
PolyORB: a schizophrenic middleware to build
versatile reliable distributed applications

Thomas Vergnaud1, Jérôme Hugues1, Laurent Pautet1, and Fabrice Kordon2

1 GET-Télécom Paris – LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France

thomas.vergnaud@enst.fr, jerome.hugues@enst.fr, laurent.pautet@enst.fr
2 Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/SRC

4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice.kordon@lip6.fr

Abstract. The development of real-time distributed applications requires mid-
dleware providing bothreliability andperformance. Middleware must beadapt-
able to meet application requirements and integrate legacy components. Current
middleware provides only partial solutions to these issues. Moreover, they newer
address all of them. Thus, a new generation of middleware is required. We have
introduced theschizophrenic middlewareconcept as an integrated solution to
build versatile reliable distributed applications. PolyORB, our implementation of
schizophrenic middleware, supports various distributionmodels: CORBA (Com-
mon Object Request Broker Architecture), SOAP (Simple Object Access Proto-
col), DSA (Ada 95 Distributed System Annex), Message Passing (an adaptation
of Java Message Service to Ada 95) and Web Server paradigm (close to what
AWS offers). In this paper, we describe the implementation of PolyORB and pro-
vide a summary of our experience regarding the issues mentioned above.

1 Introduction

The term “middleware” designates a piece of software that eases both development
and deployment of distributed applications. It handles basic functions to distribute ap-
plications in heterogeneous environments. Offered services are for example transport
protocol, remote execution, addressing, data marshalling, etc.

Distributed systems use classical distribution paradigmslike message passing (MP),
remote subprogram call (RPC), distributed objects (DOC) orshared memory (DSM).
The community has defined several distribution models whichpropose a combination
of these paradigms. DOC can be implemented using CORBA or RMI(Remote Method
Invocation). DSA (Distributed Systems Annex for Ada 95) provides several paradigms
like RPC, DOC and DSM. Distribution models also lead to many variations. COR-
BA or DSA define asynchronous remote method invocation. Middleware classically
implements one distribution model.

The choice for a distribution model or for a list of distribution mechanisms is driven
by the application requirements; a correct (or incorrect) choice may dramatically im-
pact design and performances [Mul93]. The growing demand for distribution functions

in a wide range of systems (embedded, mobile or real-time systems) increases the mul-
tiplication of distribution models with some specific variations.

Each application comes with its specific needs and takes advantage of one distri-
bution model. But all these applications (possibly based onheterogeneous distribution
models) have to interoperate one with another. Middleware usually handles interoper-
ability between heterogeneous hardware or operating systems. In the context of hetero-
geneous components interactions, middleware has to propose a new form of interoper-
ability on which this paper focuses e.g. an interoperability between distribution models.
This property is summarized asMiddleware to Middlewareinteraction (M2M) [Bak01].

Designing from scratch specific middleware for a variant of distribution model,
driven by particular application requirements, would be too expensive. A better ap-
proach consists of designing general middleware that can betailored to the specific
application needs. This saves both time and money.

Configurable or generic middleware provides a first efficientsolution to tailor these
distribution platforms so that they meet the application needs: TAO [SC97] can be con-
figured to address real-time concerns, and Jonathan [DHTS98] can be personalized for
various distribution models. But such middleware does not provide interoperability be-
tween existing components based on different distributionmodels. Yet this issue cannot
be discarded since distributed systems now commonly reuse legacy components.

We have introduced theschizophrenic middlewareconcept [QPK01] as a global
solution to both configurability to meet application requirements, adaptability of distri-
bution mechanisms and interoperability between distribution models. It also provides
support for execution determinism and formal verification.PolyORB [PQK+01], our
implementation of such middleware, is a proof of concept.

