complexity in structural analysis and model checking
that current tools cannot handle yet.

3 Modeling methodology

In this section we describe our modeling methodology in different steps lead-
ing to a complete set of models. This methodology is sketched in Fig. 1. As
a development approach, it strongly relies on a generic model architecture
gathering components of the system.S c e n a r i os p e c i f i c a t i o n a r c h i t e c t u r eM 1 M 2M 3 M 4 M 1 M 2M 3 M 4C o m p o n e n t m o d e ll i b r a r yS c e n a r i oc o n f i g u r a t i o nl a r g eP e t r in e tT o w a r d s v e r i f i c a t i o n w i t h d e d i c a t e d t o o l s

1 24
3

Fig. 1. Overview of the modeling and assembling methodology

3.1 Defining the case study

The main idea is that, for a situation (an ITS “case study” in [17]) the struc-
ture of the generic model architecture will not change. A new configuration,
or scenario, (for example, to consider smarter vehicles, another infrastructure
strategy or another part of the road network, i.e., crossroad, insertion lane...)
is then obtained by replacing a modeling component by another one. Once
interfaces are properly defined, it is as easy as for programs.

Then we first define the case study in terms of :

1. the main situation or set of problematics constitutive of the subject of the
study. For example a problem area taken from the domain of ITS [17]:
“Safe insertion” or “Intersection Collision Avoidance” etc.

2. the set of properties we want to verify during the study. For example the
minimum distance between two vehicles or the absence of deadlocks.



An approach to model and analyze variations of a scenario 5

3. different scenarios or configurations of the system that enable the study of
the problematics and the verification of properties in the whole context.
For example, considering smarter vehicles or a different part of the road
network.

Then it is important to consider that each scenario leads to the definition
of a specific architecture, with specific components and their configuration. It
is only when a set of scenarios has been defined that the generic architecture
with all components necessary for the case study analysis is obtained. Note
that if we only change the initialization of components (and not components
selection), we call it a variation of a scenario and not a new scenario.

Alternative descriptions of components are stored in a library and selected
using a file that describes the specific scenario.

Thus, the modeling process can be defined in different steps (numbered in
Fig. 1):

1. definition of the case study problematics and properties to analyze;
2. definition of different scenarios components, and the modeling of the com-

ponents in the library;
3. selection and configuration of components according to a given level of

abstraction in the analysis of the situation that is investigated. This is
the final step in the definition of a scenario, or case study specific config-
uration;

4. use of the assembling mechanisms to obtain a complete model and ana-
lyzing it with an appropriate set of tools.

Steps 2 to 4 can be repeated several times, as long as the system is not fully
analyzed, or there remain some variations to be analyzed, or some hypothesis
made at a given level of abstraction is not ensured.

A similar approach was first experimented in the formal verification of the
micro-Broker in the PolyORB middleware [16] but with almost no tools to
automate the modeling part (most of it was performed using shell scripts and
the Unix sed command as a prototyping environment).

Let us now describe the main choices we have made, as well as the tool we
have designed in order to help a designer to model and analyze his system. It
is important to automate the process, since this allows us to use the formal
model as a basis to evaluate the non-regression of the system when strategies
are explored.

3.2 Modeling the components behavior

Modeling scenarios components behaviors using colored Petri nets is the
second step in the design. The first step, as stated above, consists in defining
the case study.

In colored Petri nets, a color domain (a discrete data type) is associated
with places and transitions. The colors of a place label tokens contained in this



6 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

place, whereas the colors of a transition define different ways of firing it. In
order to specify these firings, a color function is attached to every arc which,
given a color of the transition connected to the arc, determines the number
of colored tokens that will be added to or removed from the corresponding
place. Finally the initial marking is defined by a multi-set of colored tokens
in each place.

A color domain is a cartesian product of color classes which may be viewed
as primitive domains. This product is possibly empty (e.g., a place which
contains neutral tokens) and may include repetitions (e.g., a transition which
synchronizes two colors inside a class).

We have selected a specific class of colored Petri Nets: Well Formed Petri
Nets [7]. They restrict the use of functions to : identity, cartesian product,
successor and predecessor, broadcast, belongs to. Hence, they preserve some
interesting properties that are useful to handle the verification of large systems
using model checking techniques:

• types of token can be divided in static subclasses that are subsets of the
type where color values have equivalent behavior all over the reachability
graph; static subclasses denote global symmetries in the system (i.e., the
identity of a process can be permuted in a critical section without changing
the global behavior of the system);

• static subclasses can be divided in dynamic subclasses that are subsets of
the type where color values have equivalent behavior in some parts of the
reachability graph; dynamic subclasses capture local symmetries that only
occur in some parts of the reachability graph;

• both static and dynamic subclasses can be computed using the structure
of the specification [20, 1].

Based on these characteristics, it is possible to build the symbolic reach-

ability graph where a symbolic state represents an equivalence class of states,
appropriate for Linear Time Logic model checking [8]. The ratio between the
size of the symbolic reachability graph and the reachability graph may be
exponential in favorable cases.

