
A framework for DRE middleware, an application to DDS

Jérôme HUGUES, Laurent PAUTET

GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

jerome.hugues@enst.fr, laurent.pautet@enst.fr

Fabrice KORDON

Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/SRC
4, place Jussieu, F-75252 Paris CEDEX 05, France

fabrice.kordon@lip6.fr

Abstract

Heterogeneous non-functional requirements of DRE sys-
tem puts a limit on middleware engineering; building an
application-tailored middleware becomes a challenge.

In this paper, we show how we use the PolyORB mid-
dleware and its architecture as a framework to implement
DDS, the Data Distribution Services (DDS) recently pub-
lished by the OMG. We demonstrate how the architectuer
proposed by PolyORB enables a rapid implementation of
this specification, and allows for extreme tailorability to
support application requirements.

1 Introduction

The many and heterogeneous constraints of distributed
applications deeply impact the development of distribution
middleware. Middleware should support developers when
designing, implementing and deploying such systems in
heterogeneous environments and evaluate so called “non
functional” requirements (such as QoS or reliability).

Usually, a system is designed as shown in Figure 1. Ap-
plications interact with middleware implementing one spec-
ification (e.g. CORBA). Non functional requirements are
considered during the implementation of the application
(fault tolerance, resources, etc.).

One could select a COTS middleware that fulfills all its
non-functional requirements. However, this situation is not
realistic: each product has its strengths and weaknesses.

The implementation of non-functional elements at the
middleware level is of interest: it allows to factor out com-
mon code, reused by many applications. More code is
reused and thus more tested and trusted. Yet, it induces a
more complex and heavy architecture.

T a i l o r e dM i d d l e w a r eU s e r A P IA p p l i c a t i o nM i d d l e w a r er e q u i r e m e n t sN o n f u n c t i o n a lr e q u i r e m e n t s
A p p l i c a t i o nr e q u i r e m e n t s

Figure 1. Various levels of requirements

Such an approach is not affordable for Distributed, Real-
time and Embedded Systems (DRE). Meeting their non-
functional requirements imposes precise control over the
middleware to ensure that temporal or resources guidelines
are met. This set of constraints is usually defined as a set of
“Quality of Services” policies and parameters.

As an example, Zen-Kit [4] allows middleware cus-
tomization (such as control over memory footprint) by con-
trolling the actual components embedded by the applica-
tion, while minimizing the difficulty of this custom config-
uration. However, this approach is focused on RT-CORBA:
it does not allow the modification of the middleware archi-
tecture by adding new components that would diverge from
the standard such as a lightweight invocation protocol.

Hence, there is a need for a finer control over the archi-
tecture and services inside the middleware. It may also re-
quire modifications to the application API (e.g. to let the ap-
plication provide information to define some non-functional
aspects such as QoS). This can be seen as a process similar
to the one of hardware/software co-design: the responsibil-
ity of supporting non-functional requirements is shared by
both the application and the middleware.

The “Data Distribution Services” (DDS) [12] may act

1



this way. It is built around MDA (Model Driven Archi-
tecture) [10, 11], it defines a Platform Independent Model
(PIM) of its core constructs. Then, middleware developers
can derive any Platform Specific Model (PSM) that matches
the applications requirements.

This allows the construction of different implementa-
tions of DDS, each one dedicated to very specific needs,
allowing for efficient and precisely tuned middleware.

In turn, this puts a strict constraint on the application:
it has to conform to one specific PSM. Incompatible PSMs
and their implementation reduce applications’ portability. It
is another instance of the “Middleware Paradox” that limits
interoperability between middleware technologies [1].

We claim that DDS is an promising step to elaborate
middleware dedicated to a given application that supports
its non-functional requirements. Yet, this requires a frame-
work to define this family of middleware that maximizes
application portability. This paper presents how we use Po-
lyORB as a framework for supporting DDS.

We present in the next section the key concepts of DDS,
then we analyze their implication when defining a support-
ing middleware. We introduce the key concepts of the
“schizophrenic” middleware architecture and demonstrate
how they can be used to efficiently prototype DDS, defin-
ing one PSM for the user, and several hooks to tailor mid-
dleware internals. Finally, we analyze our implementation
and compare it to existing DDS implementations.