The aim of this paper is to describe the schizophrenic concepts and the associated
architecture. We study the PolyORB implementation and demonstrate the viability of
such middleware. We first give an overview of configurable andgeneric middleware,
and of the interoperability issues. Then we introduce the schizophrenic middleware
concept and the current status of PolyORB, and the distribution models it supports. Fi-
nally we study the performances of PolyORB, compared to other middleware solutions.

2 Middleware adaptability and interoperability: an overvi ew

Few projects directly focus on the design of middleware. They define architectures and
building blocks to facilitate middleware modification and adaptation. Very few others
focus on interaction between systems developed with different distribution models.

In this section, we analyze the design principles ofconfigurableandgenericmiddle-
ware. We describe several architectures which provide these properties. We also present
the difficulties to enforce interoperability between different distribution models.

2.1 Configurable middleware

Configurable middlewareenables an application to select actual components and spe-
cific run-time policies that address its requirements for a single distribution model.

TAO: The ACE ORB(TAO) is a free configurable ORB based on theACE(Adaptive
Communication Environment) communication and synchronization library. TAO sup-
ports CORBA real-time features. It controls the scheduler policy to enforce real-time
properties or to satisfy Quality of Service requirements. It is highly dedicated to avion-
ics, multimedia or simulation applications. TAO architecture is based on design patterns
[GHJV94]. It can be configured with the appropriate components to address a specific
application domain and to ensure performance, determinismor scalability properties.
TAO provides an IDL (Interface Description Language) compiler that optimizes the
generated stubs and skeletons depending on user requirements.

2.2 Generic middleware

Generic middlewareextends the configurability concept in order to adapt middleware
to the distribution model required by the application. It defines canonical components
and architecture which are extended orpersonalizedto support the given distribution
model. In other words, a generic middleware is instantiatedaccording to a distribution
model to create apersonality.

Quarterware: This C++ middleware [SSC98] defines a restricted set of compo-
nents. These components may be extended or specialized to implement a specific dis-
tribution model. This process has been successfully applied to the CORBA, RMI and
MPI (Message Passing Interface) models. Quarterware’s components embody typical
middleware functions specified as design patterns. Their specialization are supposed to
be fast and efficient. Unfortunately, this middleware is notan open source software and
it is not possible to evaluate its reuse code ratio or its performances.

Jonathan: This architecture emphasizes on a core system, Jonathan, and its per-
sonalities. Jonathan [DHTS98] is a Java framework of configurable components and
abstract interfaces. Current implementation provides a CORBA personality (David), a
RMI personality (Jeremie) and specialized personalities for multimedia systems.

Generic middleware can be instantiated to meet the application needs; however, the
development of a new personality implies the engineering ofa significant amount of
code. For instance, as Jonathan is mostly based on abstract interfaces, personalities like
David and Jeremie reuse only 10% of the generic code.

2.3 Interoperability between distribution models

Legacy components usually rely on multiple heterogeneous technologies. This includes
heterogeneous distribution models. Hence, software reusability may rise interoperabil-
ity issues, leading to M2M concern described in section 1.

Typical solutions involve middleware nodes communicatingone with another through
ad hoc gateways. CIAO [Qui99] provides static gateways between CORBA and DSA
nodes; CORBAWeb [MGG96] follows the same principles by providing dynamic gate-
ways between CORBA and Web clients. This approach requires agateway between
each pair of middleware paradigm.

Other solutions likeJava/HPC++ [BDV+98] rely on the choice of acommon ex-
change protocol. Then only one translator between each middleware paradigmand this
common protocol is necessary.

These solutions are interesting: they isolate the components interaction issue. This
allows the developer to reuse legacy components. However, the use of intermediate
entities requires a significant translation work; it impacts the performances of the whole
distributed system. This may not offer sufficient performances.

3 Schizophrenic middleware

Configurable and generic middleware ease middleware adaptation. However they lack
flexibility: configurable middleware provides adaptation hooks to abide to application
constraints; generic middleware is a solution to tailor to adistribution model. Interop-
erability between different middleware types is often dealt as a separate issue.

