A framework for DRE middleware, an application to DDS

Jérdme HIGUES, Laurent RUTET
GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France
j erome. hugues@nst. fr,laurent. pautet @nst.fr

Fabrice KORDON
Université Pierre & Marie Curie, Laboratoire d’'Informatede Paris 6/SRC
4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice. kordon@i p6. fr

Abstract Application
requirements —> Application

Heterogeneous non-functional requirements of DRE sys-
tem puts a limit on middleware engineering; building an Middleware t
application-tailored middleware becomes a challenge. requirements User API ‘

In this paper, we show how we use the PolyORB mid- . Tailored

. ; . Non functional :

dleware and its architecture as a framework to implement requirementsW
DDS, the Data Distribution Services (DDS) recently pub-
lished by the OMG. We demonstrate how the architectuer
proposed by PolyORB enables a rapid implementation of Figure 1. Various levels of requirements

this specification, and allows for extreme tailorability to

support application requirements.
Such an approach is not affordable for Distributed, Real-

time and Embedded Systems (DRE). Meeting their non-
functional requirements imposes precise control over the
middleware to ensure that temporal or resources guidelines

The manv and heterogeneous constraints of distributedare met. This set of constraints is usually defined as a set of
Y 9 ‘Quality of Services” policies and parameters.

applications deeply impact the development of distributio i .

middleware. Middleware should support developers when ~AS an example, Zen-Kit [4] allows middleware cus-

designing, implementing and deploying such systems intomllzatlon (such as control over memory footprint) by con-

heterogeneous environments and evaluate so called “norjrolling the actual components embedded by the applica-

functional” requirements (such as QoS or reliability). tlon,_ while minimizing the d|ff|cuIFy of this custom config-
Usually, a system is designed as shown in Figure 1. Ap- uration. However, this approach is focused on RT-CORBA:

plications interact with middleware implementing one spec 't 40€s not allow the modification of the middleware archi-
ification (e.g. CORBA). Non functional requirements are t€cture by adding new components that would diverge from

considered during the implementation of the application the standard such as a lightweight invocation protocol.

(fault tolerance, resources, etc.). Hence, there is a need for a finer control over the archi-
One could select a COTS middleware that fulfills all its tecture and services inside the middleware. It may also re-

non-functional requirements. However, this situationds n ~ quire modifications to the application API (e.g. to let the ap

realistic: each product has its strengths and weaknesses. plication provide information to define some non-functiona
The implementation of non-functional elements at the aspects such as QoS). This can be seen as a process similar

middleware level is of interest: it allows to factor out com- t0 the one of hardware/software co-design: the responsibil

mon code, reused by many app”cations_ More code is Ity of Supporting non-functional requirements is shared by

reused and thus more tested and trusted. Yet, it induces ®oth the application and the middleware.

more complex and heavy architecture. The “Data Distribution Services” (DDS) [12] may act

1 Introduction

this way. It is built around MDA (Model Driven Archi-
tecture) [10, 11], it defines a Platform Independent Model
(PIM) of its core constructs. Then, middleware developers
can derive any Platform Specific Model (PSM) that matches
the applications requirements.

This allows the construction of different implementa-
tions of DDS, each one dedicated to very specific needs,
allowing for efficient and precisely tuned middleware.

In turn, this puts a strict constraint on the application:
it has to conform to one specific PSM. Incompatible PSMs
and their implementation reduce applications’ portapilit
is another instance of the “Middleware Paradox” that limits
interoperability between middleware technologies [1].

We claim that DDS is an promising step to elaborate
middleware dedicated to a given application that supports
its non-functional requirements. Yet, this requires a fgam
work to define this family of middleware that maximizes
application portability. This paper presents how we use Po-
lyORB as a framework for supporting DDS.

We present in the next section the key concepts of DDS,
then we analyze their implication when defining a support-
ing middleware. We introduce the key concepts of the
“schizophrenic” middleware architecture and demonstrate
how they can be used to efficiently prototype DDS, defin-
ing one PSM for the user, and several hooks to tailor mid-
dleware internals. Finally, we analyze our implementation
and compare it to existing DDS implementations.

2 DDS’ overview

In this section, we present the core concepts of DDS and
discuss the implementation of a DDS middleware.