This class of Petri nets also allows the use of structural techniques [22]
such as invariants, traps or bounds. If some structural properties are not yet
extended to colored nets, the unfolding operation (that transforms a colored
net into a P/T one) helps in providing such properties.

3.3 Modeling complex physical functions

Well Formed Petri Nets preserve some interesting properties for verifica-
tion and model checking. However, modeling is not as easy to handle as in
CPNs [18] where tokens can be manipulated using any type of ML or C func-
tion.

To cope with this particular issue, we have elaborated a modeling technique
that allows one to specify complex functions similarily to CPNs but in a way



An approach to model and analyze variations of a scenario 7

that enables the use of Well Formed Petri Nets and their associated properties.
The principle is based on discretizing the function to be encoded.

Let us illustrate this principle using the example of Fig. 2 that represents
a function y = f(x) and its possible discretization.

It is possible to represent this function using one Petri net module of
Fig. 2. Place f represents the function: its values are stored as the initial
marking representing all the possible < x, f(x) > couples in the considered
intervals (here, type X and type Y). The path going from place P1 to place
P2 via transition T computes y from the value of x.

Class
type_X is 0..11;
type_Y is 0..6;
Domain
D is <type_X, type_Y>;

Var
x in type_X;
y in type_Y; P2 type_Y

T

P1 type_X

f D

<0,0>, <1,1>, <2,1>, <3,2>,
<4,2>, <5,2>, <6,2>, <7,3>,
<8,4>,<9,5>, <10,5>, <11,6>

<x>

<y>

<x,y><x,y>

y

x0

2

4

6

2 4 6 8 10

Fig. 2. Example of function, its possible discretization and the associated Petri net.

This technique can be generalized to any function x = f(x1, x2, ..., xn),
regardless of its complexity. Non deterministic functions can also be specified
the same way (for example, to model potential errors in the system). Let us
note that:

• the discretization of any function becomes a modeling hypothesis and must
be validated separately (to evaluate the impact of imprecision due to dis-
cretization),

• given a programmed function, it is easy to automatically generate the
list of values to store in the initial marking of the place representing the
function.

From the verification point of view, it is interesting to note that the large
marking of places representing complex functions does not impact the size of
the reachability graph if the model checking techniques mentioned in Sect. 3.2
are applied. Since the place marking never changes, it is only stored once in
memory.

3.4 Assembling model components

Once a scenario architecture and components defined, the modeler has a global
vision of a specification of the case study (i.e., a scenario). Behaviors of com-
ponents to be modeled must then be defined, as well as their interfaces and
connections.



8 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

Components interact through interfaces we have defined. Theses interfaces
capture synchronizations, communications, inclusions or abstraction of a com-
ponent. Operations to connect components through interfaces are also defined.
When setting up the connections, the modeler must enforce some semantic
rules we have also defined.

Components Interfaces

In this context, interfaces are nodes, places or transitions, through which a
component interacts with others. In contrast, a local node is not an interface.
Its scope is strictly within a component. Here are the relevant interfaces we
use in the case study presented in Sect. 4:

• sub-net transition. This interface represents a component (herafter sub-
net) that is to be inserted into the component (herafter super-net) that
transition is an interface of.

• synchronization transition. Components synchronize through this interface
during their execution.

• Resource or flow sharing. Components share resources or communicate
using this type of interface. For example, an abstraction place represents
another component’s place.

When defining components behavior, some important choices are required:

• the level of abstraction of the analysis (it can be refined from a former
analysis using the same architecture for the same case study);

• strategies to be evaluated in the system must be selected (according to the
abstraction level);

• initial conditions of the system must be defined.

In such systems, multiple variations have to be investigated according to
the strategies in the system, the initial conditions, or local implementation
choices in components. Thus, each variation must lead to the definition of
a configuration file. This configuration file is a script that gathers a specific
version (selected from a library) for each component in the architecture.

For example, let us imagine that we need to formally validate the behavior
of the traffic in a motorway at various saturation levels. There is one scenario
and several variations that will, in this case, select more or less instances of
vehicles in the system. Another variation could be the level of agressivity of
each driver or the strategy of the infrastructure.

The configuration phase then corresponds to the definition of a script to
assemble the selected configuration. After the PolyORB experience [16], it was
obvious that some dedicated language was necessary. We then designed and
implemented PetriScript [14]. Its purpose is to enable a high flexible design
of Petri nets models using scripting techniques. It provides basic integers and
string types, along with useful new built-in types such as lists of nodes. A key
advantage of using PetriScript is the parametrization of the whole model to



An approach to model and analyze variations of a scenario 9

be built when a particular configuration is selected for the case study. It is
interesting to note that in the last release of Tina [19], a similar system has
been introduced to build complex nets by composition, using place and/or
transition labels (TPN).