2 DDS’ overview

In this section, we present the core concepts of DDS and
discuss the implementation of a DDS middleware.

The Data Distribution Service (DDS) aims at defining a
communication infrastructure that covers the needs of large-
scale, distributed real-time applications. It is a new specifi-
cation adopted by the OMG at the end of 2004.

DDS follows the Publisher/Subscriber distribution
model defined in [13]. It is data-centric: the unit of trans-
mission is data. The underlying data model use a global
data space to identify data circulating in the system.

The DDS specification defines high-level standardized
interfaces and behavior. It introduces two layers:

• DCPS (“Data-Centric Publish/Subscribe”), a manda-
tory low-level layer that handle the efficient delivery of data
to the proper recipients. This layer provides support for 21
Quality of Service policies;

• DLRL (“Data Local Reconstruction Layer”), an op-
tional high-level API that eases access to and filter data ma-
nipulated by DDS’s DCPS layer.

DDS defines several compliance points, from “Mini-
mal Compliance” (core of DCPS) to “complete”, including
many services and the DLRL. Each compliance level indi-
cates the number of services available.

2.1 DDS Architecture Conceptual Outline

In this section, we describe DDS at a conceptual level.
We focus on the DCPS layer.

Figure 2. DDS entities from [12]

The information flow in the DDS is presented in figure 2.
The main actors of the DDS data-flow are the:

Publisher and DataWriter on the sending side, and
the Subscriber and DataReader on the receiving side.
Topics are used to identify and collect data.

DomainParticipant is the factory class forPublisher
andSubscriber. It is created by any DDS application prior
to Publisher/Subscriber creation.

Publisher handles information dissemination, or
publication. It aggregates manyDataWriters, each
DataWriter is associated with a type of data.DataWriter
are used by the application to send data.

Subscriber handles the retrieval of published data. As
for the Publisher, the Subscriber aggregates several
DataReaders, each associated with a type of data. The ap-
plication accesses data through theDataReader.

Topic associates a unique name and a data-type. This
topic name is used by thePublisher and Subscriber
sides to send and receive data. ATopic might allocate
some storage for data. ATopic aggregates data in groups
called instances. Each instance is identified by a key in-
side theTopic. An instance contains many samples, each
one represents a value for the instance.Publications and
Subscriptions use samples as the communication unit.

DDS supports two notification mechanisms:
• Listener-based:This is the default and mandatory no-

tification mechanism. It provides a generic mechanism to
notify the application of the occurrence of relevant asyn-
chronous events, such as data arrival, QoS setting violation
etc. Each DDS entity has its own set of listeners. The spec-
ification only defines which are the listeners a particular en-
tity accepts, and in which conditions they are to be called.

• Condition-based:This mechanism allows the appli-
cation to wait for a condition to occur. Conditions can be

2



triggered by the application, the status of an entity or the
arrival of data. The application can wait simultaneously on
several conditions using aWaitSet.

These two notification mechanisms allow one to choose
between synchronous and asynchronous notification.

The Data Distribution Service supports Quality of Ser-
vice (QoS). QoS provides the possibility to tailor the be-
havior of DDS entities: each Entity supports its own set of
QoS policies. QoS policies are many and diverse, they ad-
dress different areas of middleware behavior, ranging from
time management to resource utilization, transport configu-
ration, fault tolerance, persistence, data presentation,etc.

2.2 Der iving an implementation of DDS

The elements we presented provide only a brief overview
of DDS capabilities. In this section, we discuss their design
principles, strength and prerequisites.

DDS differs from typical CORBA-based OMG specifi-
cations in many ways, including its form and contents. DDS
is built around MDA (Model Driven Architecture) [11]: it
defines a Platform Independent Model (PIM) of its core
constructs. This PIM is defined using UML, fully describ-
ing the API and semantics of the DDS entities, their role,
parameters and the various QoS policies.

From this PIM, middleware developers are free to derive
any Platform Specific Model (PSM) that matches their de-
sign goals. The mapping has to preserve the overall seman-
tics, but can rely on any intermediate technologies before
producing the final implementation.

We note that DDS relaxes many normative points typi-
cal from CORBA-related specifications, including protocol,
data representation, run-time, etc. This allows for platform
and application-specific optimizations.