The Data Distribution Service (DDS) aims at defining a
communication infrastructure that covers the needs oélarg
scale, distributed real-time applications. It is a new #pec
cation adopted by the OMG at the end of 2004.

DDS follows the Publisher/Subscriber distribution
model defined in [13]. It is data-centric: the unit of trans-
mission is data. The underlying data model use a global
data space to identify data circulating in the system.

The DDS specification defines high-level standardized
interfaces and behavior. It introduces two layers:

e DCPS (Data-Centric Publish/Subscribg; a manda-
tory low-level layer that handle the efficient delivery otaa
to the proper recipients. This layer provides support for 21
Quality of Service policies;

e DLRL (“Data Local Reconstruction Layel); an op-

2.1 DDS Architecture Conceptual Outline

In this section, we describe DDS at a conceptual level.
We focus on the DCPS layer.

+(Data-Object <
Identified by means
of the Topic

Identified by means
of the Topic

- Sul)scriberr

data values
DataReader

~» Subscriber

data v nlm

‘ DaraReader

Publisher

/data values

DataWriter|

Figure 2. DDS entities from [12]

The information flow in the DDS is presented in figure 2.
The main actors of the DDS data-flow are the:

Publ i sher andDataWiter on the sending side, and
the Subscri ber and Dat aReader on the receiving side.
Topi cs are used to identify and collect data.

Domai nPar ti ci pant is the factory class faPubl i sher
andSubscri ber. Itis created by any DDS application prior
to Publ i sher/Subscri ber creation.

Publ i sher handles information dissemination,
publication. It aggregates manBataWiters, each
Dat aWi t er is associated with a type of dafat aW i t er
are used by the application to send data.

Subscri ber handles the retrieval of published data. As
for the Publisher, the Subscriber aggregates several
Dat aReader s, each associated with a type of data. The ap-
plication accesses data through be¢ aReader .

Topi ¢ associates a unigue name and a data-type. This
topic name is used by thBubl i sher and Subscri ber
sides to send and receive data. TApi ¢ might allocate
some storage for data. Popi ¢ aggregates data in groups
called instances. Each instance is identified by a key in-
side theTopi ¢c. An instance contains many samples, each
one represents a value for the instarfagal i cati ons and
Subscri ptions use samples as the communication unit.

DDS supports two notification mechanisms:

e Listener-basedThis is the default and mandatory no-
tification mechanism. It provides a generic mechanism to
notify the application of the occurrence of relevant asyn-

or

tional high-level API that eases access to and filter data ma-chronous events, such as data arrival, QoS setting vialatio

nipulated by DDS’s DCPS layer.

DDS defines several compliance points, from “Mini-
mal Compliance” (core of DCPS) to “complete”, including
many services and the DLRL. Each compliance level indi-
cates the number of services available.

etc. Each DDS entity has its own set of listeners. The spec-
ification only defines which are the listeners a particular en
tity accepts, and in which conditions they are to be called.

e Condition-based:This mechanism allows the appli-
cation to wait for a condition to occur. Conditions can be

triggered by the application, the status of an entity or the of code. This architecture also has to enhance adaptability
arrival of data. The application can wait simultaneously on of the middleware: developers must be able to safely adapt

several conditions using\&hi t Set . middleware services to the needs of an application domain.
These two notification mechanisms allow one to choose = We claim that the value added of any middleware, in-
between synchronous and asynchronous notification. cluding DDS ones is notinits API, butin its internals and its

The Data Distribution Service supports Quality of Ser- support for the underlying OS and hardware platforms, its
vice (QoS). QoS provides the possibility to tailor the be- PIM. We advocate for enforcing separation of concerns at
havior of DDS entities: each Entity supports its own set of the middleware level to provide the user with a stable API,
QoS policies. QoS policies are many and diverse, they ad-providing a uniform view of the PSM, and with a set of tai-
dress different areas of middleware behavior, ranging from lorability mechanisms to precisely adapt the middleware to
time management to resource utilization, transport configu application needs. These two complementary facets allow

ration, fault tolerance, persistence, data presentation, for the easy adaptation of the middleware.
In the following sections, we detail our approach to build
2.2 Deriving an implementation of DDS DDS middleware that preserves its API and allows for many

tailorability strategies, based on the use of the schizambr

The elements we presented provide only a brief overview Mddleware architecture.

