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Abstract

Distributed Real-Time Embedded systems (DRE) in-
creasingly rely on COTS middleware to meet their distri-
bution needs. Yet, there is a technology gap between the
design of COTS middleware and the high-integrity con-
straints of real-time engineering. This puts a limit on the
adoption of middleware by system families such as space
or avionics. In this paper, we present our current work
on the “schizophrenic middleware architecture”, a highly
tailorable middleware architecture, and its implementation
PolyORB. We illustrate how it allows for support of real-
time engineering guidelines, enforces determinism, allows
for modeling and verification.

1 Introduction: Middleware & DRE systems

Several projects, such as Bold Stroke [24], evaluate the
use of “Commercial Off-The-Shelf” (COTS) middleware to
build Distributed Real-Time Embedded systems (DRE) for
space or avionics applications. Since there is no “one size
fits all” middleware, the choice of a particular middleware
and its configuration are key design issues that may dra-
matically impact the design and behavior of an application.
Such an impact is difficult to evaluate by non middleware
experts. So, there is a need to tailor the middleware and
then evaluate its properties.

The IST ASSERT project1 aims at developing new sys-
tem engineering methods for DRE systems. It focuses on
advanced technologies such as system families architec-
tures, use of formal methods to proof system properties, and

1ASSERT is part of the Sixth Framework Programme IST of the Euro-
pean Union, seehttp://www.assert-online.net

reuse based on building blocks that can be composed, tai-
lored and verified in open frameworks. As a milestone, the
ASSERT project defines requirements for middleware to be
integrated in a full engineering process that ensures and pre-
serves the properties of the system. As an illustration, the
European Space Agency defines the following scenario for
middleware: ground stations interacting with satellites as
well as fleets of collaborating satellites or drones; and re-
quire multiple distribution mechanisms to handle variations
in communication channels, flexible resource management,
and to ensure autonomy for long missions. Thus, DRE sys-
tems must address simultaneously Distribution, Real-Time
and Embedded issues. We note the following:

Distribution cannot remain hidden from the developer.
The semantics of the distribution models must be adapted to
real-time application needs; communication channels may
support some form of Quality of Service (QoS). Their im-
pact on the timeliness of the application must be measured.

Real-Timeengineering guidelines must be supported by
the middleware. This middleware follows a clear and pre-
cise design so as to guarantee its determinism and its tem-
poral properties; it comes with complete proofs that it does
not withdraw the properties of the application [3]. Finally,
a methodological guide and support tools help to tailor the
middleware with respect to the application requirements.

Embeddedtargets have strong constraints on their re-
sources (e.g. CPU, memory) or limited run-time support
by a real-time kernel (no exception, no dynamic memory,
limited number of threads, etc). So, middleware must cope
with strong limitations; and scale down to small targets.

Hence, there is a need for COTS middleware targeting
DRE systems1) that supports an ever-increasing set of func-
tions; 2) whose properties are verified or validated;3) that
can be deployed on targets with limited resources.

In the remainder of the paper, we present our current
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work on middleware architecture. We first review exist-
ing middleware architectures, and note they partially sup-
port the requirements of DRE systems. Then, we present
the schizophrenic middleware architecture as a solution to
address these requirements in one unified and tailorable ar-
chitecture. Finally, we present how we take advantage of its
architecture to support the requirements of DRE systems;
and we discuss tool supports to assist the construction and
deployment of tailored and verified middleware.

2 Middleware architectures for DRE systems

In this section, we review existing middleware imple-
mentation and assess their support for DRE systems needs.

2.1 Existing COTS middleware

DRE systems may be classified intosystem families,
such as space, avionics, automotive. Each family lists
generic requirements and common APIs along with their
semantics. Domain-specific application execution environ-
ment have been defined, e.g. OSEK/VDX [6] for automo-
tive applications, or ARINC 653 [1] for avionics. They de-
fine some primitives to support communications on top of
industrial buses such as CAN or MIL-STD 1553, and low-
level primitives for distribution.

Distribution mechanisms have been defined to meet
wider requirements: Rajkumar et al. [20] advertised Mes-
sage Passing as a solution for DRE systems, and proposed
the Real-Time Publisher/Subscriber service. RT-CORBA
extends CORBA’s Distributed Object mechanisms for real-
time systems and integrates support for many QoS poli-
cies [21]. Besides, we claim that COTS middleware should
not be restricted to one service or distribution semantics.