DDS targets DRE systems, the mapping should abide
with engineering guidelines from this domain, and the het-
erogeneous hardware platform (e.g. supporting OS, dedi-
cated I/Os). Defining the PSM should take advantage or
cater for these constraints.

Such a freedom in defining its own mapping is interest-
ing and unprecedented in middleware specifications: this
allows for the implementation of fine-tuned middleware,
while using one common conceptual framework at both the
API and semantics levels.

Yet, we believe this introduces one strong limitation on
the use of DDS: different needs might lead to different and
incompatible mappings at the PSM level, impeding code
reusability between DDS infrastructures.

This situation would be very similar to the “Middle-
ware Paradox” that prevents interoperability between appli-
cations built around heterogeneous middleware.

There is a need to map concepts proposed in DDS into
a safe architecture that enforces reusability of major pieces

of code. This architecture also has to enhance adaptability
of the middleware: developers must be able to safely adapt
middleware services to the needs of an application domain.

We claim that the value added of any middleware, in-
cluding DDS ones is not in its API, but in its internals and its
support for the underlying OS and hardware platforms, its
PIM. We advocate for enforcing separation of concerns at
the middleware level to provide the user with a stable API,
providing a uniform view of the PSM, and with a set of tai-
lorability mechanisms to precisely adapt the middleware to
application needs. These two complementary facets allow
for the easy adaptation of the middleware.

In the following sections, we detail our approach to build
DDS middleware that preserves its API and allows for many
tailorability strategies, based on the use of the schizophrenic
middleware architecture.

3 Defining a design and implementation

framework for fine-tuned middleware

In this section, we discuss our approach to design a mid-
dleware dedicated to the requirements of a given applica-
tion. This approach can be viewed as a co-design between
the application and its supporting middleware. To enforce
this design process, we provide a highly generic middle-
ware architecture (also known as the “schizophrenic” archi-
tecture) and a methodological guide to instantiate it.

3.1 PolyORB, a highly tailorable middleware

Actual middleware has to fulfill the system requirements.
Some solutions are based on “rigid” specifications; this is
the case for most CORBA implementations. Such middle-
ware architectures are targeted to a certain application do-
main. They can be adapted to other fields of application
(RT-CORBA, minimum CORBA. . . ). Yet, implementations
are not as efficient as specifically designed middleware [9].

Thus, there is a need for middleware that can really fit
many different systems. To do so, both a tailorable and ver-
ifiable architecture is required.

3.1.1 The need for a tailorable architecture

Solutions have been proposed to design tailorable middle-
ware.Configurablemiddleware defines an architecture cen-
tered on a given distribution model [14] (e.g. distributed ob-
jects, message passing, etc.); this architecture can be tuned
(tasking policy, etc.).Genericmiddleware [2] provides a
canonical architecture, which has to be instantiated to cre-
ate middleware implementations. Those implementations
are calledpersonalities. Generic middleware is not bound
to a particular middleware model; however, various person-
alities seldom share a large amount of code.

3



Configurable and generic middleware architectures ad-
dress the tailorability issue, as they ease middleware adap-
tation. However, they do not provide complete solutions, as
they are either restricted to a class of distribution model,or
their adaptation is too expensive.

3.1.2 Decoupling middleware functions

As a solution to address those issues, we proposed the
schizophrenic middleware architecture [17]. It separates
concerns between distribution model APIs, communication
protocols, and their implementations. Schizophrenic mid-
dleware refines the definition and role of personalities.

The schizophrenic architecture consists of three lay-
ers: application-levelandprotocol-levelpersonalities built
around aneutralcore. Application uses the application per-
sonalities; protocol personalities operate with the network.

Application personalitiesconstitute the adaptation layer
between application components and middleware through a
dedicated API or code generator. They provide APIs to in-
terface application components with the core middleware;
they interact with the core layer in order to allow the ex-
change of requests between entities.

Application personalities can instantiate middleware im-
plementations such as CORBA, the Distributed System An-
nex of Ada 95 (DSA), the Java Message Service (JMS), etc.

Protocol personalities handle the mapping of
personality-neutral requests (representing interactions
between application entities) onto messages exchanged
using a chosen communication network and protocol.
Protocol personalities can instantiate middleware protocols
such as IIOP (for CORBA), SOAP (for Web Services), etc.