Assembling operations

The assembling operations build a complete Petri net model from individual
components. Four operations are used in our assembling scripts to assemble
Well Formed Petri Nets components. Some of them are defined in [23]:

O1 transition expansion: it is the operation by which a sub-net is inserted
into a super-net. Actually, the sub-net will replace the sub-net transition

in the super-net. Consequently, the first and last elements of the sub-net
connected to the super-net are transitions.

O2 place fusion: communication or abstraction places are merged between two
or more components.

O3 transition fusion: synchronization transitions are merged between two or
more nets.

O4 Building the net declarations, initial markings and guards. It means setting
up the domains, computing the initial markings (which can be huge) and
the guards according to the parameters for the selected configuration.

When assembling the complete model, rules we have defined are used to
enforce its syntactic and semantic well-formedness.

4 Definition of a Case Study

In this section, we present an application of our modeling approach to a case
study extracted from Intelligent Transport Systems.

4.1 Presentation of the Case Study

Let us provide a description of the system situation or problematics, a “Safe
insertion” case study, illustrated by Fig. 3. This is a motorway with two lanes:
L1 (the rightmost one) and L2. An entrance to the motorway, L0, is connected
to L1. Vehicles are using the two lanes. We use the notation Vi,j,k, where i is
the lane number, j is the position on the lane, and k is the identifier. V0,j,k

vehicles are entering the motorway. We want to study a cooperative insertion
of vehicles arriving in the entrance lane.

We now describe the properties we want to verify in this case study. We
want to let V0,j,k vehicles get into the main traffic without violating the
following properties:

1. distance between two vehicles in the same lane must be over a minimum
safe distance to let drivers react to sudden events;



10 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

2. V0,j,k vehicles eventually get into the motorway;
3. keep Vi,j,k vehicles from stopping.

L 1L 2 V 2 , j ' ' , k ' 'V 1 , j ' , k ' V o ,j ,k V 1 , j ' ' , k ' 'r o a d B s i d e c e n t e r
V 2 , j ' , k 'b e g i n n i n g o f t h e b l a c k s p o t e n d o f t h e b l a c k s p o t

L 0
Fig. 3. Topology of the “Safe Insertion” case study

Now we describe a example scenario where the decision is mainly taken
by the infrastructure. The motorway has a road-side center (called in the
following RSC) that enables communication with vehicles and can compute
commands related to safety or flow control.

Vehicles can get their positions using a satellite localization technology [4]
(it may be combined with ground installations and digitized maps) and send
them periodically to the infrastructure. Subsequently, the infrastructure is
able to maintain a dynamic map of all vehicles in its range of communication.

The infrastructure and vehicles behaviors and interactions are split into
three main steps : 1) vehicles get their positions from the context, 2) they
send this information to the infrastructure and 3) when the infrastructure has
all positions of vehicles, it issues commands to them according to its strategy.

We suppose in this study that all vehicles Vi,j,k are equipped with com-
munication devices and that the drivers follow instructions provided by the
road-side center.

We also want to consider several configurations for this scenario: the dens-
ity of the traffic in L1, the existence of vehicles in L2, and the management
strategy in the road-side center (such as, trying to maintain vehicles circulat-
ing in L1 or not, etc.).

4.2 Architecture of the model for the case study

The primary specification of the system architecture, shown in Fig. 4, is struc-
tured into eleven components.

In an infrastructure-based strategy, the range of the context we can manage
is more likely to be larger than in a vehicles-centered one. Furthermore, the
stress put on safety and reliability requirements for a “Safe Insertion” case
study (because of the increased level of danger), leads to a strong involvement
of the infrastructure in the decision process. Therefore, for this case study we



An approach to model and analyze variations of a scenario 11

adopt an infrastructure-oriented approach and subsequently there are more
components that describe the RSC and its strategy than for vehicles.

C o m m u n i c a t i o n VehiclesT i m e L i n eP h y s i c a l c o n t e x tP h y s i c a l C o n t e x t U p d a t e rI n f r a s t r u c t u r eS a f e t yS t r a t e g yI n f r a r s i d ec o n t e x t v i e w Infrastructure O b s e r v e r
V e h i c l e s r s i d ec o n t e x t v i e wV e h i c l e sS a f e t yS t r a t e g y

Fig. 4. Main architecture of the modeled system

This generic architecture is structured in two categories of components.
The first one describes the continuous aspects of the system like the man-
agement of time and the required physical functions. The second category
corresponds to the components we want to analyse like vehicles or the RSC.

The first category is composed of three components that model the dis-
cretization of the system:

• the physical context, which stores actual ’physical states’ of vehicles (e.g.,
vehicles positions);

• the physical context updater, which implements our physical functions to
update the physical context ;

• the time-line that implements the time discretization of synchronizing all
components at the end of each time frame. The time-line is divided in
successive time frames that implement its discretization. It handles a “fair”
execution of components in the system (i.e. no vehicle may execute more
cycle than expected during a time frame).

Some components can only be executed within a time frame (e.g., vehicles
or the infrastructure component), whereas others can act within or between
time frames like the observer or the physical context.

