PolyORB: a schizophrenic middleware to build
versatile reliable distributed applications

Thomas Vergnaukl Jérdome HuguésLaurent Pautét and Fabrice Kordoh

1 GET-Télécom Paris — LTCI-UMR 5141 CNRS
46, rue Barrault, F-75634 Paris CEDEX 13, France
t homas. ver gnaud@nst . fr, jerome. hugues@nst.fr, laurent.pautet@nst.fr
2 Université Pierre & Marie Curie, Laboratoire d’Informatigjde Paris 6/SRC
4, place Jussieu, F-75252 Paris CEDEX 05, France
fabrice. kordon@i p6. fr

Abstract. The development of real-time distributed applicationsuiezs mid-
dleware providing botheliability andperformance Middleware must badapt-
ableto meet application requirements and integrate legacy ocoemts. Current
middleware provides only partial solutions to these issiEseover, they newer
address all of them. Thus, a new generation of middlewareqgsired. We have
introduced theschizophrenic middlewareoncept as an integrated solution to
build versatile reliable distributed applications. PoB®, our implementation of
schizophrenic middleware, supports various distributimdels: CORBA (Com-
mon Object Request Broker Architecture), SOAP (Simple &tbfecess Proto-
col), DSA (Ada 95 Distributed System Annex), Message Pgs&n adaptation
of Java Message Service to Ada 95) and Web Server paradigise(tb what
AWS offers). In this paper, we describe the implementatiohalyORB and pro-
vide a summary of our experience regarding the issues nmetiabove.

1 Introduction

The term “middleware” designates a piece of software thaegdoth development
and deployment of distributed applications. It handlesdfamctions to distribute ap-
plications in heterogeneous environments. Offered sesvaze for example transport
protocol, remote execution, addressing, data marsha#iteg

Distributed systems use classical distribution paradigmsnessage passing (MP),
remote subprogram call (RPC), distributed objects (DOC3hared memory (DSM).
The community has defined several distribution models whicipose a combination
of these paradigms. DOC can be implemented using CORBA or (Rgiote Method
Invocation). DSA (Distributed Systems Annex for Ada 95)\pdes several paradigms
like RPC, DOC and DSM. Distribution models also lead to maayiations. COR-
BA or DSA define asynchronous remote method invocation. Middre classically
implements one distribution model.

The choice for a distribution model or for a list of distritart mechanisms is driven
by the application requirements; a correct (or incorrebt)ice may dramatically im-
pact design and performances [Mul93]. The growing demandi&ribution functions

in a wide range of systems (embedded, mobile or real-timesys increases the mul-
tiplication of distribution models with some specific vaiges.

Each application comes with its specific needs and takesngatya of one distri-
bution model. But all these applications (possibly basetietrrogeneous distribution
models) have to interoperate one with another. Middlewarslly handles interoper-
ability between heterogeneous hardware or operatingragsta the context of hetero-
geneous components interactions, middleware has to peaposw form of interoper-
ability on which this paper focuses e.g. an interoperahil@tween distribution models.
This property is summarized diddleware to Middlewarénteraction (M2M) [BakO1].

Designing from scratch specific middleware for a variant stribution model,
driven by particular application requirements, would be &xpensive. A better ap-
proach consists of designing general middleware that cataitmred to the specific
application needs. This saves both time and money.

Configurable or generic middleware provides a first efficgattition to tailor these
distribution platforms so that they meet the applicatioedsge TAO [SC97] can be con-
figured to address real-time concerns, and Jonathan [DHTca@&e personalized for
various distribution models. But such middleware does navige interoperability be-
tween existing components based on different distributiodels. Yet this issue cannot
be discarded since distributed systems now commonly regsey components.

We have introduced thechizophrenic middlewareoncept [QPKO01] as a global
solution to both configurability to meet application reguirents, adaptability of distri-
bution mechanisms and interoperability between distidoumnodels. It also provides
support for execution determinism and formal verificatiBolyORB [PQK"01], our
implementation of such middleware, is a proof of concept.

The aim of this paper is to describe the schizophrenic casa@apl the associated
architecture. We study the PolyORB implementation and destnate the viability of
such middleware. We first give an overview of configurable gederic middleware,
and of the interoperability issues. Then we introduce thdézephrenic middleware
concept and the current status of PolyORB, and the disioibutodels it supports. Fi-
nally we study the performances of PolyORB, compared torattiédleware solutions.

2 Middleware adaptability and interoperability: an overvi ew

Few projects directly focus on the design of middleware yTdefine architectures and
building blocks to facilitate middleware modification andaatation. Very few others
focus on interaction between systems developed with éiffiedistribution models.

In this section, we analyze the design principlesamifigurableandgenericmiddle-
ware. We describe several architectures which providethesperties. We also present
the difficulties to enforce interoperability between difet distribution models.

2.1 Configurable middleware

Configurable middlewarenables an application to select actual components and spe-
cific run-time policies that address its requirements fangle distribution model.