The neutral core layeracts as an adaptation layer be-
tween application and protocol personalities. It manages
execution resources and provides the necessary abstractions
to transparently pass requests between protocol and appli-
cation personalities in a neutral way. It is completely inde-
pendent from both application and protocol personalities.

The neutral core layer enables the selection of any com-
bination of application and/or protocol personalities. Sev-
eral personalities can be collocated and cooperate in a given
middleware instance, leading to its “schizophrenic” nature.

3.1.3 The middleware core architecture

The middleware core provides neutral, model-independent
functions. It relies on the identification of the functions in-
volved in request processing and their flexible implemen-
tation that maximize code reusability among personalities.
Figure 3.1.3 details the neutral layer.

The inner heart of the neutral layer is embodied by the
“µBroker” [7]. TheµBroker provides all the basic middle-
ware mechanisms: I/O, task scheduling, etc. It is formally

described, to support verification facilities. Hence it is pos-
sible to ensure its properties (no deadlock, no livelock, etc.),
and we actually verified some configurations.

The personalities do not directly interact with the
µBroker. They are built on top of seven fundamental ser-
vices that provide the client-server interactions found in
most distribution models. Those services define the canon-
ical operations performed in a middleware implementation.

First, the client looks up server’s reference using thead-
dressingservice (1). Then, it uses thebindingfactory (2) to
establish a connection with the server, using one communi-
cation channels (e.g. sockets, protocol stack).

Request parameters are mapped onto a representation
suitable for transmission over network, using therepresen-
tationservice (3) (e.g. CORBA CDR).

A protocol (4) supports transmissions between the two
nodes, through thetransport (5) service; it establishes a
communication channel between the two nodes.

Upon the reception of a request, the middleware instance
ensures that a concrete entity is available to execute the re-
quest, using theactivationservice (6). Theexecutionser-
vice (7) assigns execution resources to process the request.

The composition of the core services around theµBroker
allows for the implementation of many distribution models.

Request propagation

tra
ns

po
rt(

5)addressing (1)

binding(2)

protocol(4)

transport(5)

representation(3) re
pr

es
en

ta
tio

n(
3)

pr
ot

oc
ol(

4)

ac
tiv

at
ion

(6
)

ex
ec

ut
ion

(7
)

object
Server

µBroker µBroker

Client

Figure 3. PolyORB’s core architecture

3.1.4 Assessment

The seven fundamental services provide the basic middle-
ware operations. TheµBroker can be formally described to
provide verification facilities, to ensure real-time properties.
Those elements can be configured to create a middleware
instance for particular system requirements.

In [17], we present PolyORB our implementation of a
schizophrenic middleware. PolyORB a free software mid-
dleware supported by AdaCore1, PolyORB’s research activ-
ities are hosted by the ObjectWeb consortium2. We assessed
its suitability as a middleware platform to support multi-
ple heterogeneous specifications (CORBA, Ada Distributed
Systems Annex, Web Applications, Ada Messaging Service
close to Sun’s JMS) and as a COTS for industry projects.

1http://www.adacore.com
2http://polyorb.objectweb.org

4



3.2 A methodology to design new personalities

A methodological guide details the different steps to in-
stantiate PolyORB (figure 4) from a specific set of applica-
tion requirements and the implied distribution model (step
1). It is intended to give the user the proper knowledge to
tailor PolyORB. There are several ways to adapt PolyORB
to the application requirements (step 2):

• Use an existing personality. PolyORB already comes
with CORBA, RT-CORBA, DSA, MOMA (Ada-like JMS),
DDS and the existing configuration parameters;

• Design a new personality: design or refine some of the
fundamental components, by re-using fundamental compo-
nents already developed from existing personalities or from
the neutral core; overloading them or designing new variant
of fundamental components from scratch.

Note that when a new personality is designed, we get
back to the generic architecture (step 3) to decide whether
the new features would be useful for other personalities. In
this case, there are two possible policies:

• This feature has a simple and generic enough imple-
mentation that can be reused by other personalities, then the
feature is integrated in the pool of neutral core layer com-
ponents, e.g. concurrency policies, low-level transport;

• This feature is intrinsically specific to a personality,
the implementation enhancement is kept at the level of the
protocol or application personalities, e.g. GIOP message
management, DDS specific API.