The first category also comprises an observer which has to detect invalid
behaviors of the model in terms of transitions that should not be fired or
states that should not be reached.

In the second category, we have three components constitutive of the RSC,
three others concerning vehicles, and a communication medium component:

• The infrastructure itself, describes the infrastructure behavior. This beha-
vior is represented in terms of a chronological succession of interactions,
communications or synchronizations with the components of the RSC or
other components.



12 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

• The infrastructure safety strategy models the infrastructure decision mak-
ing process, which computes commands or instructions to send to vehicles.

• The infrastructure context view represents what the infrastructure can
see of the environment and is fed with data from communications with
vehicles. It is used by the infrastructure safety strategy component to com-
pute new commands. However, it may not be as accurate as the physical

context if for example loss of data occurs during communications.
• Vehicles component holds vehicles behavior.
• Vehicles context view and Vehicles safety strategy act like their counter-

parts in the RSC.
• The communication medium component manages data exchanges or com-

mands between vehicles and the infrastructure, and allows us to introduce
loss of data.

4.3 Components selection and configuration for the first scenario

In our first scenario, we have decided to configure (or initialize) the physical

context component so that all vehicles (Vi,j,k) are traveling along the right-
most lane (L1 in Fig. 3) except vehicles (V0,j,k) that are coming from the
entrance lane. Initially, there is no vehicle in the second lane (L2).

The time line is configured so as to enable random insertion of vehicles in
the system with respect to the considered safety distance. Thus, vehicles are
injected and removed from the system between each time frame.

We have chosen a particular infrastructure strategy which relies on all
vehicles positions to achieve the “Safe Insertion”. If a vehicle on the motor-
way has an invalid safety distance when the inserting vehicle arrives on the
motorway, the infrastructure issues a ’change lane’ command. According to
that command, this vehicle must move from lane L1 to lane L2 where there
is no vehicle. For the others, the infrastructure sends a ’nop’ command. It
means that they should keep their current traveling parameters.

We first consider a level of abstraction where communications are idealistic,
thus there is no loss of data. Hence, the communication medium component is
not selected. We also consider at this level of abstraction that the infrastruc-

ture context view is refreshed at the same rate as the physical context. Thus,
the infrastructure can directly use the physical context since it does not need
its own context component. Consequently, the physical context component is
in fact the same as the infrastructure’s . The same assumption was made for
vehicles context view. Finally, in this scenario, we also consider that vehicles
are fully cooperative and execute immediately commands they receive. Hence,
no smart behavior is selected. In Fig. 4, selected components are represented
with a continuous line.

This scenario, and its corresponding infrastructure strategy are simple as
this is a way to assess our methodology.



An approach to model and analyze variations of a scenario 13

5 Modeling and assembling components for the scenario

5.1 Modeling the components

We now have defined the generic architecture of the model for the case study.
Then we have chosen some components from the library and have configured
them according to the first scenario architecture. We are now describing each
specific behavior in this section, along with the interactions between the com-
ponents.

In the Petri net models of the presented components, sub-nets interfaces
are depicted by squares. while synchronization interfaces are depicted by
longer transitions. Communication interfaces are represented by bigger circles.
Normal notation is used for conventional (i.e., local) places and transitions.

New_State
idtf

Update_State_Ctx
[xk > computed-value]

vehic_btfidtf

<idtf.all>

Block_timeframe

[st = vin]Shortcut
[st = vout]

vehic_etf
idtf

Next_tf

Contex
state_vehic

RSU_btf
1

Block_RSU

RSU_etfNew_InOut_Contex
pos_next_state

Keep_Cur_State
[xk <= computed-value]

Vehic-Contex_UpdatedVehic-Command_Updated

Context-Context_Vehic <i, xk, lk, cmdk>

<i, xk, lk, cmdk>

<i>

<i, st_new>

<i, st>

<idtf.all>

<i>

<i>

<idtf.all>

<i>

<i>

<i,st>

<i, st>

<i>

<i,st>

<i, st>

<xk, st_new>

<xk, st_new>

<i>

<i>

Fig. 5. One Petri Net component of the time line

Time line component

The time line, shown in figure 5, provides two essential functions:

• the first one implements elapsing of time and components synchronization
in the system;

• the other one implements vehicles injection and removal of the system
between each time frame.



14 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

The purpose of the first function is to handle a fair execution step for all
the other components in terms of discretized time. It thus synchronizes the
infrastructure and vehicles within each time frame simultaneously. The Petri
net model representing the infrastructure component is inserted into transition
Block RSU and the one representing vehicles into transition Block timeframe

(see section 5.2 for more details about this operation). At the end of each
time frame, the time line waits for all synchronized components at transition
Next tf before the next time frame can begin.

Between two time frames, the time line component is able to remove or
add vehicles to the motorway using Update State Ctx, New InOut Context,
New State, Contex and Shortcut transitions and places. For instance, as shown
in figure 5, vehicles that are simply taken out of the motorway are tagged with
“vout” color and effectively removed with transition Shortcut.