Middleware support one or more distribution mecha-
nisms, and propose a set of services and configuration
mechanisms to help in the construction of DRE systems.
We review some of them, indicating their primary focus:

Reduced footprint:OSA+ [23] is geared towards micro-
controller as target platform, it is designed so that it has a
reduced memory footprint (around 60kB). It is built around
a few services that provide key middleware mechanisms,
and a core, following a micro-kernel like approach. It
supports an event-based distribution semantics. However,
OSA+ lacks advanced services to support complex distribu-
tion needs, e.g. RPC-like semantics, or multiple protocols.

Fine-grained optimizations: the ACE framework and
TAO [22] forms a complete implementation of CORBA and
RT-CORBA. They rely on a set of fine-grained optimiza-
tions to ensure the determinism of key functions of the mid-
dleware. However, this is a local property of one component
of the middleware; it is hard to complete the analysis of the

timing of TAO as a whole because of the implied complex-
ity of its object-oriented patterns.

Configuration and standards:Zen [15] is an implemen-
tation of the RT-CORBA specifications, on top of Real-
Time Java. It relies on the design patterns and lessons
learned from the ACE and TAO projects. Zen relies on
multi-layer plug-ins so that unneeded components can be
removed from the middleware instance: this reduces mem-
ory footprint. Such a modularity is interesting; but it also
increases the cost of development.

COTS reuse:nORB [25] demonstrates the benefits of
designing middleware in a bottom-up approach, selecting
only the required components from several COTS: the ACE
framework, the Kyokyu scheduler, etc. However, this ap-
proach is limited to the integration capabilities of many (and
possibly heterogeneous) components, and requires exten-
sive knowledge on each COTS. This impedes the benefits
of this approach.

Vertical integration: CosMIC [10] proposes an inte-
grated development framework to build and deploy dis-
tributed applications. It proposes a CASE tool to build DRE
systems, using TAO and CIAO as building blocks. Yet this
approach drags a lot of code: each building block is more
that 100′000 SLOCs. This leads to an exponential code size
growing when integrating all of them. This leaves many is-
sues for memory-constrained systems, or system properties
verification and/or validation unsolved.

These projects focus on very specific implementation de-
tails of a middleware for DRE systems: resources consump-
tion, configurability. They extend non-real time distribution
mechanisms with QoS parameters; they add constraints on
a non-deterministic middleware implementation so that it
can meet real-time deadlines. This is a complex design in
contradiction with guidelines for high-integrity systems: it
is difficult to assess determinism or to evaluate precisely the
Worst Case Execution Time (WCET) of request processing.

Moreover, the implementations have a significant run-
time cost, making it unsuitable for high-integrity systems,
or it cannot be deployed on small targets, e.g. the object
model of CORBA. Or they lack generality as for OSA+,
or focus on only one distribution semantics, usually Dis-
tributed Object Computing.

2.2 Towards a tailorable COTS middleware

We now sketch the requirements for a new middleware
architecture for DRE that can meet a larger spectrum of re-
quirements and still follow DRE guidelines.

R1) assessment:the middleware design should support a
comprehensive validation and/or verification process at an
affordable cost, allowing for the complete determination of
the middleware properties. This is a key milestone to sup-
port deterministic and certifiable distributed applications;

2



R2) customizability:middleware should allow for ex-
treme tailorability of its key components, at a limited cost;

R3) scalability: the middleware architecture should be
scalable, i.e. supporting both limited distribution mecha-
nisms up to full-featured and complex ones;

R4) resource preservation:the cost of a new feature, or
its withdrawal should have a limited penalty on the overall
middleware design, and on the resources used;

R5) standard support on demand:the middleware should
support main industrial specifications and standards for
both the targets (real-time kernels, hardware, etc) and the
middleware functions it proposes. It should also support ad
hoc APIs for restricted target.

Thus, we propose the “schizophrenic middleware” as a
comprehensive middleware architecture to meet those het-
erogeneous requirements. As an additional requirement,
this architecture should later serve as a base for modeling to
ease middleware tailorability, verification and deployment.