We claim that an architecture combining configurability, genericity but also inter-
operability capabilities into a common middleware architecture is sufficient to address
both application and distribution model requirements. This requires an architecture that
emphasizes on separation of concerns. We now present this architecture.

3.1 Decoupling functionalities

Schizophrenic middleware refines the definition and role of personalities introduced by
Jonathan. It proposesapplication-levelandprotocol-levelpersonalities, and aNeutral
Core Middleware(NCM). The latter allows for the interaction between multiple per-
sonalities, as shown on figure 1.

Application personalities: They constitute the adaptation layer between applica-
tion components and middleware through a dedicated API or code generator. They reg-
ister application components within the NCM; and they interact with it to enable the
exchange of requests between entities at the application-level.

Protocol personalities:They handle the mapping of personality-neutral requests
(representing interactions between application entities) onto messages transmitted through
a communication channel.

Requests handled by a protocol personality originate from three sources. Applica-
tion entities produce requests to be sent to other nodes of the distributed application
and convey them to the protocol personality through an application personality and the
NCM. Requests also come from other application nodes and arereceived by the proto-
col personality. At last, they also come from another protocol personality through the
NCM: in this case the application node acts as a proxy performing protocol translation
between third-party nodes.

The Neutral Core Middleware (NCM): It acts as an adaptation layer between
application and protocol personalities. It manages execution resources and provides the
necessary abstractions to transparently pass requests between protocol and application
personalities in a neutral way. It is completely independent from both application and
protocol personalities: this enables the selection and interaction of any combination of
application and protocol personalities.

Figure 2 summarizes the different ways various personalities can exchange requests
through the neutral core middleware. This naturally leads to interoperability: entities
registered to an application personality are available to any client using a middleware

personality

personality

Application

Protocol

personality

Application

personality

Protocol

Neutral Core Middleware

Fig. 1.Schizophrenic architecture

Application

Protocol

Neutral Core(1)

(3)

personalities

middleware

personalitiesGIOP SOAP

DSA

(2)

CORBA

Fig. 2. PolyORB personalities interactions

for which the corresponding protocol personality exists (1), or to another collocated
application or protocol personalities (2, 3); the NCM acts as a gateway between inter-
operating personalities. Hence, this architecture separates three main concerns in mid-
dleware: protocol-side, application-side and internals.

Personalities implement a specific aspect of a distributionmodel. The NCM enables
the presence and interaction of multiple collocated application and protocol personali-
ties within the same middleware instance, leading to “schizophrenia”.

3.2 Services

Personalities and the NCM are built on top of seven basic services that embody key
steps in client/server interactions (e.g. RPC or Distributed Objects). We now present
these services through an example: the interaction betweena DSA client and a CORBA
server using the SOAP protocol (figure 3).

Each entity is given a unique identifier within the entire distributed application using
theaddressingservice (1). This is used by the client to get a reference on a server entity.
Then the NCM uses thebinding service (2) and creates a binding object. It provides
mechanisms to establish and maintain associations betweeninteracting objects and the
resources that support this interaction (e.g. a socket, a protocol stack).

Then request parameters are translated into a representation suitable for transmis-
sion over network, using therepresentationservice (3). Aprotocol(4) is implemented
for transmissions between the client and the server nodes, through thetransport (5)
service, which establishes a communication channel between the two nodes. Then the
request is sent and unmarshalled by the server.

Upon the reception of a request, the middleware instance ensures that a concrete
entity implementing objects is available to execute the request, using theactivation
service (6). Finally, middleware assigns execution resources to process every incoming
request, using theexecutionservice (7).

Middleware main loop handles the coordination of these different services and en-
sures correct propagation of data flow within the middlewarenode.

Middleware may also provide advanced services which are optional for some per-
sonalities. They implement facilities and high-level APIsthat ease the development or
deployment of a distributed application.