Vehicles_End
idtf

End_BlockTimeFrame

Synchro_End_I

Command_Updated
idtf

V_setNewCom_Inf
[i<>0]

Wait_Command
idtf

Context_Updated
idtf

Notify_Infra_I

Call_NewContext_C

Begin_BlockTimeFrame

On_Freeway

idtf

<i>

<idtf.all>

<i>

<i>

<i>

<idtf.all>

<idtf.all>

<i>

<i>

<idtf.all>

Fig. 6. One Petri Net component for vehicle

Vehicles component

This component, shown in Fig. 6, is included in transition Block timeframe of
the time line. Concretely, transition Block timeframe is replaced by the Petri
net model of vehicles component (details about this operation are provided in
section 5.2).

Vehicles perform three main different operations within each time frame.

• First of all, they “get” their positions. This is implemented by the phys-

ical context updater updating the context. To do so, we merge transition
Call NewContext C of vehicles component with the corresponding one of
the physical context updater.

• Afterwards, they all “send” their positions to the RSC. In fact, the RSC
is notified that their positions are ready to be retrieved. This operation



An approach to model and analyze variations of a scenario 15

is performed by merging transition Notify Infra I with the corresponding
one of the infrastructure component.

• Finally, they “wait” for the RSC’s decisions at transition V setNewCom Inf,
which is merged with transition S getNewCom Inf of the infrastructure

safety strategy component (see Fig. 7). Vehicles acknowledge reception of
commands by merging transition Synchro End with the corresponding one
of the infrastructure.

Infrastructure safety strategy component

To compute decisions, safety strategy needs to know the current context of
inserting vehicles (V0,j,k). This context is then retrieved using the synchron-
ization on transition S getVOSt Inf and the communication place V0 State

(see Fig. 7).

Extract_Faulty_St

Context_Vehic_Inf
vehic

Faulty_States
vehic_command

New_Command_Vehic
vehic_commandVO_State

vehO
<0, 0, 0>

S_getNewCom_Inf [cmd_new<>stop and j<>0]S_getVOSt_Inf[j=0]

<xo, lo, xj, lj, stop>

<xo, lo, xj, lj, stop>

<j, xj, lj, cmd_new><j, xj, lj, cmdj><j, xj, lj, cmdj> <j, xj, lj, cmdj>

<0, xo, lo>
<0, xo, lo>

<xo, lo, xj, lj, cmd_new>
<xo, lo, xj, lj, cmd_new><j, x_old, l_old> <j, xj, lj>

Observer part

Fig. 7. One Petri Net component of the infrastructure

From that point and in full cooperation with the context component, each
vehicle context is retrieved and compared to that of the inserting vehicles
V0,j,k and the appropriate command issued to that vehicle. That command is
either nop, or chglane.

Since this component implements the decision functions of the RSC, it
also follows the design technique introduced in section 3.3 and illustrated by
figure 2, Consequently, the marking of place New Command Vehic is auto-
matically generated using PetriScript.

Physical context updater and physical context components

Context updater implements physical functions to update vehicles physical
context, using the technique depicted in section 3.3.

These physical functions are in initial markings of the component. They
list the position values of vehicles according to physical parameters, such as
velocity, road conditions, etc. These markings are generated using PetriScript.



16 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

Physical context component stores current ’physical states’ of vehicles (i.e.,
for instance, vehicles positions) in place Context Vehic Inf.

The observer component

The observer captures invalid behaviors we are interested in by looking up
states that point them out. The key advantage of using an observer is that
it is not intrusive for the modeled system. Therefore, it does not affect the
behavior framework of the system.

In Fig. 7, the observer is represented by transition Extract Faulty St and
place Faulty States. If the implemented safety strategy is valid, w.r.t. rules
defined in sect. 4. then this place is supposed to have no marking in the
system state space.

5.2 Assembling a configuration

The assembling is performed in four main steps, as expressed in section3. We
use the assembling operations defined in section 3.4.

Vehicles_End
idtf

End_BlockTimeFrame

Synchro_End_I

Command_Updated
idtf

V_setNewCom_Inf
[i<>0]

Wait_Command
idtf

Context_Updated
idtf

Notify_Infra_I

Call_NewContext_C

Begin_BlockTimeFrame

On_Freeway
idtf

vehic_etf
idtf

Block_timeframe
[st = vin]

vehic_btf
idtf <idtf.all>

vehic_etf
idtf

vehic_btf idtf
<idtf.all>

Vehicles_End
idtf

End_BlockTimeFrame

Synchro_End_I

Command_Updated
idtf

V_setNewCom_Inf
[i<>0]

Wait_Command
idtf

Context_Updated
idtf

Notify_Infra_I

Call_NewContext_C

Begin_BlockTimeFrame
[st = vin]