3 Middleware architecture for DRE

We first present the schizophrenic middleware architec-
ture, then we present its key component: theµBroker.

3.1 Decoupling middleware components

Middleware combines two complementary facets: (1) a
framework to implement distributed systems, using the host
and operating system resources (e.g. tasks, I/O); and (2) a
set of services to build portable distributed applications.

In [12], we introduced the “schizophrenic” middleware
architecture: a unique architecture that advertises thesetwo
aspects, and enforces separation of concerns. “Personali-
ties” are plugged into a “Neutral Core Middleware”. Each
personality implements one set of functions related to a dis-
tribution model: e.g. CORBA, SOAP. The Neutral Core
Middleware can support multiple interacting personalities
in one instance, hence its “schizophrenic” nature.

In [27], we present PolyORB our implementation of a
schizophrenic middleware. PolyORB a free software mid-
dleware supported by AdaCore2, PolyORB’s research activ-
ities are hosted by the ObjectWeb consortium3. We assess
its suitability as a middleware platform to support multiple
specifications (CORBA, Ada Distributed Systems Annex,
Web Applications, Ada Messaging Service close to Sun’s
JMS) and as a COTS for industry projects.

Our experiments show that a reduced set of services can
describe various distribution models. We identify seven
steps in the processing of a request, each of which is defined

2http://www.adacore.com
3http://polyorb.objectweb.org

as one fundamental service. Services are generic compo-
nents for which a basic implementation is provided. Alter-
nate implementation may be used to match more precise se-
mantics. Each middleware instance is one coherent assem-
bling of these entities. TheµBroker component coordinates
the services : it is responsible for the correct propagationof
the request in the middleware instance. Figure 1 illustrates
the cooperation between PolyORB services.
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Figure 1. Request propagation in the
schizophrenic middleware architecture

First, the client looks up server’s reference using thead-
dressingservice (1), a dictionary. Then, it uses thebinding
factory (2) to establish a connection with the server, using
one communication channels (e.g. sockets, protocol stack).

Request parameters are mapped onto a representation
suitable for transmission over network, using therepresen-
tation service (3), this is a mathematical mapping that con-
vert a data into a byte stream (e.g. CORBA CDR).

A protocol (4) supports transmissions between the two
nodes, through thetransport (5) service; it establishes a
communication channel between the two nodes. Both can
be reduced tofinite-state automata. Then the request is sent
through the network and unmarshalled by the server.

Upon the reception of a request, the middleware instance
ensures that a concrete entity is available to execute the re-
quest, using theactivationservice (6). Finally, theexecu-
tion service (7) assigns execution resources to process the
request. These services rely on thefactory and resource
managementpatterns.

Hence, services in our middleware architecture arepipes
and filters: they compute a value and pass it to another
component. Our experiments with PolyORB showed all
implementations follow the same semantics, they are only
adapted to match precise specifications. They can be re-
duced to well-known abstractions.

TheµBroker handles the coordination of these services:
it allocates resources and ensures the propagation of data
through middleware. Besides, it is the only component that
controls the whole middleware: it manipulates critical re-
sources such as tasks and I/Os or global locks. It holds mid-
dleware behavioral properties.

Hence, the schizophrenic middleware architecture pro-
vides a comprehensive description of middleware. This ar-
chitecture separates a set of generic services dedicated to
request processing from theµBroker.
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3.2 µBroker: core of the middleware architecture

TheµBroker component is the core of the PolyORB mid-
dleware. It is a refinement of the Broker architectural pat-
tern defined in [4]. The Broker pattern defines the architec-
ture of a middleware, describing all elements from protocol
stack to request processing and servant registration.

TheµBroker relies on a narrower view of middleware in-
ternals: theµBroker shall cooperate with other middleware
services to achieve request processing. It interacts with the
addressingandbindingservices to route the request. It re-
ceives incoming requests from remote nodes through the
transportservice;activationandexecutionservices ensure
request completion.

Hence, theµBroker manages resources and coordi-
nates middleware services to enable communication be-
tween nodes and the processing of incoming requests. Spe-
cific middleware functions are delegated to the seven ser-
vices we presented in previous section. TheµBroker is the
dispatcher of our middleware architecture.