of DDS capabilities. In this section, we discuss their desig

principles, strength and prerequisites. 3 Defining a design and implementation
DDS differs from typical CORBA-based OMG specifi- framework for fine-tuned middleware

cations in many ways, including its form and contents. DDS

is built around MDA (Model Driven Architecture) [11]: it In this section, we discuss our approach to design a mid-

defines a Platform Independent Model (PIM) of its core geware dedicated to the requirements of a given applica-
constructs. This PIM is defined using UML, fully describ- tjon. This approach can be viewed as a co-design between
ing the API and semantics of the DDS entities, their role, the application and its supporting middleware. To enforce
parameters and the various QoS policies. this design process, we provide a highly generic middle-
From this PIM, middleware developers are free to derive ware architecture (also known as the “schizophrenic” archi
any Platform Specific Model (PSM) that matches their de- tecture) and a methodological guide to instantiate it.
sign goals. The mapping has to preserve the overall seman-
tics, but can rely on any intermediate technologies before 3 | PolyORB, a highly tailorable middleware
producing the final implementation.
We note that DDS relaxes many normative points typi-

e k : Actual middleware has to fulfill the system requirements.
cal from CORBA-related specifications, including protgcol

, , X Some solutions are based on “rigid” specifications; this is
data representation, run-time, etc. This allows for pkatfo e case for most CORBA implementations. Such middle-
and application-specific optimizations.) . ware architectures are targeted to a certain applicatien do
_DDS targets DRE systems, the mapping should abide n5in They can be adapted to other fields of application
with engineering guidelines from this domain, and the het- (RT-CORBA, minimum CORBA. ..). Yet, implementations
erogeneous hardware platform (e.g. supporting OS, dedi-5e not a5 efficient as specifically designed middleware [9].
cated 1/0s). Defining the PSM should take advantage or 15 there is a need for middleware that can really fit

cater for these constraints. o many different systems. To do so, both a tailorable and ver-
Such a freedom in defining its own mapping is interest- ifiapie architecture is required.

ing and unprecedented in middleware specifications: this
allows for the implementation of fine-tuned middleware,
while using one common conceptual framework at both the
APl and semantics levels. Solutions have been proposed to design tailorable middle-

Yet, we believe this introduces one strong limitation on ware.Configurablemiddleware defines an architecture cen-
the use of DDS: different needs might lead to different and tered on a given distribution model [14] (e.g. distributéd o
incompatible mappings at the PSM level, impeding code jects, message passing, etc.); this architecture can led tun
reusability between DDS infrastructures. (tasking policy, etc.).Genericmiddleware [2] provides a

This situation would be very similar to the “Middle- canonical architecture, which has to be instantiated te cre
ware Paradox” that prevents interoperability betweeniappl ate middleware implementations. Those implementations
cations built around heterogeneous middleware. are calledpersonalities Generic middleware is not bound

There is a need to map concepts proposed in DDS intoto a particular middleware model; however, various person-
a safe architecture that enforces reusability of majorgsec alities seldom share a large amount of code.

3.1.1 The need for a tailorable architecture

Configurable and generic middleware architectures ad-described, to support verification facilities. Hence itisp
dress the tailorability issue, as they ease middleware-adapsible to ensure its properties (no deadlock, no liveloak) et
tation. However, they do not provide complete solutions, as and we actually verified some configurations.
they are either restricted to a class of distribution moaolel, The personalities do not directly interact with the
their adaptation is too expensive. uBroker. They are built on top of seven fundamental ser-
vices that provide the client-server interactions found in
most distribution models. Those services define the canon-
ical operations performed in a middleware implementation.
As a solution to address those issues, we proposed the First, the client looks up server’s reference usingabe

schizophrenic middleware architecture [17]. It separatesdressingservice (1). Then, it uses tixndingfactory (2) to
concerns between distribution model APIs, communication establish a connection with the server, using one communi-

protocols, and their implementations. Schizophrenic mid- cation channels (eg sockets, protoc0| Stack)_

dleware refines the definition and role of personalities. Request parameters are mapped onto a representation