On_Freeway
idtf

<i>

<i>

<idtf.all>

<i>

<i>

<idtf.all>

<idtf.all>

<i>

<i>

<i>

<idtf.all>

<i>

<i>

<i>

<idtf.all>

<i>

<i>

<idtf.all>

<idtf.all>

<i>

<i>

<i>

<idtf.all>

<i>

Fig. 8. Insertion of vehicles component into the time line



An approach to model and analyze variations of a scenario 17

1. The first step corresponds to the scenario specification architecture depic-
ted in Fig. 1. This first step is completed through six actions:
a) Inserting the infrastructure and vehicles components as sub-nets into

the time line, applying operation O1. Vehicles component is inserted
into transition Block timeframe, as depicted by Fig. 8, and the infra-
structure component into Block RSU. Actually, Block timeframe and
Block RSU are replaced by the new inserted components. The previ-
ous links are redirected onto and from the new inserted components.

b) Connecting the physical context and infrastructure safety strategy
components by applying O2. According to the configuration described
in Sect. 4.3, the infrastructure’s vision of the context is based on the
physical context component.

c) Applying O3 to synchronize vehicles component with the physical
context and the physical context updater in order for them to have
their context updated at each execution step. This synchroniza-
tion is set upon transitions Call NewContex C (vehicles side) and
C getNewContext V (physical context side).

d) We also synchronize vehicles component with the infrastructure safety
strategy component, upon transitions V setNewCom Inf,
S getNewCom Inf and Call NewCom SV. This enable commands is-
suance from the infrastructure to vehicles, based on their physical
context with respect to the current position of V0.

e) Vehicles notify the infrastructure with their updated context through
the synchronization of transitions Notify Infra I (vehicles side) and
Notify Infra V (infrastructure side).

f) For the sake of fairness of processing all vehicles within each execution
step, they also synchronize with the infrastructure when all commands
have been issued. This synchronization is set upon transitions Syn-

chro End I (vehicles side) and Synchro End V (infrastructure side).
2. During the second step, we define or we select the system components

relevant for the elaborated scenario, according to the architecture. These
components specify behaviors we want to analyze, for example the safety
strategy coupled with both cooperative and non-cooperative vehicles.
From this point of view, we consider that:
• either the components library (Fig. 1) is already populated with the

different versions of the components that we need and in which case
we just select the relevant components,

• either we do not have them yet and in which case we specify them.
We may reuse existing components to design new variants, the ground
behaviors of which are similar to the previous ones. For example, non-
cooperative smart vehicles would differ from cooperative ones by hav-
ing no synchronization to receive commands from the infrastructure.

3. The third main step corresponds to the scenario configuration, illustrated
in Fig. 1.



18 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

a) The time line component has the ability to remove or add a vehicle to
the motorway, as stated in its description in Sect. 5.1. To enable this
behavior, it must have access to vehicles physical context between each
execution step. Therefore, operation O2 is applied to connect place
Context Vehic (physical context side) to transition Update State Ctx

(time line side).
b) The observer is connected to the safety strategy component of the

infrastructure, by applying O3 (see Fig. 7).
c) By operation O4, we compute for one variant of the scenario declara-

tions and initial markings from parameters such as the length of the
black spot, the number of vehicles on or out of the motorway, the pos-
ition at which the entrance lane joins the main motorway, etc. Guards
are set to the transitions where needed, for example enabling the ob-
server to detect invalid behaviors of the system by setting a guard on
S getNewCom Inf and Extract Faulty St (see Fig. 7).

4. The last main step corresponds to the generation of the assembled large
Petri net model (Fig. 1), by putting the complete specification encoded
in PetriScript into action.

The following PetriScript example performs the insertion of vehicles com-
ponent into the time line, presented in Fig. 8.

-- -------------------------------------------------------------------
-- inserting Vehicles module into Time Line

-- -------------------------------------------------------------------
delete (place "vehic_btf" , transition "Block_timeframe");
connect "<i>" place "vehic_btf" to transition "Begin_BlockTimeFrame";

delete (transition "Block_timeframe" , place "vehic_etf");

connect "<i>" transition "End_BlockTimeFrame" to place "vehic_etf";

delete (place "Contex" , transition "Block_timeframe");
connect "<i, st>" place "Contex" to transition "Begin_BlockTimeFrame";

delete (transition "Block_timeframe" , place "Contex");
connect "<i, st>" transition "Begin_BlockTimeFrame" to place "Contex";

set transition "Begin_BlockTimeFrame" to guard "[st=vin]";

delete transition "Block_timeframe";

6 Analysis of the assembled specification for the case

study

For the configuration depicted in Sect. 4.3, we have quite simple modules, as
their statistics shows in the table below.



An approach to model and analyze variations of a scenario 19

Component name number of places number of transitions

time line 7 6
vehicles 5 6

infrastructure 4 6
physical context 1 0
context updater 1 1
safety strategy 3 2

observer 1 1
assembled model 21 14 (63 arcs)

The assembled model has a reasonable size. So far, the variations we ex-
perimented for this scenario consist in modifying the number of vehicles in
the system to evaluate how it behaves when the traffic becomes dense. For
example, it is of interest to evaluate when the infrastructure may decide to
reduce the entrance speed in the black spot.