The namingservice provides association between a reference on an entity and a
symbolic name, e.g. CORBA COS Naming or the Ada Distributed System Annex inter-

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

servant

object

process

obj. ref

marshaling

request

access pt

Neutral core
middleware

personalityprotocol

applicationCORBADSA application
client server

ne
tw

or
k

request
receiving &

unmarshaling

addressing (1)

binding(2)

representation(3)

protocol(4)

transport(5)

activation(6)
surrogate

SOAP

personality personality

execution(7)

Fig. 3. Invocation request path

nal naming scheme. Theinterface repositoryservices provide a metadata describing the
interface of application entities and the types they define.This provides mechanisms to
implement the CORBA Interface Repository. Theterminationservice determines con-
sensus on whether a distributed application has completed its task or not. Such a service
is useful in a DSA implementation. Theshared dataservice provides transparent ac-
cess to data shared by different nodes in a distributed application. Such a service is also
present in the DSA specification. Thesynchronizationservice provides mechanisms to
coordinate actions of different nodes (e.g. distributed mutexes).

Then basic and advanced services are combined to build a middleware instance; this
enables a precise adaptation to application requirements.We now describe our ongoing
work on PolyORB, our implementation of schizophrenic middleware.

4 PolyORB: implementation of a schizophrenic middleware

PolyORB is our free software implementation of schizophrenic middleware, in Ada 95.
It is released under the GNAT Modified GPL licence [PQK+01]. PolyORB is now sta-
ble software and entered industrialization process. In this section, we detail PolyORB
implemented personalities and Neutral Core Middleware.

These implementations reuse components from GLADE [PT00],our implementa-
tion of the Distributed System Annex for GNAT; AdaBroker, our implementation of
CORBA; AWS [Obr03] components for Web applications; and XML/Ada [Bri01].

4.1 Application personalities

PolyORB supports different distribution models, implemented as application personal-
ities: Distributed Object with CORBA and DSA; Remote Procedure Call with DSA;
Message Passing with MOMA; and Web applications with AWS.

CORBA: We reuse some elements implemented for the AdaBroker ORB to pro-
duce a CORBA-compliant application personality. This personality provides an IDL-
to-Ada compiler that supports most IDL constructs, except for fixed-point numbers,
abstract interfaces and object by value. It also provides a communication system that
supports static and dynamic invocation and implements the Portable Object Adapter

(POA). Moreover, CORBA application personality provides some CORBA COS Ser-
vices: COS Naming, COS Event, COS Time and the Interface Repository.

Distributed System Annex:The implementation of the DSA application person-
ality was facilitated because of the know-how acquired during the development of
GLADE. The implementation of this personality carried on the partial rewriting of the
GNAT compiler so that PolyORB neutral core middleware and protocol personalities
act as a communication system for the distributed system annex. The DSA personality
supports Annex E specification. Some of the advanced services introduced in GLADE
such as termination, bootstrap servers will be ported to PolyORB in a near future.

Message Passing:MOMA (Message Oriented Middleware for Ada) provides mes-
sage passing mechanisms through an Ada 95 implementation ofthe well-known Sun’s
Java Message Service (JMS) [SUN99]. JMS is a standardized API for common message
passing models; it keeps the distribution layer implementation-defined. We focused di-
rectly on MOM distribution logic and defined MOMA as an application personality.
As for DSA, PolyORB NCM and protocol personalities act as a communication sys-
tem. Our MOM architecture supports typical MOM primitives like 1-to-1 and 1-to-N
message exchanges. Those are implemented using aservant-like pattern: clients invoke
specific methods on MOMA objects to exchange messages.

Web Server: The Web Server personality provides the same API as the Ada Web
Server project (AWS) [Obr03]. It allows for the implementation of web services, web
server applications, or classical web pages. AWS-based servers allow the programmer
to directly interact with incoming or outgoing HTTP (HyperText Transfer Protocol) and
SOAP requests. We have implemented aservant-like pattern to enable servers creation;
request manipulation is done through a wrapper on PolyORB’sinternals. The AWS
personality provides the basic functionalities of the original AWS; other functionalities
are facilities to ease data manipulation. They will be incorporated in future releases.