The schizophrenic architecture consists of three lay- gitable for transmission over network, using tpresen-
ers: application-levelandprotocol-levelpersonalities built tatjon service (3) (e.g. CORBA CDR).

around aneutralcore. Application uses the application per-
sonalities; protocol personalities operate with the netwo nodes, through théransport (5) service; it establishes a
Application personalitiegonstitute the adaptation layer .o mmunication channel between the two nodes.
betvyeen application components and middleyvare through a Upon the reception of a request, the middleware instance
dedicated A.Pl or code generator. They provide APIS to |n-. ensures that a concrete entity is available to execute the re
terface application components with the core middleware; . o . .
quest, using thactivationservice (6). Theexecutionser-

they interact with the core layer in order to allow the ex- . ; .
vice (7) assigns execution resources to process the request

change of requests between entities. . .
g d The composition of the core services aroundjtBeoker

Application personalities can instantiate middleware im- ; X N
plementations such as CORBA, the Distributed System An- allows for the implementation of many distribution models.

nex of Ada 95 (DSA), the Java Message Service (JMS), etc.
Protocol personalities handle the mapping of
personality-neutral requests (representing interastion
between application entities) onto messages exchanged
using a chosen communication network and protocol.
Protocol personalities can instantiate middleware paltoc
such as IIOP (for CORBA), SOAP (for Web Services), etc. Figure 3. PolyORB’s core architecture
The neutral core layeacts as an adaptation layer be-
tween application and protocol personalities. It manages
execution resources and provides the necessary abstisctio
to transparently pass requests between protocol and appli
cation personalities in a neutral way. It is completely inde

pendent from both application and protocol personalities. The seven fundamental services provide the basic middle-
The neutral core layer enables the selection of any com-ware operations. ThgBroker can be formally described to
bination of application and/or protocol personalitiesv-Se provide verification facilities, to ensure real-time profjes.
eral personalities can be collocated and cooperate in a give Those elements can be configured to create a middleware
middleware instance, leading to its “schizophrenic” natur jnstance for particular system requirements.
In [17], we present PolyORB our implementation of a
3.1.3 The middleware core architecture schizophrenic middleware. PolyORB a free software mid-
dleware supported by AdaCdtdPolyORB's research activ-
The middleware core provides neutral, model-independentities are hosted by the ObjectWeb consorfuiive assessed
functions. It relies on the identification of the functioms i jts suitability as a middleware platform to support multi-
volved in request processing and their flexible implemen- ple heterogeneous specifications (CORBA, Ada Distributed
tation that maximize code reusability among personalities Systems Annex, Web Applications, Ada Messaging Service

3.1.2 Decoupling middleware functions

A protocol (4) supports transmissions between the two

Request propagation

3.1.4 Assessment

Figure 3.1.3 details the neutral layer. close to Sun’s IMS) and as a COTS for industry projects.
The inner heart of the neutral layer is embodied by the
“uBroker” [7]. ThepBroker provides all the basic middle- Intt p: / / waw. adacor e. com

ware mechanisms: 1/O, task scheduling, etc. It is formally 2http://pol yorb. obj ect web. or g

3.2 A methodology to design new personalities In the next section, we detail how this process enables
the construction of a DDS middleware.

A methodological guide details the different steps to in-
sftantiate _PonORB (figure 4) frqm a §p§cifig set of applica- 4 Building a DDS personality
tion requirements and the implied distribution model (step
1). Itis intended to give the user the proper knowledge to
tailor PolyORB. There are several ways to adapt PolyORB
to the application requirements (step 2):

e Use an existing personality. PolyORB already comes . .
with CORBA, RT-CORBA, DSA, MOMA (Ada-like JMS), 4.1 Design requirements
DDS and the existing configuration parameters;

e Design a new personality: design or refine some ofthe ~ We presented the overall architecture and concepts of
fundamental components, by re-using fundamental compo-PolyORB, focusing on the distribution functions it provide
nents already developed from existing personalities enfro and the personality as a structuring paradigm to implement a
the neutral core; overloading them or designing new variantdistribution mechanism or specifications. We now propose
of fundamental components from scratch. to study how to implement DDS in our framework.