Several “strategies” have been defined to create and use
middleware resources: in [19], the authors present differ-
ent request processing policies implemented in TAO; the
CARISM project [14], allows for the dynamic reconfigura-
tion of communication channels. Accordingly, theµBroker
is configurable and provides a clear design to enable verifi-
cation. Figure 2 describes the basic elements of theµBroker.

Figure 2. Overview of the µBroker

The µBroker Core APIhandles interactions with other
middleware services.

TheµBroker Tasking Policycontrols task creation in re-
sponse to specific events within the middleware, e.g. new
connection, incoming requests;

TheµBroker Controllermanages the state automaton as-
sociated to theµBroker. It grants access to middleware in-
ternals (tasks, I/O and queues) and schedules tasks to pro-
cess requests or run functions in theµBroker Core. Several
policies control it: theAsynchronous Event Checkingpolicy
sets up the polling and data read strategies to retrieve events
from I/O sources; theBroker Schedulerschedules tasks to

process middleware jobs (polling, processing an event on a
source or a request). TheRequest Schedulercontrols the
specific scheduling of requests; theLane_Rootcontrols re-
quest queueing; theRequest Schedulercontrols thread dis-
patching to execute requests.

These elements are defined by their interface and a com-
mon high-level behavioral contract. They may have multi-
ple instances, each of which refines their behavior, allowing
for fine tuning. We implemented several instances of these
policies to support well-known synchronization patterns.

Thus, the schizophrenic middleware architecture pro-
poses a comprehensive view of one middleware architec-
ture. This architecture is defined around a set of canonical
components, one per middleware’s function.

4 Schizophrenic architecture into action

The schizophrenic middleware architecture provides
guidelines to build middleware. We present several experi-
ments that are answers to the requirements of DRE systems
we identified: 1) verification of PolyORB behavioral prop-
erties, 2) implementation following high-integrity engineer-
ing guidelines, 3) low memory footprint configuration and
4) support for the RT-CORBA specifications. These differ-
ent experiments are made from the same middleware core
implemented by PolyORB, viewed as COTS middleware.

Application servicesApplication servicesApplication services

Protocol servicesProtocol servicesProtocol services

µBroker controller

Raw socket I/O

Application servants

µBroker controller µBroker controller

GIOP + CDR 
& Sockets I/O

CORBA + RT CORBA
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DRE middleware2. Real−Time engineering
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Instanciation of middleware services1. Verification of behavioral
properties

Figure 3. Adapting PolyORB to DRE

4.1 Verification

In [13], we detail how we use formal methods to model
and verify our system. This is a preliminary work for the
definition of a proof-based middleware, and an answer to
requirementR1 assessmentlisted in section 2.2.

We selectedWell-formed coloured Petri nets[5] as an in-
put language for model checking. They are high-level Petri
nets, in which tokens are typed data holders. This allows
for a concise and parametric definition of a system, while
preserving its semantics. Using these methods, we modeled
some configurations of theµBroker.

The modularity of PolyORB, and the clear separation
between middleware services (denoting functional compo-
nents) and theµBroker (controlling the middleware behav-
ior) provides guidelines to model our architecture: the mod-
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eling of theµBroker allows us to verify the behavioral prop-
erties of our middleware.

We studied two configurations of theµBroker: Mono-
Tasking (one main environment task) andMulti-Tasking
(multiple tasks, using the Leader/Followers policy [19]).
We tested for three properties expressed in LTL formulae:
P1, (no deadlock)the system process all incoming requests;
P2, (consistency)there is no buffer overflow;P3, (fairness)
every event on a source is detected and processed.

We justify the use of formal methods by the following:
P1, P3 are difficult to validate only through the execution
of some test cases: one has to examine all possible execu-
tion orders. This may not be affordable or even possible due
to threads and requests interleaving leading to a combinato-
rial explosion. The correct dimensioning of static resources
(P2) is a strong requirement for DRE systems, yet it is a
hard problem for open systems such as middleware.