4.2 Protocol personalities

Protocol personalities provide support for data exchange.PolyORB supports GIOP
(General Inter-Orb Protocol) for all-purpose requests, MIOP (Multicast Inter-Orb Pro-
tocol) for multicast and SOAP for Web Services.

GIOP: GIOP is the transport layer of the CORBA specifications. AdaBroker pro-
vided a basis for the implementation of GIOP. This personality implements GIOP ver-
sions from 1.0 to 1.2 along with the CDR (Common Data Representation) represen-
tation scheme to map data between the neutral core layer and CDR streams. GIOP
is a generic protocol for which we provide several instances. IIOP (Internet Inter-Orb
Protocol) supports synchronous request semantics over TCP/IP. MIOP [OMG03] in-
stantiation of GIOP enables group communication over IP multicast. DIOP (Datagram
Inter-Orb Protocol) relies on UDP/IP communications to transmit one-way requests
only.

SOAP: SOAP protocol [W3C03] enables the exchange of structured and typed in-
formation between peers. It is a self-describing XML document [W3C00] that defines
both its data and semantics. Basically, SOAP with HTTP bindings is used as a com-
munication protocol for Web Services. PolyORB’s SOAP personality reuses code from

AWS, and takes advantage from the XML self-describing properties to propose a direct
mapping between SOAP and neutral requests.

4.3 Neutral Core Middleware

Neutral Core Middleware is the heart of PolyORB. It providesa basic implementation
for most middleware services defined in section 3.2. Besides, it implements different
APIs and patterns on top of which distribution facilities are built. Finally, it provides
hooks to register and to configure application or protocol personalities.

These components are designed to maximize code reuse, performance and config-
urability. For instance, PolyORB tasking constructs can beadjusted to application re-
quirements. It supports No Tasking, Full Tasking but also Ravenscar run-time [DB98].
Moreover, tasking policies may be defined to precisely control tasks allocation to pro-
cess requests. It reuses notions introduced in GLADE and AdaBroker and define differ-
ent policies:thread pool, thread per session, thread per request.

Moreover, the NCM eases to proof determinism of key middleware elements. Hence,
the Ravenscar tasking run-time enables determinism of concurrency patterns. Static and
dynamic perfect hash tables [DKM+94] enableO(1) lookup time in dictionaries.

5 Experiments and validation

This section illustrates PolyORB capabilities and efficiency to assess its usability as a
distribution platform to develop complete applications. We first address its compliance
to strict specifications; we then discuss code reuse and performance issues.

5.1 Interoperability & compliance to standards

Middleware specifications strictly prescribe the components on top of which a dis-
tributed application may be built, e.g. protocols, API. Strict compliance to these norms
is required to ensure interoperability with other products.

We first verified compliance at the protocol level: transportof request must enable
communication with other middleware.

CORBA/IIOP: We verified interoperability using the IIOP instantiation of GIOP
with other CORBA-based middleware,C++ implementations: omniORB, TAO; Java
implementations: Jonathan and OpenORB. Our tests verify data transfer consistency
for various types as defined by the OMG IDL: simple, aggregateand complex ones.

CORBA/MIOP: We tested interoperability with TAO implementation of MIOP:
messages were correctly broadcasted and then received by TAO and PolyORB nodes.

SOAP:We tested interoperability with AWS clients and servers built on top of AWS
original implementation. We verified data transfer consistency.

Then, we verified compliance at the application level: implemented API or gener-
ated code must verify a defined semantics and run-time properties:

CORBA: The OMG defined in [OMG01] how CORBA specifications are to be
translated into Ada 95. We implemented these recommendations and verified correct-
ness on typical CORBA examples. Besides, the implementation of the COS3 Naming,

3 COS: Common Object Service

COS Event and the Interface Repository stressed our implementation. Let us note that
this mapping is currently under revision; adjustments may be required.