Note that when a new personality is designed, we get We note that DDS defines the semantics of many appli-
back to the generic architecture (step 3) to decide whethercation objects, their API, but do not impose any exchange
the new features would be useful for other personalities. In protocol, representation or transport mechanisms sirtalar
this case, there are two possible policies: CORBA's GIOP and CDR.

e This feature has a simple and generic enough imple- Hence, DDS is an application-oriented specification, the
mentation that can be reused by other personalities, tien th implementation has to define its own core and protocol ele-
feature is integrated in the pool of neutral core layer com- ments. Transposed in the context of the schizophrenic mid-
ponents, e.g. concurrency policies, low-level transport; dleware architecture, DDS requires a specific application

¢ This feature is intrinsically specific to a personality, personality, itis the developer responsibility to carkyfak-
the implementation enhancement is kept at the level of thelect the neutral core and protocol components.
protocol or application personalities, e.g. GIOP message Therefore, the initial implementation of DDS will focus

In this section, we introduce the design of a DDS (OMG
specification v1.0) personality for PolyORB.

management, DDS specific API. on the implementation of a dedicated application personal-
ity that supports DDS entities and their semantics. The tai-
Application Distribution lorability of the middleware will be provided by carefully
Requirements Model

selecting the other middleware components.
PolyORB proposes a MOM application personality:
MOMA. MOMA implements an API very close to that of

@

@ _—
— Sun’s JMS [16], it is a MOM with the notion of Publisher
° and Subscriber, with Topics to identify data, etc. All these
Repository @ * entities are also defined in DDS.
of PolyORE [Therefore, DDS is notionally close to JMS. It differs not
components
components in its functional elements but in the definition of real-time

Application—tuned oriented QoS policies and in implementation guidelines tha
@ meElEEE strives for efficiency and determinism.

Besides, PolyORB implements the RT-CORBA specifi-
cations. To support this API, PolyORB’s core and GIOP
protocol personality have been enhanced to provide support

Finally the user derives one assembly of components: thefO" Priority-aware request propagation and QoS policies.
fine-tuned middleware adapted to its initial needs (step 4). Hence, up to atailoring of some MOMA and PolyORB's

This procedure may also be repeated to adapt more pre1nternals, and the careful selection of other componermts, P

cisely components, allowing for evolving design of some [YORB's architecture provide sufficient support to build a
core elements without impeding the whole assembly. DDS personality. We detail this point in the next section.

In this section, we have defined the middleware architec-
ture and associated methodology used to implement mid-4.2 Reusing middleware components for DDS
dleware. We enforce a strong separation of concerns be-
tween the different functions involved in the middleware We now review some existing elements we use as a
and we combine them to form the required implementation. framework to implement DDS :

Figure 4. Designing new personalities

MOMA provides MOM canonical entities and control cess to message in MOMA entities, and is directly under
on the message lifecycle [6]. Entities provides the usdr wit the responsibility of the DDS personality.
the capability to define topics, subscribe and publish data. Time and priority oriented policies are already supported
All entities rely on the “servant-like” pattern: they are@fe by the neutral core and the protocol personality as parteof th
istered to theuBroker and the application entity manager, work done for the RT-CORBA implementation.
they serve incoming requests and store/retrieve messages.

Message exchange between entities is mapped to a set
of requests these servants can serve, and that can in turn be
mapped onto GIOP request messages.

These elements provide the basis to implement DDS en-
tities on top of MOMA, allowing for code reuse.

Neutral Core Middleware controls request propaga-

A
API QoS Mgt DDS Message

MOMA Topic /| Publisher N E\YEEEGTE]
: LifeCycle

suonouny uonnauisip Buisealou)

Increasing distribution abstractions

tion, the management of application entities. It schedules Neutral Core scheduler Scheduling
tasks to complete request execution, in conformance with Middleware i Tasks
o D Entity Mgt & 1/0 events
the QoS policies set up by the application.
The Neutral Core Middleware is highly configurable Datagram
ghly 9 GIOP/CDR Protocol Management |

and tailorable: each step in request processing can be
adapted. Previous work on the RT-CORBA specifications
added priqrity-ba_sed request execution mechanisms to the Figure 5. Abstractions/Functions in PolyORB

core, and in particular th€Ll ENT_PROPAGATED model to

set up the priority at which a threads executes a request.