Instead, formal methods provide a clear evidence of their
validity: Petri nets analysis methods first build the full state-
space of the system, then explore it to check the valid-
ity of a property. We note the size of the state space for
the multi-tasking model (figure 4) increases exponentially
with the number of threads and I/O sources: this denotes
the complexity of the semantics of the system. We tackle
combinatorial explosion by detecting the symmetries of a
system [26], and exploiting the symmetries allowed by a
property [2]. These methods are provided by the CPN-AMI
CASE tools [16]. They build asymbolic state space, a quo-
tient state space, in which nodes are equivalence classes of
states, and arcs equivalence classes of events. In most favor-
able cases, the symbolic state space we analyze is exponen-
tially smaller than the concrete state space, and thus more
amenable to computations. Indeed, for our models, we note
that the symbolic reachability graph is smaller by several
powers of ten, and that this ratio increases with the number
of threads. Thus, even for big configurations, the quotient
state space remain within affordable bounds that allow for
complete verification ofP1, P2, P3.

For a typical middleware configuration (7 threads and 4
I/O sources), the system has more than 1011 states. We com-
puted and evaluated its properties on the quotient reachabil-
ity graph. Computations were completed in less than 10
hours for the biggest models, on a 2.6 GHz Pentium-4 com-
puter with 512MB of memory, without swapping. These
tools allows us to complete the analysis of our architecture,
and provide a solution to verification needs of DRE systems.

4.2 Real-Time engineering

At the implementation level, we enforce the use of se-
lected algorithms, patterns and run-time ensure proper-
ties of each building block of the middleware, and thus
makes PolyORB deterministic. It corresponds to require-
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Figure 4. µBroker’s state space

mentR2 customizability.
The Ravenscar profile [8] is a subset of the tasking and

concurrency constructs of Ada 95. It has been designed
so that the restricted form of tasking it allows can still be
used in high-integrity programs and be certified. Basically,
it explicitly forbids any dynamic behavior (dynamic priority
change, task creation/destruction), and enforces scheduling
techniques that allows for full schedulability analysis based
on the Rate Monotonic Analysis (RMA).

As part of its configurability options, PolyORB imple-
ments one set of concurrency constructs compliant with the
Ravenscar profile. This allows us to ensure the determinism
of the tasking and concurrency elements we use.

In section 3.1, we classified middleware functions ei-
ther as being involved in the control of middleware, such as
the configurableµBroker component and concurrency pat-
terns; or as middleware functional-only components (proto-
col, transport, activation, etc). We also reduced functional
components of middleware to classical abstractions: pipes,
filters, dictionaries, factories, finite-state automata.

PolyORB genericity enables the user to select the most
adequate implementation of each services, using the pre-
vious assumptions as configuration and/or implementation
guidelines. In this respect, middleware services can be de-
scribed using well-known design patterns, that are com-
pletely defined and studied, for instance in [9]. There can
be made real-time under some assumptions:

1) size of data to be manipulated: size of request param-
eters, number of application objects; bounds on the number
of resources (e.g. threads, requests, I/O sources) to be used
during middleware lifecycle. This helps to efficiently di-
mension resources and preallocate them;

2) memory allocation policies: the use of specific mem-
ory allocator (Ada’sStorage Pools) to handle any tran-
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sient overload in resource usage;

3) a priori knowledge on application entities: such as op-
eration name, servant and POA hierarchy, etc, to efficiently
use static and dynamic perfect hash tables [7] and then en-
ableO(1) look up time in dictionaries.

Besides, the configurability capabilities of PolyORB,
and more specifically of theµBroker enables the imple-
mentation of real-time thread scheduling disciplines, event
checking or concurrency strategies, e.g. deriving from ex-
isting concurrency policies as presented in [19]. Thus, Poly-
ORB tailorability enables a complete adaptation of the mid-
dleware to very specific needs, e.g. real-time requirements

4.3 Limited footprint and runtime needs

DRE systems usually come with some restrictions on
runtime capabilities such as limited tasking capabilities, no
exception; or constraints on available resources such as
CPU or memory. Thus, it is required to limit the resources
required by the middleware; and also to control the runtime
facilities the middleware depends on. It corresponds to re-
quirementsR2, R3 scalability, R4 resource preservation.