(3)

(4)

components
of PolyORB
Repository

Distribution
Model

components

Application−tuned
middleware

Application
Requirements

(1)

(2)
Select existing
components

Adapt/Create

Figure 4. Designing new personalities

Finally the user derives one assembly of components: the
fine-tuned middleware adapted to its initial needs (step 4).

This procedure may also be repeated to adapt more pre-
cisely components, allowing for evolving design of some
core elements without impeding the whole assembly.

In this section, we have defined the middleware architec-
ture and associated methodology used to implement mid-
dleware. We enforce a strong separation of concerns be-
tween the different functions involved in the middleware
and we combine them to form the required implementation.

In the next section, we detail how this process enables
the construction of a DDS middleware.

4 Building a DDS personality

In this section, we introduce the design of a DDS (OMG
specification v1.0) personality for PolyORB.

4.1 Design requirements

We presented the overall architecture and concepts of
PolyORB, focusing on the distribution functions it provides,
and the personality as a structuring paradigm to implement a
distribution mechanism or specifications. We now propose
to study how to implement DDS in our framework.

We note that DDS defines the semantics of many appli-
cation objects, their API, but do not impose any exchange
protocol, representation or transport mechanisms similarto
CORBA’s GIOP and CDR.

Hence, DDS is an application-oriented specification, the
implementation has to define its own core and protocol ele-
ments. Transposed in the context of the schizophrenic mid-
dleware architecture, DDS requires a specific application
personality, it is the developer responsibility to carefully se-
lect the neutral core and protocol components.

Therefore, the initial implementation of DDS will focus
on the implementation of a dedicated application personal-
ity that supports DDS entities and their semantics. The tai-
lorability of the middleware will be provided by carefully
selecting the other middleware components.

PolyORB proposes a MOM application personality:
MOMA. MOMA implements an API very close to that of
Sun’s JMS [16], it is a MOM with the notion of Publisher
and Subscriber, with Topics to identify data, etc. All these
entities are also defined in DDS.

Therefore, DDS is notionally close to JMS. It differs not
in its functional elements but in the definition of real-time
oriented QoS policies and in implementation guidelines that
strives for efficiency and determinism.

Besides, PolyORB implements the RT-CORBA specifi-
cations. To support this API, PolyORB’s core and GIOP
protocol personality have been enhanced to provide support
for priority-aware request propagation and QoS policies.

Hence, up to a tailoring of some MOMA and PolyORB’s
internals, and the careful selection of other components, Po-
lyORB’s architecture provide sufficient support to build a
DDS personality. We detail this point in the next section.

4.2 Reusing middleware components for DDS

We now review some existing elements we use as a
framework to implement DDS :

5



MOMA provides MOM canonical entities and control
on the message lifecycle [6]. Entities provides the user with
the capability to define topics, subscribe and publish data.
All entities rely on the “servant-like” pattern: they are reg-
istered to theµBroker and the application entity manager,
they serve incoming requests and store/retrieve messages.

Message exchange between entities is mapped to a set
of requests these servants can serve, and that can in turn be
mapped onto GIOP request messages.

These elements provide the basis to implement DDS en-
tities on top of MOMA, allowing for code reuse.

Neutral Core Middleware controls request propaga-
tion, the management of application entities. It schedules
tasks to complete request execution, in conformance with
the QoS policies set up by the application.

The Neutral Core Middleware is highly configurable
and tailorable: each step in request processing can be
adapted. Previous work on the RT-CORBA specifications
added priority-based request execution mechanisms to the
core, and in particular theCLIENT_PROPAGATED model to
set up the priority at which a threads executes a request.

Application entities can be registered with QoS policies
similar to theRTPortableServer’s API, without the en-
cumbrance of the CORBA’s concepts and its mapping to
a programming language. The core provides supports of
the concepts, the personalities add all required wrapper to
match a model, e.g. CORBA’s OMA or DDS QoS policies.

Hence, the Neutral Core can be configured to manage
MOMA entities with QoS policies adapted to DDS needs.

Protocol: DDS does not define a protocol stack to ex-
change data, only provision for efficiency.