Application entities can be registered with QoS policies Figure 5 summarizes this adaptation work. The mapping
similar to theRTPort abl eServer’s API, without the en- from DDS PSM onto the application personality APl is a di-
cumbrance of the CORBA’s concepts and its mapping to rect mapping from the different objects onto Ada 95 objects
a programming language. The core provides supports ofand types. Their implementation code uses MOMA enti-
the concepts, the personalities add all required wrapper toties to manage DDS message lifecycle. They are configured
match a model, e.g. CORBA’s OMA or DDS QoS policies. using QoS policies and functions to support priority-aware

Hence, the Neutral Core can be configured to managerequest dispatching that are provided by the core and proto-
MOMA entities with QoS policies adapted to DDS needs. col components. It is an enrichment of the semantics of the

Protocol: DDS does not define a protocol stack to ex- message passing model.
change data, only provision for efficiency. This adaptation work focused on a specific area of the

Without loss of generality, we chose the GIOP person- middleware: data management; other distribution issues ar
ality as an element for our first-step prototype, it provides already addressed when reusing PolyORB'’s components.
versatile mechanisms to exchange data and QoS informa- In this section, we presented our solution to implement
tion between nodes. GIOP proposesway request propa- DDS. It focuses on high-code reuse through an intensive
gation mechanisms, the MIOP protocol also proposes groupseparation of concerns and the reuse of many middleware
communication. This provides sufficient features for MOM. functions, allowing for a rapid prototyping of a DDS per-

Let us note that the versatility of PolyORB allow us to sonality. In the next section, we assess our solution.
change the protocol at a limited cost, focusing more pre-
cisely on application needs for efficient data transfer. 5 Assessment of our solution

4.3 Defining the DDS personality In this section, we assess our implementation and com-
pare our work with existing implementations of DDS.
We presented the elements provided by PolyORB to sup-
port DDS. DDS focuses on the definition of an efficient pub- 5.1 Code reuse and benchmarks
lish/subscribe middleware for DRE systems. Compared to

MOMA concepts, it “simply” adds 21 QoS policies. We indicated in section 4.2 that DDS can reuse many
A careful review of these policies show that most of them functions inherited from existing components. We analyzed
are related to the message |ife_Cyc|e (ordering, hlStb"E, the final implementation code and evaluated the number of

its on resource, etc.). MOMA entities simply provide mes- SLOCs (Significant Lines of Code, i.e. code statements
sage passing capabilities. The DDS personality will rely on only) of the componentsfor one non-optimized assembly.
this f_e_atL_Jre and enfOfce specific behavior. They imppse the sThe measures have been done using SLOCCount from David
specific implementation of the components managing ac-A. Wheelerht t p: / / www. dwheel er . cont sl occount /

This assembly directly reused MOMA, GIOP, the neu- the middleware components while preserving the properties
tral core layer configured to support priority-based retjues of its application based on one uniform API.
processing. Table 1 summarizes our measurements.
5.3 Related Work

Component SLOCs

Neutral Core 30417 . e

GIOP 518 P:;{EESB DDS is a recent OMG specifications. Yet, it originates
MOMA 4503 reused = 83 % from long-term industrial projects that built a de factorsta
DDS 7009 } Specific code = 17 % dard for which many implementations exist.

nDDS by RTl is the originator of the DDS specifications,
they propose nDDS as a real-time publish/subscribe middle-
ware for many years. They contributed to the DDS specifi-

We note that DDS personality represents less than 17%cations. nDDS is a closed-source implementation that sup-
of code, this denotes an intensive code reuse. BesidesportS multiple languages, it is field-proven and deployed in
bu?lding this prototype of this new complex standard re- many industrial and military projects such as [8].
quired less than four man-months. SPLICE DDS is another DDS middleware done by

This code reuse ratio demonstrates that PolyORB mid-Thales and Prismtech. It is deployed in military projects,
dleware components provide key building blocks, which with a strong emphasis on performance and scalability [5].
clearly reduces the need to write large portions of code |t js difficult to evaluate these closed-sources projects.
when implementing a new distribution model. This allows The main question is the |eve| of Code reuse and ease of
developers to quickly implement new distributions mecha- adaptability provided compared to the footprint and effi-
nisms and experiment with their semantics, and then focuscient data throughput advertised. The latter are important
on performance metrics to optimize memory footprint, time for the particular application to builds, but may impede mid

Table 1. PolyORB’s components used

property of the middleware. dleware usability on the long run.
TAO/DDS is a recent open source project from OClthat
5.2 Usability assessment proposes a C++ implementation of DDS 1.0 built around

the ACE and TAO frameworks [15].