However, despite this reasonable size, there is a clear progress when we
consider the time we spent for building it, with respect to the complexity of the
system: a few days to understand the specification, elaborate the architecture,
build the Petri net components and write the assembling script. Moreover, the
architecture remains for later analysis of variations in the system.

Analysis of the assembled model was performed with CPN-AMI [13]. The
following properties were validated:

• Structural bound analysis for places marking (by unfolding the Petri net
into an equivalent P/T net) showed that the net is bounded. It is of interest
to note that the unfolding tool allowed us to detect a bad arc marking in
the infrastructure component.

• Model checking was performed using small color domains using PROD [10]
and GreatSPN [9] tools (as they are integrated in CPN-AMI). With some
difficulties due to the extreme complexity of the system, we could prove
that our system has no deadlock.

There is an issue for the analysis of such models. In particular, the tech-
nique adopted to model complex physical function introduces:

• very large markings that are not appropriately handled by the investigated
tools,

• local asymmetries that partially disable the use of static classes in Great-
SPN (this corresponds to dynamic subclasses).

However, places representing complex functions have a stable marking,
thus, a simple optimization in the model checker will allow for representing
these places only once in the memory (instead of representing it for each
state in the system). Important memory space could then be saved. Such
an optimization can be achieved by encoding the state space using decision
diagrams.

Moreover, handling of dynamic symmetries should provide nice results for
this type of systems. This enforces the choice for Well Formed Petri Nets we



20 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

motivated in Sect. 3.2. Combined with data decision diagrams to encode the
symbolic reachability graph, another order can be gained [21], leading to the
analysis of very large systems. Some experiments have provided good results
and this emerging approach needs to be implemented.

A new model checker exploiting these techniques is under development at
LIP6. Theoretical aspects are already defined and partially experimented in
cooperation with the developers of GreatSPN [1]. Our purpose is to be able
to perform reachability analysis (e.g., is the minimum safety distance between
two vehicles respected), as well as the evaluation of temporal logic formulae
(e.g., if a vehicle gets into the entrance lane, will it eventually get into the
motorway).

7 Conclusion

In this paper, we presented a modeling methodology dedicated to large sys-
tems. Similarly to programming, the idea is to build a model architecture and
then to fill the gaps, with possibly several alternative solutions. This allows
to analyze several variations of a design.

A first implementation of our methodology is integrated into CPN-AMI by
means of recent tools. The PetriScript interpretor allows us to write assembling
scripts easily. A new optimized Petri net unfolder allows us to handle large
models and take benefits of some structural tools like the computation of
structural bounds in the system.

Such an approach is particularly appropriate for Intelligent Transport Sys-
tems (ITS) where very complex situations have to be analyzed. In such pro-
jects, the analysis is driven by case studies so as to handle more efficiently the
complexity of identified issues in the domain.

We thus applied this methodology to an ITS case study as an assessment
of our modeling process. The result is satisfactory. Both the approach and the
PetriScript language, developed after a previous similar experiment on the
PolyORB middleware, appear to be appropriate for our purpose.

Moreover, as mentioned in the paper, this work raises several interesting
open issues we will investigate in future work:

1. if the complexity of the system can be handled thanks to a smoother
modeling process, there is a problem of analyzing such very large specific-
ations. Involved modeling techniques must be studied carefully to extract
the relevant optimizations (i.e., the ones that are often activated). Then,
it is necessary to consider both the modeling and the analysis phases as a
whole process to identify and implement appropriate optimizations in the
analysis with regards to the selected modeling techniques.

2. some elements of the demonstration, such as the correctness of complex
functions’ discretization must be investigated separately. Our methodo-
logy will have to consider this and provide hints to perform this task.



An approach to model and analyze variations of a scenario 21

3. if several scenarios are investigated with different levels of abstraction,
there is a need to ensure that a more precise level of abstraction is an ap-
propriate refinement of the previous one. For example, the analyzed con-
figuration relies on a ”perfect network”. If a new configuration includes
the modeling of the network, it is important to verify that a correspond-
ence between the two configurations is maintained. Links with algebraic
specification should be interesting to investigate for that purpose.

The use of Petri Nets has given us the ability to make formal verification,
and our modular approach helped us to obtain an easy changeable, reusable
and modular model.

The most critical problem faced in this study is first the integration of
the time-constrained and physical context environment. It is handled by a
component that synchronizes other components between time frames and a
complex function integration technique. Then the definition of components
was based on their roles and interfaces with other components. To achieve
formal analysis we were forced to update our tools.

Finally, it seems that ITS provide numerous interesting situations to be
analyzed. Moreover, several projects in this area are investigating scenarios
and solutions to be evaluated. This is a challenge for formal methods to be
able to handle such problems.