Without loss of generality, we chose the GIOP person-
ality as an element for our first-step prototype, it provides
versatile mechanisms to exchange data and QoS informa-
tion between nodes. GIOP proposesoneway request propa-
gation mechanisms, the MIOP protocol also proposes group
communication. This provides sufficient features for MOM.

Let us note that the versatility of PolyORB allow us to
change the protocol at a limited cost, focusing more pre-
cisely on application needs for efficient data transfer.

4.3 Defining the DDS personality

We presented the elements provided by PolyORB to sup-
port DDS. DDS focuses on the definition of an efficient pub-
lish/subscribe middleware for DRE systems. Compared to
MOMA concepts, it “simply” adds 21 QoS policies.

A careful review of these policies show that most of them
are related to the message life-cycle (ordering, historic,lim-
its on resource, etc.). MOMA entities simply provide mes-
sage passing capabilities. The DDS personality will rely on
this feature and enforce specific behavior. They impose the
specific implementation of the components managing ac-

cess to message in MOMA entities, and is directly under
the responsibility of the DDS personality.

Time and priority oriented policies are already supported
by the neutral core and the protocol personality as part of the
work done for the RT-CORBA implementation.

MOMA
Subscriber

PublisherTopic

QoS Mgt

Scheduler

Entity Mgt

GIOP/CDR Protocol

In
cr

ea
si

ng
 d

is
tr

ib
ut

io
n 

ab
st

ra
ct

io
ns

Increasing distribution functions

DDS Message

Message
LifeCycle

Scheduling
Tasks
& I/O events

Datagram
Management

DDS API

Neutral Core
Middleware

Figure 5. Abstractions/Functions in PolyORB

Figure 5 summarizes this adaptation work. The mapping
from DDS PSM onto the application personality API is a di-
rect mapping from the different objects onto Ada 95 objects
and types. Their implementation code uses MOMA enti-
ties to manage DDS message lifecycle. They are configured
using QoS policies and functions to support priority-aware
request dispatching that are provided by the core and proto-
col components. It is an enrichment of the semantics of the
message passing model.

This adaptation work focused on a specific area of the
middleware: data management; other distribution issues are
already addressed when reusing PolyORB’s components.

In this section, we presented our solution to implement
DDS. It focuses on high-code reuse through an intensive
separation of concerns and the reuse of many middleware
functions, allowing for a rapid prototyping of a DDS per-
sonality. In the next section, we assess our solution.

5 Assessment of our solution

In this section, we assess our implementation and com-
pare our work with existing implementations of DDS.

5.1 Code reuse and benchmarks

We indicated in section 4.2 that DDS can reuse many
functions inherited from existing components. We analyzed
the final implementation code and evaluated the number of
SLOCs (Significant Lines of Code, i.e. code statements
only) of the components3 for one non-optimized assembly.

3The measures have been done using SLOCCount from David
A. Wheeler,http://www.dwheeler.com/sloccount/

6



This assembly directly reused MOMA, GIOP, the neu-
tral core layer configured to support priority-based request
processing. Table 1 summarizes our measurements.

Component SLOCs






PolyORB
entities

reused = 83 %

Neutral Core 30417
GIOP 8248
MOMA 4503
DDS 7009 }

Specific code = 17 %

Table 1. PolyORB’s components used

We note that DDS personality represents less than 17%
of code, this denotes an intensive code reuse. Besides,
building this prototype of this new complex standard re-
quired less than four man-months.

This code reuse ratio demonstrates that PolyORB mid-
dleware components provide key building blocks, which
clearly reduces the need to write large portions of code
when implementing a new distribution model. This allows
developers to quickly implement new distributions mecha-
nisms and experiment with their semantics, and then focus
on performance metrics to optimize memory footprint, time
property of the middleware.

5.2 Usability assessment

In the previous section, we presented an assembly of
components that form one DDS middleware. It reuses many
components written in the context of other distribution mod-
els: RT-CORBA policies and protocol, MOMA messaging
entities. The DDS personality combines these elements to
support the DCPS layer. It provides the first open source
implementation of DDS in Ada 95.

This code is not as-is optimized for any resource con-
strained DRE systems. From a performance point-of view,
the behavior of this implementation is notionally equiva-
lent to a RT-CORBA application for the request processing
part, reusing its protocol and priority mechanisms, with ap-
plication entities implementing the messaging distribution
model. Message throughput is 2400 messages per seconds
on average workstations running GNU/Linux.