DSA: We used theAda Conformity Assessment Authoritytest suite to validate our
implementation of the Distributed System Annex. We removedthe conformity tests of
obsoleted features like the compliance toSystem.RPC which is no longer normative in
Ada0Y (paragraph E.4.20). We pass all tests but two. The missing tests are related to
variable-length types, and will be added in a near future.

AWS & MOMA: These two personalities rely on specific and not normalized in-
terfaces. We verified on selected examples that the application nodes behaved correctly.

These different tests demonstrate that PolyORB provides a stable implementation
of various distribution models, compliant to industrial standards.

Jonathan David

PolyORB DSA/GIOP

PolyORB CORBA/GIOP

Jonathan Jeremie
SLOCs

Generic code

Personality specific code

10000 20000 30000 40000 50000

Fig. 4. Code reuse in PolyORB and Jonathan

P
P

P
P

P
Server

Client omniORB TAO PolyORB

omniORB 1.382s 3.310s 1.869s
TAO N/A 2.986s 2.498s
TAO TP N/A 3.361s 3.865s
PolyORB 1.785s 3.576s 2.056s
PolyORB TP 3.340s 5.053s 3.602s

Fig. 5. Execution time for 10,000 requests

5.2 Code reuse

Code reuse ratio provides a measure of the reusable functional key components pro-
vided by middleware. Figure 4 shows a measure of the SLOCs present in comparable
applications. We computed Source Lines Of Code (SLOCs) of the generic core and
personalization specific code between PolyORB and Jonathan, for which source code
is freely available. The measures have been done using SLOCCount4.

We considered two distinct configurations: “ORB”, using CORBA/GIOP personal-
ities; and “RPC” comparing DSA/GIOP for PolyORB and RMI for Jonathan.

A raw analysis demonstrates that PolyORB NCM represents a significant part —
more than 66 % — of the distribution infrastructure; Jonathan core and sets of abstract
interfaces represent around 10 %. PolyORB’s numbers demonstrate that the NCM pro-
vides key building blocks to implement middleware. This clearly reduces the need to
write large portions of code when adapting PolyORB to meet the needs of an applica-
tion. Hence, PolyORB facilitates the development of new personalities. This has been
verified when implementing AWS, MIOP and MOMA: PolyORB provides generic ab-
stractions to build different distribution models.

5.3 Code efficiency

PolyORB novel architecture enables great configurability,genericity and interoperabil-
ity. These are interesting properties when developing or deploying a distributed appli-
cation. However, middleware implementations should have acceptable performance as

4 from David A. Wheeler,http://www.dwheeler.com/sloccount/

well. Thus, we benchmarked PolyORB against typical and configurable middleware to
assess impact of its architecture on performances.

We compared the execution time for PolyORB configured with CORBA/GIOP per-
sonalities; and two very distinctC++ CORBA ORB: omniORB and TAO. omniORB
(from AT&T Labs) is known for its strict compliance to CORBA specifications and its
efficiency. TAO advertises its configurability and reliability properties.

PolyORB relies on dynamic mechanisms. In order to have coherent measurements
sets, we tested against other dynamic clients and servers, i.e. CORBA Dynamic Inter-
face Invocation (DII) clients and CORBA Dynamic Skeleton Interface (DSI) servers.
We measure the time required to execute 10,000 requests. Each request “echoes” an
unsigned long parameter.

Figure 5 summarizes our measurements. omniORB uses its default settings, TAO
and PolyORB denotes no tasking configuration of middleware,TAO Thread Pool (TP)
and PolyORB TP are full tasking configurations of middleware, using a thread pool of
four threads.