In the previous section, we presented an assembly of This implementation leverages existin_g elements from
components that form one DDS middleware. It reuses manythe ACE frameworks for low-level I/O routines : CDR mar-
components written in the context of other distribution mod ~ Shallers, pluggable transport framework, etc.
els: RT-CORBA policies and protocol, MOMA messaging It a_lso reuses some elements from TAO_to avoid code du-
entities. The DDS personality combines these elements toPlication, and also enables some cooperation between COR-

support the DCPS layer. It provides the first open source BA @nd DDS domains. This feature is very similar to the
implementation of DDS in Ada 95. notion of personalities advertised by our architecture- Po

lyORB can support simultaneously CORBA and DDS per-

sonalities, and enable interoperability between them.
Release ® of TAO/DDS covers DCPS features, it in-

corporates 2583 SLOCS. This indicates TAO/DDS fac-

This code is not as-is optimized for any resource con-
strained DRE systems. From a performance point-of view,
the behavior of this implementation is notionally equiva-
lent to a RT-CORBA application for the request processing § X
part, reusing its protocol and priority mechanisms, with ap tors middleware fu_nctlons_ at a lower conceptua! level (e.g.
plication entities implementing the messaging distrituti protocol, request dispatching) than PolyORB which focuses

model. Message throughput is 2400 messages per secondd distribution mechanisms as a whole. _
on average workstations running GNU/Linux. In this section, we assessed our solution, and compared it

PolyORB's middleware components can be tailored to with other projects. PolyORB and its personalities demon-

reduce their semantics to the only required elements, e'g:strate haw separation of concemns enable the rapid pretotyp

protocol, type managements, memory policies, etc. Hence,'ng of middleware, leveraging existing middleware compo-

the versatility of PolyORB enables the user to precisely nents. This allows for opt|m|zat!ons ata Iatter stage. Othe
adapt any of its core elements, from transport, protocae co projects focus on features to be implemented instead of code

and messaging entities, without modifying the DDS person- reusability ano_l tailorability. _TA(_) provides a first view on

ality. This provides a high level of tailorability. code reuse using ACE, but s still at an early stage.
Therefore, we propose a solution to the portability and)

adaptability issues that arise when using DDS in many het-6 Conclusion

erogeneous application domains, enhancing the value added

of the DDS development approach. The developer can meet The OMG published the Data Distribution Service

specific deployment and resources constraints by adaptindDDS), a high-level description of a data-centric middle-

ware for DRE systems. Following, the MDA approach, Applications (DOA'01) Sept. 2001. _
A platform independent model defines DDS semantics. [2] B. Dumant, F. Horn, F. D. Tran, and J.-B. Stefani. Jonathan:
Considering the versatility of application requirements, an open distributed processing environment in java. In

claim that DDS implementations should allow hlgh tai- IFIP Int'l Conference on Distributed Systems Platforms
lorability while allowing application reuse. and Open Distributed Processingages 175-190, Londres,

. 1998. Springer Verlag.
PolyORB, our implementation of a schizophrenic mid- [3] H. Feiler, B. Lewis, and S. Vestal. The SAE Avionics Archi-

dleware, provides an implementation framework for DDS, tecture Description Language (AADL) Standard: A Basis

and a repository of middleware components ready for use. for Model-Based Architecture-Driven Embedded Systems
Its modular architecture built around tip@roker and the Engineering. IRTAS 2003 Workshop on Model-Driven Em-

identification of canonical middleware functions allows th bedded Systemilay 2003.