PolyORB’s middleware components can be tailored to
reduce their semantics to the only required elements, e.g.
protocol, type managements, memory policies, etc. Hence,
the versatility of PolyORB enables the user to precisely
adapt any of its core elements, from transport, protocol, core
and messaging entities, without modifying the DDS person-
ality. This provides a high level of tailorability.

Therefore, we propose a solution to the portability and
adaptability issues that arise when using DDS in many het-
erogeneous application domains, enhancing the value added
of the DDS development approach. The developer can meet
specific deployment and resources constraints by adapting

the middleware components while preserving the properties
of its application based on one uniform API.

5.3 Related Work

DDS is a recent OMG specifications. Yet, it originates
from long-term industrial projects that built a de facto stan-
dard for which many implementations exist.

nDDS by RTI is the originator of the DDS specifications,
they propose nDDS as a real-time publish/subscribe middle-
ware for many years. They contributed to the DDS specifi-
cations. nDDS is a closed-source implementation that sup-
ports multiple languages, it is field-proven and deployed in
many industrial and military projects such as [8].

SPLICE DDS is another DDS middleware done by
Thales and Prismtech. It is deployed in military projects,
with a strong emphasis on performance and scalability [5].

It is difficult to evaluate these closed-sources projects.
The main question is the level of code reuse and ease of
adaptability provided compared to the footprint and effi-
cient data throughput advertised. The latter are important
for the particular application to builds, but may impede mid-
dleware usability on the long run.

TAO/DDS is a recent open source project from OCIthat
proposes a C++ implementation of DDS 1.0 built around
the ACE and TAO frameworks [15].

This implementation leverages existing elements from
the ACE frameworks for low-level I/O routines : CDR mar-
shallers, pluggable transport framework, etc.

It also reuses some elements from TAO to avoid code du-
plication, and also enables some cooperation between COR-
BA and DDS domains. This feature is very similar to the
notion of personalities advertised by our architecture : Po-
lyORB can support simultaneously CORBA and DDS per-
sonalities, and enable interoperability between them.

Release 0.6 of TAO/DDS covers DCPS features, it in-
corporates 21,583 SLOCS. This indicates TAO/DDS fac-
tors middleware functions at a lower conceptual level (e.g.
protocol, request dispatching) than PolyORB which focuses
on distribution mechanisms as a whole.

In this section, we assessed our solution, and compared it
with other projects. PolyORB and its personalities demon-
strate how separation of concerns enable the rapid prototyp-
ing of middleware, leveraging existing middleware compo-
nents. This allows for optimizations at a latter stage. Other
projects focus on features to be implemented instead of code
reusability and tailorability. TAO provides a first view on
code reuse using ACE, but is still at an early stage.

6 Conclusion

The OMG published the Data Distribution Service
(DDS), a high-level description of a data-centric middle-

7



ware for DRE systems. Following, the MDA approach,
A platform independent model defines DDS semantics.
Considering the versatility of application requirements,we
claim that DDS implementations should allow high tai-
lorability while allowing application reuse.

PolyORB, our implementation of a schizophrenic mid-
dleware, provides an implementation framework for DDS,
and a repository of middleware components ready for use.
Its modular architecture built around theµBroker and the
identification of canonical middleware functions allows the
definition and implementation of a DDS API based on one
highly tailorable architecture. This approach brings major
benefits to middleware engineering.

First, the developer can carefully select, adapt or create
middleware components and integrate them in the architec-
ture and preserving the DDS API. This allow for a high-
level of tailorability, without impeding application reusabil-
ity in different contexts (hardware, deployment, etc.).

Second, this approach factors code across multiple dis-
tribution technologies. PolyORB supports DDS, but also
CORBA, RT-CORBA, a MOM on top of a generic middle-
ware core. This core can be formally modeled and verified,
and has actually been verified for some configurations. This
increases confidence in the middleware components reused
in another context: functional properties are kept.

Hence, the adaptation work for a new technology can
then focus on specific aspects, such as non-functional QoS
policies. This reduces development cost while increasing
the confidence in the infrastructure.