We note that TAO DSI cannot interoperate with omniORB DII clients, indicated by
“N/A” in the table; this is a known bug. PolyORB competes withthese two platforms.
In thread pool mode, PolyORB has similar performance compared to TAO, better per-
formance in mono tasking — nearly 30 %. omniORB is the fastestORB, performance
loss factor ranges from 1.3 to 2.4. The main explanation to this significant difference
with omniORB is its over-optimized architecture that in return limits configurability.

5.4 Towards reliability of distribution middleware

Building reliable software is a complex task, more specifically when it comes to dis-
tributed applications. Middleware tends to be used as COTS5 components in mission
critical applications. However, the integration of COTS components raises new issues
to ensure reliability or to certify applications [Bud03]. Hence, developer requires pre-
cise knowledge on component behavior and properties.

At the implementation level, PolyORB enforces determinism. The use of selected
algorithms and patterns as well as of the Ravenscar profile (section 4.3) ensure deter-
minism of the basic elements of the implementation.

Then we contemplated the formal verification of our architecture. Schizophrenic
middleware provides a comprehensive description of its architecture built around dif-
ferent well-defined services. Middleware functions are delegated to specific services.
This enables separate verification of its components.

In [HPK03], we proposed a roadmap to middleware verification. The middleware
main loop coordinates all functions within a middleware node. We identified this loop
as the most critical component of middleware. Then, we defined and modelled it using
Petri Nets. This allows us to formally verify qualitative properties on the behavior of
this component such as the bounds of buffers or the appropriate use of critical sections.

The other middleware services and components are less complex entities. They im-
plement well known patterns, or simply manipulate data: they do not directly rely on
constructions that may lead to faulty execution. We plan to gradually verify them. The

5 COTS: Commercial Off-The-Shelf

combination of these different results is a first step towards formal verification of mid-
dleware. This provides inputs to assess properties and thento prove reliability.

PolyORB properties and performances make it a possible choice to develop dis-
tributed applications. PolyORB provides configurability and genericity which does not
impede performance. Besides, PolyORB relies on strong engineering methods. The for-
mal verifications of qualitative properties ensure middleware reliability. These are first
steps to ensure the usability of PolyORB to build reliable distributed applications.

6 Conclusion

The diversity of application requirements leads to different distribution models, and
then middleware implementations adapted to a specific context. Thus, distributed ap-
plication engineering requires adaptable middleware to fita wide range of applications.
This paper discussed about adaptable middleware design andimplementations.

First, we identified several requirements on middleware architecture: adaptability to
application needs, interoperability between heterogeneous components, reliability.

Then, we discussed existing solutions. Configurable middleware allows for fine
adaptation to application needs, but is restricted to a given distribution model. Generic
middleware defines abstract interfaces that are to be instantiated to meet the specific
needs of the application; however this implies engineeringof a large portion of code
for each instantiation. Interoperability between heterogeneous middleware is often ad-
dressed separately. This slows down the performances of thewhole system.

We introducedschizophrenic middlewareas a comprehensive solution to distributed
applications engineering. Schizophrenic middleware solves both configurability, gener-
icity and interoperability concerns. Schizophrenic middleware extends the concept of
middleware personalities to permit several collocated personalities to inter-operate within
the same middleware instance. We definedapplicationpersonalities andprotocolper-
sonalities, all bound to aNeutral Core Middleware.

Our implementation PolyORB, which is available under a freesoftware license,
demonstrates the validity of the schizophrenic concepts. We developed personalities for
SOAP and protocols associated to GIOP. We also developed personalities for CORBA,
DSA, Message Passing (MOMA) and Web (AWS) middleware types.

Finally, we analyzed PolyORB implementation. We detailed its compliance to in-
dustrial specifications, and discussed its interoperability with other middleware imple-
mentations. We discussed code reuse, and indicated how PolyORB design eases the
implementation of new distribution models. PolyORB’s benchmarks show that it com-
petes with other well-known implementations, yet it offersmore adaptation capabilities.
We also discussed reliability issues: PolyORB relies on strict engineering and design
methods that help to prove its reliability. We are currentlymodelling key elements of
middleware to formally prove their reliability in specific use cases. This will provide
more information on middleware reliability.