PolyORB extreme modularity enables the user to select
only the set of components required for his application. The
µBroker provides the minimal set of components to build a
functional middleware: it provides all the circuitry to wait
on I/O sources, store and dispatch incoming requests. The
user may then add its own components to register its appli-
cation entities (e.g. call back functions to process requests),
type marshaling functions and protocol stacks.

The size of a minimal middleware built with PolyORB
is about 12′000 SLOCS, representing a memory footprint
of 400kB for no-tasking configuration; and 13′000 SLOCS
and 500kB for a full-tasking one. The Ada runtime provided
by the GNAT Pro 5.02a1 Ada compiler, on a GNU/Linux
x86 target adds an overhead of 200kB up to 250kB. As
a comparison, OSA+ requires 60kB, TAO+ACE requires
more than 2MB, and nORB+ACE approximately 340kB.

Let us note this is a current work in progress: the whole
code is compatible with the Ravenscar profiles, several
components are pluggable (e.g. concurrency primitives,
static and dynamic configurators). This concurs to reduce
memory footprint. Still, many resource consuming compo-
nents remains, such as types and generic marshalling proce-
dures; more components can be made optional. An aggres-
sive configuration and build process would allow to reduce
their footprint. First results are encouraging, and we antic-
ipate that the memory footprint can be reduced by 150kB
without compromising our architecture.

4.4 Support for standard for DRE systems

So far, RT-CORBA [18] appears to be the dominant stan-
dard specifications for distributed real-time systems. We in-
vestigate the support of RT-CORBA in PolyORB; and detail
benchmarks on PolyORB support for real-time distributed
applications. It corresponds to requirementR5 standard.

The modularity and prototyping capabilities of PolyORB
allows us to rapidly design a RT-CORBA implementation.
We directly focus on the extension of middleware services
introduced in section 3.1 to ensure determinism in request
demultiplexing: theactivationservice to ensure a constant-
in-time lookup for CORBA servants, theµBroker andexe-
cutionservices have been extended to support priorities. Fi-
nally, the protocol components supporting the GIOP stack
have been extended to support priority transmission.

We experimented PolyORB on Ultra-5 workstations,
running Solaris 9, with 128MB of RAM, operating one
Ultra-Sparc IIi CPU at 333Mhz. This platform is a good
compromise between all-purpose development platform
that is easy to operate, and a real-time kernel. Solaris is
known to have limited latency and good time properties
with respect to its driver and protocol stack. Thus, it pro-
vides a first information on PolyORB capabilities to handle
real-time application requirements.

1) request processing jitter: we measure the time re-
quired to process one CORBA request 1,000 times, each
request “echoes” an unsigned long, in three different con-
figurations: 1) one local test, client and servers are in the
same process, using multi-tasking;2) distributed tests, us-
ing either multi-tasking, or no-tasking. Dispersion analysis
(figure 5) shows that most of the samples are in an interval
that is 100µs wide, representing less than 10% of the du-
ration of one RPC. A few artifacts (less than 10% of mea-
sured values) denote the non-determinism of the underlying
OS, linked to memory allocation or the jitter of the TCP/IP
stack. They are negligible at that stage of the analysis.

Figure 5. Dispersion of the processing time

2) compliance to RT-CORBA: we test the propagation
of prioritized requests, and detect whether priority inver-
sion occur. Three requests, representing respectivelylow,
medium, highlevel alarms are sent, in random order. We
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check that requests are propagated in correct order. An ex-
haustive analysis of the execution trace using a system log-
ger and display utility shows there is no priority inversion
at the level of requests propagation and processing on the
server side, ensuring compliance with RT-CORBA.

Thus, the schizophrenic middleware architecture has
been successfully adapted to build a real-time middleware,
following the RT-CORBA specifications.

These experiments demonstrate that the schizophrenic
architecture and its implementation PolyORB provide a so-
lution to the requirements we identified.

5 Towards a “middleware factory”

In this section, we discuss the use of CASE tools to sup-
port the construction of verified middleware instances for
DRE systems. This is a further step to increase middleware
value as a COTS to be safely integrated into an application.

The schizophrenic middleware architecture can be used
to build different middleware instances from a set of generic
services, with interesting real-time properties. This demon-
strates the versatility as well as the scalability of the
schizophrenic middleware architecture.