definition and implementation of a DDS API based on one [4] S. Gorappa, J. A. Colmenares, H. Jafarpour, and R. Klefs-
highly tailorable architecture. This approach brings majo tad. Tool-based Configuration of Real-time CORBA Mid-

dleware for Embedded Systems. Imternational Sympo-

benefits to middleware engineering. sium on Object-oriented Real-time distributed Computing
First, the developer can carefully select, adapt or create (ISORC'05) Seattle, USA, May 2005.

middleware components and integrate them in the architec- [5] Hans van't Hag. OMG - DDS Exploiting the Potential -

ture and preserving the DDS API. This allow for a high- Proven Suitability in the Naval Combat System Domain.
level of tailorability, without impeding application reaisil- In Proceedings of the OMG Real-Time Embedded Systems
ity in different contexts (hardware, deployment, etc.). WorkshopArlington, VA USA, July 2005.

Second, this approach factors code across multiple dis- [6] J. Hugues, L. Pautet, and F. Kordon. Contributions to mid-
tribution technologies. PolyORB supports DDS, but also dleware architectures to prototype distribution infrastruc-
CORBA, RT-CORBA, a MOM on top of a generic middle- tures. InProceedings of the 14th IEEE International Work-

shop on Rapid System Prototyping (RSP,08%n Diego,
CA, USA, June 2003.

[7] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middleware

ware core. This core can be formally modeled and verified,
and has actually been verified for some configurations. This
increases confidence in the middleware components reused

in another context: functional properties are kept. Behavioral Properties. IRroceedings of the 9th Interna-
Hence, the adaptation work for a new technology can tional Workshop on Formal Methods for Industrial Critical

then focus on specific aspects, such as non-functional QoS Systems (FMICS’04).inz, Austria, Sept. 2004. To be pub-

policies. This reduces development cost while increasing lished in Electronic Notes in Computer Science.

the confidence in the infrastructure. [8] R.T. I Inc. Customer Success : Lockheed Martin, 2005.

. SRR . _[9] F. Kordon and L. Pautet. Toward next-generation toward
The construction of application-tailored middleware us next-generation middlewardEEE Distributed Systems On-

ing DDS and PolyORB is iterative. The middleware is first line, 5(1), 2005
drafted for the first tests of the application and then refined 1) OMG. Model Driven Architecture (MDA), Document num-

by selecting and extending the implementation capalslitie ber ormsc/2001-07-01. Technical report, OMG, 2001.
This approach allows the tuning of both the application and [11] OMG. Overview and guide to OMG's architectur©MG,
the middleware it relies on.Application/Middleware co- June 2003. OMG Technical Document formal/03-06-01.

designis then possible. This is useful for developers to meet [12] OMG. Data Distribution Service for Real-time Systems
specific needs of a given DRE system. Specification version 1.00MG, Dec. 2004. OMG Tech-

Later work will consider the automation of the middle- [13] nical Document.

" o R. Rajkumar, M. Gagliardi, and L. Sha. The Real-Time Pub-
ware adaptation work, defining the tools and methodology lisher/Subscriber Inter-Process Communication Model for

to assist the user in selecting or extending middleware com- Distributed Real-Time Systems: Design and Implementa-
ponents. The AADL ("Architecture, Analysis and Design tion. In Proceeding of the 1st IEEE Real-Time Technology
Language”, [3]) has been selected to describe the middle- and Applications Symposiytenver, Colorado, USA, May
ware’s structure. We aim to use this description, combined 1995.

with a set predefined routines and service libraries, to weav [14] D. Schmidt, D. Levine, and S. Mungee. The design and
the configured middleware dedicated to a DRE system. performance of real-time object request brokers, 1998.

. [15] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of
Acknowledgement The authors thank Suha Demin€@ the TAO real-time object request brok@omputer Commu-

for his valuable work when implementing the first release nications 21(4):294-324, Apr. 1998.

of the DDS personality for PolyORB. [16] SUN. Java Message Service (JMS), 1999.

[17] T.Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB:
a schizophrenic middleware to build versatile reliable dis-
tributed applications. IProceedings of the 9th International
Conference on Reliable Software Techologies Ada-Europe

[1] S. Baker. Middleware To Middleware. IRroceedings of 2004 (RST'04)Palma de Mallorca, Spain, June 2004.
the 3rd International Symposium on Distributed Objects and

References