TAO: The ACE ORBTAO) is a free configurable ORB based on &k@E (Adaptive
Communication Environment) communication and synchmtion library. TAO sup-
ports CORBA real-time features. It controls the schedu@@icp to enforce real-time
properties or to satisfy Quality of Service requiremertts highly dedicated to avion-
ics, multimedia or simulation applications. TAO architgetis based on design patterns
[GHJIV94]. It can be configured with the appropriate compasémaddress a specific
application domain and to ensure performance, determinisstalability properties.
TAO provides an IDL (Interface Description Language) coepthat optimizes the
generated stubs and skeletons depending on user requigemen

2.2 Generic middleware

Generic middlewarextends the configurability concept in order to adapt migdhe
to the distribution model required by the application. Ifides canonical components
and architecture which are extendedparsonalizedo support the given distribution
model. In other words, a generic middleware is instantiambrding to a distribution
model to create personality

Quarterware: This C++ middleware [SSC98] defines a restricted set of compo-
nents. These components may be extended or specializegkenrant a specific dis-
tribution model. This process has been successfully appliehe CORBA, RMI and
MPI (Message Passing Interface) models. Quarterware’pooents embody typical
middleware functions specified as design patterns. Theriafization are supposed to
be fast and efficient. Unfortunately, this middleware isamwbpen source software and
it is not possible to evaluate its reuse code ratio or itsquarnces.

Jonathan: This architecture emphasizes on a core system, Jonathdritsarer-
sonalities Jonathan [DHTS98] is a Java framework of configurable carepts and
abstract interfaces. Current implementation provides &B® personality David), a
RMI personality Jeremi@ and specialized personalities for multimedia systems.

Generic middleware can be instantiated to meet the apjgicateds; however, the
development of a new personality implies the engineering sfgnificant amount of
code. For instance, as Jonathan is mostly based on abstextaces, personalities like
David and Jeremie reuse only 10% of the generic code.

2.3 Interoperability between distribution models

Legacy components usually rely on multiple heterogeneshgiologies. This includes
heterogeneous distribution models. Hence, software bditganay rise interoperabil-
ity issues, leading to M2M concern described in section 1.

Typical solutions involve middleware nodes communicating with another through
ad hoc gateways. CIAO [Qui99] provides static gateways betwnCORBA and DSA
nodes; CORBAWeb [MGG96] follows the same principles by pdowg dynamic gate-
ways between CORBA and Web clients. This approach requigsteway between
each pair of middleware paradigm.

Other solutions likelava/HPC++[BDV 798] rely on the choice of @ommon ex-
change protocolThen only one translator between each middleware paradighthis
common protocol is necessary.

These solutions are interesting: they isolate the compsrieteraction issue. This
allows the developer to reuse legacy components. Howdweruse of intermediate
entities requires a significant translation work; it imgatte performances of the whole
distributed system. This may not offer sufficient perforices

3 Schizophrenic middleware

Configurable and generic middleware ease middleware atitaptélowever they lack
flexibility: configurable middleware provides adaptatiavoks to abide to application
constraints; generic middleware is a solution to tailor tisgribution model. Interop-
erability between different middleware types is often tlaala separate issue.

We claim that an architecture combining configurabilityngecity but also inter-
operability capabilities into a common middleware arattitiee is sufficient to address
both application and distribution model requirementssTkuires an architecture that
emphasizes on separation of concerns. We now present thisesture.

3.1 Decoupling functionalities

Schizophrenic middleware refines the definition and roless§pnalities introduced by
Jonathan. It proposempplication-leveland protocol-levelpersonalities, and Neutral
Core Middleware(NCM). The latter allows for the interaction between muéiper-
sonalities, as shown on figure 1.

Application personalities: They constitute the adaptation layer between applica-
tion components and middleware through a dedicated APIde generator. They reg-
ister application components within the NCM; and they iat¢with it to enable the
exchange of requests between entities at the applicagicai-|

Protocol personalities: They handle the mapping of personality-neutral requests
(representing interactions between application en}itiato messages transmitted through
a communication channel.

Requests handled by a protocol personality originate fiun@et sources. Applica-
tion entities produce requests to be sent to other nodeseddidributed application
and convey them to the protocol personality through an egtitin personality and the
NCM. Requests also come from other application nodes andaeived by the proto-
col personality. At last, they also come from another protgersonality through the
NCM: in this case the application node acts as a proxy peifayprotocol translation
between third-party nodes.

The Neutral Core Middleware (NCM): It acts as an adaptation layer between
application and protocol personalities. It manages exacuesources and provides the
necessary abstractions to transparently pass requestseareprotocol and application
personalities in a neutral way. It is completely independiemm both application and
protocol personalities: this enables the selection aretaction of any combination of
application and protocol personalities.

Figure 2 summarizes the different ways various persoaal@an exchange requests
through the neutral core middleware. This naturally leadmteroperability: entities
registered to an application personality are availablenipdient using a middleware

Application Application Application
corna | [psa | pERe

@ AL 1

[Neutral Core Middleware j Neutral Core

e middleware
! @
Protocol Protocol Protocol
Fig. 1. Schizophrenic architecture Fig. 2. PolyORB personalities interactions

for which the corresponding protocol personality existg €t to another collocated
application or protocol personalities (2, 3); the NCM actsaaggateway between inter-
operating personalities. Hence, this architecture ségmthree main concerns in mid-
dleware: protocol-side, application-side and internals.