The construction of application-tailored middleware us-
ing DDS and PolyORB is iterative. The middleware is first
drafted for the first tests of the application and then refined
by selecting and extending the implementation capabilities.
This approach allows the tuning of both the application and
the middleware it relies on.Application/Middleware co-
designis then possible. This is useful for developers to meet
specific needs of a given DRE system.

Later work will consider the automation of the middle-
ware adaptation work, defining the tools and methodology
to assist the user in selecting or extending middleware com-
ponents. The AADL (“Architecture, Analysis and Design
Language”, [3]) has been selected to describe the middle-
ware’s structure. We aim to use this description, combined
with a set predefined routines and service libraries, to weave
the configured middleware dedicated to a DRE system.

Acknowledgement The authors thank Suha Demir CAN

for his valuable work when implementing the first release
of the DDS personality for PolyORB.

References

[1] S. Baker. Middleware To Middleware. InProceedings of
the 3rd International Symposium on Distributed Objects and

Applications (DOA’01), Sept. 2001.
[2] B. Dumant, F. Horn, F. D. Tran, and J.-B. Stefani. Jonathan:

an open distributed processing environment in java. In
IFIP Int’l Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 175–190, Londres,
1998. Springer Verlag.

[3] H. Feiler, B. Lewis, and S. Vestal. The SAE Avionics Archi-
tecture Description Language (AADL) Standard: A Basis
for Model-Based Architecture-Driven Embedded Systems
Engineering. InRTAS 2003 Workshop on Model-Driven Em-
bedded Systems, May 2003.

[4] S. Gorappa, J. A. Colmenares, H. Jafarpour, and R. Klefs-
tad. Tool-based Configuration of Real-time CORBA Mid-
dleware for Embedded Systems. InInternational Sympo-
sium on Object-oriented Real-time distributed Computing
(ISORC’05), Seattle, USA, May 2005.

[5] Hans van’t Hag. OMG - DDS Exploiting the Potential -
Proven Suitability in the Naval Combat System Domain.
In Proceedings of the OMG Real-Time Embedded Systems
Workshop, Arlington, VA USA, July 2005.

[6] J. Hugues, L. Pautet, and F. Kordon. Contributions to mid-
dleware architectures to prototype distribution infrastruc-
tures. InProceedings of the 14th IEEE International Work-
shop on Rapid System Prototyping (RSP’03), San Diego,
CA, USA, June 2003.

[7] J. Hugues, Y. Thierry-Mieg, F. Kordon, L. Pautet, S. Baarir,
and T. Vergnaud. On the Formal Verification of Middleware
Behavioral Properties. InProceedings of the 9th Interna-
tional Workshop on Formal Methods for Industrial Critical
Systems (FMICS’04), Linz, Austria, Sept. 2004. To be pub-
lished in Electronic Notes in Computer Science.

[8] R. T. I. Inc. Customer Success : Lockheed Martin, 2005.
[9] F. Kordon and L. Pautet. Toward next-generation toward

next-generation middleware?IEEE Distributed Systems On-
line, 5(1), 2005.

[10] OMG. Model Driven Architecture (MDA), Document num-
ber ormsc/2001-07-01. Technical report, OMG, 2001.

[11] OMG. Overview and guide to OMG’s architecture. OMG,
June 2003. OMG Technical Document formal/03-06-01.

[12] OMG. Data Distribution Service for Real-time Systems
Specification version 1.0. OMG, Dec. 2004. OMG Tech-
nical Document.

[13] R. Rajkumar, M. Gagliardi, and L. Sha. The Real-Time Pub-
lisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementa-
tion. In Proceeding of the 1st IEEE Real-Time Technology
and Applications Symposium, Denver, Colorado, USA, May
1995.

[14] D. Schmidt, D. Levine, and S. Mungee. The design and
performance of real-time object request brokers, 1998.

[15] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of
the TAO real-time object request broker.Computer Commu-
nications, 21(4):294–324, Apr. 1998.

[16] SUN. Java Message Service (JMS), 1999.
[17] T. Vergnaud, J. Hugues, L. Pautet, and F. Kordon. PolyORB:

a schizophrenic middleware to build versatile reliable dis-
tributed applications. InProceedings of the 9th International
Conference on Reliable Software Techologies Ada-Europe
2004 (RST’04), Palma de Mallorca, Spain, June 2004.

8