The verification of selected configurations of the
µBroker provides confidence in the code written. Yet, mod-
eling is a non-trivial and error-prone work; there may be
some differences between the actual system and its model.
The proof’s scope is limited to the component itself; we
must also ensure all properties still hold when aggregating
several components.

Nevertheless, our experiments demonstrate the value
added of an architecture based on fundamental services,
each being restricted to one specific function. We built var-
ious middleware instances, from restricted run-time up to
full scale standards. We verify its behavioral properties and
validated its real-time properties.

We propose to describe our architecture using Architec-
ture Description Languages (ADLs) and their supporting
tools to provide an integrated solution to the design and ver-
ification of tailorable middleware.

The Architecture Analysis & Description Language
(AADL) [17] has been selected to serve as a foundation
for the ASSERT project to model and then buid DRE sys-
tems. The AADL derives from the MetaH language [11].
The AADL allows for the modeling of the hardware and
software components of a system; support tools verify this
model for consistency, including scheduling analysis, resis-
tance to faults or code generation.

We are currently developing Ocarina4, a set of libraries
to exploit AADL models. PolyORB and its architecture de-
fine a set of building blocks that can be modeled, and sup-
port a formal verification process. Several implementations

4http://eve.enst.fr/ocarina

of these building blocks have been made, each of which
respond to specific needs. Combining the AADL and our
work leads to the definition of amiddleware factory, which
create verified and precisely adjusted middleware instances.

Hence, to build customized proof-based middleware for
DRE targets, we propose to:1) model middleware entities,
using the AADL; 2) tailor componentsto meet precisely
the application needs and semantics;3) assemblecompo-
nents to form one middleware instance;4) verify its con-
sistency with respect to family-specific guidelines and ex-
pected properties;5) deploythe application.

We are currently modeling our middleware using the
AADL and Ocarina. The comprehensive description of our
architecture leads to a one-to-one mapping between soft-
ware components and their AADL models. The many lev-
els of tailorability of PolyORB provides many hints on how
to model a tailorable middleware. The existing know-how
on MetaH tools, inherited by AADL, make us confident that
the steps 3 to 5 defined above can be fulfilled.

Thus, the completion of this work will enable the inte-
gration of new software or hardware components as AADL
components, their precise configuration, and finally the ver-
ification of the middleware instance. Compared to CosMIC
presented in section 2.1, this approach ensures the proper-
ties of all components from hardware up to application com-
ponents, including the middleware.

6 Conclusion

This paper discusses the definition of COTS middleware
that address still unsolved issues of real-time engineering.

First, we presented existing middleware for DRE sys-
tems: multiple architectures support DRE functional and
non-functional requirements. They usually focus on some
issues of DRE engineering (e.g. footprint or QoS), but they
do not address other critical issues like the complete verifi-
cation of deterministic behavior.

We identify five strong requirements for DRE systems:
1) assessment of the middleware properties; 2) tailorability
to meet application needs; 3) feature scalability; 4) resource
preservation; 5) provision to support standards.

We presented the schizophrenic middleware architec-
ture, and show it fits these requirements. The schizophrenic
architecture emphasizes on the separation of concerns in
middleware: a set of fundamental and tailorable services
covers middleware functional components, a middleware
main loop - theµBroker- coordinates them.

Then, we illustrated how this architecture can meet the
requirements we identified. It enables the verification of
properties. It follows real-time engineering guidelines.It
targets small runtime and scales up to support standard
specifications. PolyORB, our implementation has a for-
mally assessed design; it can be adapted to real-time con-
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straints. Thus, we demonstrated how our architecture can
be adapted to most stringent requirements of DRE systems,
and to a large class of application domains. This is a mile-
stone for the construction of COTS proof-based middleware
for critical systems used in space or avionics.

Finally, we discussed the combination of our architec-
ture and the Analysis Architecture & Design Language and
CASE tools to foster the construction of a “middleware fac-
tory”. Its goal is to combine middleware components to
form one unique middleware that precisely meet applica-
tion requirements, and is verified.

Later work will complete the adaptation and modeling
of our middleware architecture to serve as a middleware for
the ASSERT project; and concentrate of the definition of
AADL CASE tools to exploit it. This will demonstrate its
full compliance to a proof-based engineering process.
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