PolyORB current development focuses on stringent determinism and real-time prop-
erties of distribution middleware, as well as the implementation of real-time middleware
specifications such as RT-CORBA.

References

[Bak01] S. Baker. Middleware to middleware. InProceedings of the 3rd International Sym-
posium on Distributed Objects and Applications (DOA’01), September 2001.

[BDV+98] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and D. Gan-
non. Java/RMI performance and object model interoperability: Experiments with
Java/HPC++ distributed components. InProceedings of Workshop on Java for High-
Performance Network Computing, pages 91–100, May 1998.

[Bri01] E. Briot. XML/Ada: a full XML suite, 2001.
[Bud03] T. J. Budden. Decision Point: Will Using a COTS Component Help or Hinder Your

DO-178B Certification Effort. STSC CrossTalk, The Journal of Defense Software
Engineering, November 2003.

[DB98] B. Dobbing and A. Burns. The Ravenscar tasking profilefor high integrity real-time
programs. InProceedings of SigAda’98, Washington, DC, USA, November 1998.

[DHTS98] B. Dumant, F. Horn, F. Dang Tran, and J-B. Stefani. Jonathan: an open distributed
processing environment in java. InProceedings of the IFIP International Conference
on Distribut ed Systems Platforms and Open Distributed Processing, 1998.

[DKM +94] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: upper and lower bounds.SIAM Journal on Computing,
23(4):738–761, August 1994.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Massachusetts, 1994.

[HPK03] J. Hugues, L. Pautet, and F. Kordon. Refining middleware functions for verification
purpose. InMonterey Workshop on Software Engineering for Embedded Systems:
From Requirements to Implementation, Chicago, IL, USA, September 2003.

[MGG96] P. Merle, C. Gransart, and J-M. Geib. CORBAWeb: A generic object navigator.Com-
puter Networks and ISDN Systems, 28(7-11):1269–1281, 1996.

[Mul93] S. Mullender.Distributed Systems. ACM, 1993.
[Obr03] P. Obry. Ada Web Server (AWS) 1.3, 2003.
[OMG01] OMG. Ada Language Mapping Specification, v1.2. OMG, October 2001. OMG

Technical Document formal/2001-10-42.
[OMG03] OMG. unreliable Multicast InterORB Protocol specification. OMG, January 2003.

OMG Technical Document ptc/03-01-11.
[PQK+01] L. Pautet, T. Quinot, F. Kordon, J. Hugues, and T. Vergnaud et al. Polyorb, 2001.

http://libre.act-europe.fr.
[PT00] Laurent Pautet and Samuel Tardieu. GLADE: a Framework for Building Large

Object-Oriented Real-Time Distributed Systems. InProceedings of the 3rd IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing
(ISORC’00), Newport Beach, California, USA, June 2000.

[QPK01] T. Quinot, L. Pautet, and F. Kordon. Architecture for a reuseable object-oriented
polymorphic middleware. InProceedings of PDPTA’01, Las Vegas, USA, June 2001.

[Qui99] T. Quinot. CIAO: Opening the Ada 95 distributed systems annex to CORBA clients.
In Ada France 1999, Brest, France, September 1999.

[SC97] D. Schmidt and Christ Cleeland. Applying patterns todevelop extensible and main-
tainable ORB midd leware.Communications of the ACM, CACM, 40(12), 1997.

[SSC98] A. Singhai, A. Sane, and R. Campbell. Quarterware for Middleware. InProceedings
of ICDCS’98. IEEE, May 1998.

[SUN99] SUN. Java Message Service (JMS), 1999.
[W3C00] W3C.Extensible Markup Language (XML) 1.0, 2000. W3C recommandation.
[W3C03] W3C. Simple Object Access Protocol (SOAP) 1.2: primer, june 2003. W3C recom-

mandation.