References

1. S. Baarir, S. Haddad, and J-M. Ilié. Exploiting Partial Symmetries in Well-
formed nets for the Reachability and the Linear Time Model Checking Problems.
In Proc. of WODES’04 - IFAC Workshop on Discrete Event Systems, part of
7th CAAP, Reims - France, 2004. Springer Verlag.

2. S. Bernardi, S. Donatelli, and J. Merseguer. From uml sequence diagrams and
statecharts to analysable petri net models. In proceedings of the 3rd international
workshop on Software and performance, pages 35–45, New York, NY, USA, 2002.
ACM Press.

3. R. Bishop. Intelligent Vehicle R&D: a review and contrast of programs world-
wide and emerging trends. In Jacques Ehrlich, editor, Annals of Telecommunic-
ations - Intelligent Transportation Systems, volume 60, pages 228–263. GET-
Lavoisier, March-April 2005.

4. J-M. Blosseville. Driving assistance systems and road safety: State-of-the-art
and outlook. In Jacques Ehrlich, editor, Annals of Telecommunications - Intelli-
gent Transportation Systems, volume 60, pages 281–298. GET-Lavoisier, March-
April 2005.

5. P. Bly. e-safety - co-operative systems for road transport (ist work progamme
2005-2006). Technical report, European Commission, 2004.

6. L. Cabac and D. Moldt. Formal semantics for auml agent interaction pro-
tocol diagrams. In J. Odell, P. Giorgini, and J. P. Müller, editors, 5th Inter-
national Workshop on Agent-Oriented Software Engineering, number 3382 in
LNCS, pages 47–61, 2004.



22 Fabien Bonnefoi, Lom Messan Hillah, Fabrice Kordon, and Guy Frémont

7. G. Chiola, C. Dutheillet, G. Franceschini, and S. Haddad. On Well-Formed
Coloured Nets and their Symbolic Reachability Graph. High-Level Petri Nets.
Theory and Application, LNCS, 1991.

8. C. Dutheillet, I. Vernier-Mounier, J-M. Ilié, and D. Poitrenaud. State-space-
based methods and model checking, chapter 14, pages 201–276. Springer Verlag,
Petri nets and system engineering (Claude Girault and Rudiger Valk Eds), first
edition, 2003.

9. GreatSPN: Graphical Editor, Analyzer for Timed, and Stochastic Petri Nets.
http://www.di.unito.it/ greatspn.

10. PROD: An Advanced Tool for Efficient Reachability Analysis.
http://www.tcs.hut.fi/Software/prod.

11. J. Gogen and Luqi. Formal methods: Promises and problems. IEEE Software,
14(1):75–85, 1997.

12. S. Haddad. Issues in verification, chapter 13, pages 183–200. Springer Verlag,
Petri nets and system engineering (Claude Girault and Rudiger Valk Eds), first
edition, 2003.

13. A. Hamez, L. Hillah, F. Kordon, A. Linard, E. Paviot-Adet, X. Renault, and
Y. Thierry-Mieg. New features in CPN-AMI 3 : focusing on the analysis of
complex distributed systems. In 6th International Conference on Application
of Concurrency to System Design (ACSD’06), Turku, Finland, June to be pub-
lished in 2006. IEEE Computer Society.

14. A. Hamez and X. Renault. PetriScript Reference Manual. LIP6, www-
src.lip6.fr/logiciels/mars/CPNAMI/MANUAL SERV.

15. R. Horowitz and P. Varaiya. Control design of an automated highway system.
In IEEE Proceedings on Special Issue on Hybrid Systems, volume 88, pages
913–925, July 2000.

16. J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir, and T. Vergnaud.
On the Formal Verification of Middleware Behavioral Properties. In Proceedings
of the 9th International Workshop on Formal Methods for Industrial Critical
Systems (FMICS’04), volume ENTCS 133, pages 139 – 157. Elsevier, 2004.

17. Intelligent Vehicle Initiative. Saving lives through advanced vehicle safety tech-
nology, September 2005.

18. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, volume 1. Springer Verlag, 2nd edition, 1997.

19. LAAS. TINA: TIme petri Net Analyzer (version 2.8.0),
http://www2.laas.fr/tina/description.php.

20. Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. Automatic symmetry detection
in well-formed nets. In W. M. P. van der Aalst and E. Best, editors, 24th
International Conference on Applications and Theory of Petri Nets 2003, volume
2679 of LNCS, pages 82–101. Springer Verlag, 2003.

21. Y. Thierry-Mieg, J-M. Ilié, and D. Poitrenaud. A symbolic symbolic state space
representation. In D. de Frutos-Escrig and M. Núñez, editors, FORTE, volume
3235 of LNCS, pages 276–291. Springer Verlag, 2004.

22. R. Valk. Basic definitions, chapter 4, pages 41–51. Springer Verlag, Petri nets
and system engineering (Claude Girault and Rudiger Valk Eds), first edition,
2003.

23. M. Voorhoeve. Techniques, chapter 9, pages 106–117. Springer Verlag, Petri nets
and system engineering (Claude Girault and Rudiger Valk Eds), first edition,
2003.