Personalities implement a specific aspect of a distributiodel. The NCM enables
the presence and interaction of multiple collocated apfiin and protocol personali-
ties within the same middleware instance, leading to “sgttizenia”.

3.2 Services

Personalities and the NCM are built on top of seven basicices\that embody key
steps in client/server interactions (e.g. RPC or Distabubbjects). We now present
these services through an example: the interaction betav®SA client and a CORBA
server using the SOAP protocol (figure 3).

Each entity is given a unique identifier within the entired®ited application using
theaddressingservice (1). This is used by the client to get a reference @maesentity.
Then the NCM uses theinding service (2) and creates a binding object. It provides
mechanisms to establish and maintain associations betwsgacting objects and the
resources that support this interaction (e.g. a sockehtaqul stack).

Then request parameters are translated into a represensaitable for transmis-
sion over network, using thepresentatiorservice (3). Aprotocol(4) is implemented
for transmissions between the client and the server nobesygh thetransport (5)
service, which establishes a communication channel bettreetwo nodes. Then the
request is sent and unmarshalled by the server.

Upon the reception of a request, the middleware instanceresshat a concrete
entity implementing objects is available to execute thauest, using theactivation
service (6). Finally, middleware assigns execution reSe&Ito process every incoming
reguest, using thexecutiorservice (7).

Middleware main loop handles the coordination of theseediifit services and en-
sures correct propagation of data flow within the middleweaee.

Middleware may also provide advanced services which arnemgltfor some per-
sonalities. They implement facilities and high-level Afiat ease the development or
deployment of a distributed application.

The namingservice provides association between a reference on ay antl a
symbolic name, e.g. CORBA COS Naming or the Ada Distributgst&n Annex inter-

DSA application CORBA application

personality \M 8erer personality
% obj. ref % object
addressing (1)
) x execution(7’
. surrogate)\ | Q servant
binding(2)| \ ,? - activation(é
representation(3)— tmarshalingf || =| | 0 ooy Neutral core
request receiving &|| middleware
pr0t000|(4)‘ unmarshalin:
transport(5) access p 7 SOAP

protocol personality

Fig. 3. Invocation request path

nal naming scheme. Tlieterface repositorgervices provide a metadata describing the
interface of application entities and the types they defitiés provides mechanisms to
implement the CORBA Interface Repository. Tieeminationservice determines con-
sensus on whether a distributed application has complestéask or not. Such a service
is useful in a DSA implementation. Thehared dateservice provides transparent ac-
cess to data shared by different nodes in a distributedegian. Such a service is also
present in the DSA specification. Tegnchronizatiorservice provides mechanisms to
coordinate actions of different nodes (e.g. distributedexes).

Then basic and advanced services are combined to build dewigik instance; this
enables a precise adaptation to application requiremfets.ow describe our ongoing
work on PolyORB, our implementation of schizophrenic méldre.

4 PolyORB: implementation of a schizophrenic middleware

PolyORB is our free software implementation of schizophremddleware, in Ada 95.
It is released under the GNAT Modified GPL licence [PQX]. PolyORB is now sta-
ble software and entered industrialization process. s dbttion, we detail PolyORB
implemented personalities and Neutral Core Middleware.

These implementations reuse components from GLADE [PT@@]implementa-
tion of the Distributed System Annex for GNAT; AdaBroker,ramplementation of
CORBA; AWS [Obr03] components for Web applications; and X¥da [Bri01].

4.1 Application personalities

PolyORB supports different distribution models, implerteehas application personal-
ities: Distributed Object with CORBA and DSA; Remote PragedCall with DSA,
Message Passing with MOMA,; and Web applications with AWS.

CORBA: We reuse some elements implemented for the AdaBroker ORBato p
duce a CORBA-compliant application personality. This pagdity provides an IDL-
to-Ada compiler that supports most IDL constructs, exceptfixed-point numbers,
abstract interfaces and object by value. It also providesmancunication system that
supports static and dynamic invocation and implements tréaBle Object Adapter

(POA). Moreover, CORBA application personality provides® CORBA COS Ser-
vices: COS Naming, COS Event, COS Time and the Interface &iepgp.

Distributed System Annex: The implementation of the DSA application person-
ality was facilitated because of the know-how acquired miyithe development of
GLADE. The implementation of this personality carried or ffartial rewriting of the
GNAT compiler so that PolyORB neutral core middleware anotgrol personalities
act as a communication system for the distributed systeraxarithe DSA personality
supports Annex E specification. Some of the advanced sarint®duced in GLADE
such as termination, bootstrap servers will be ported tg®&B in a near future.

Message PassinglOMA (Message Oriented Middleware for Ada) provides mes-
sage passing mechanisms through an Ada 95 implementattbe afell-known Sun’s
Java Message Service (JMS) [SUN99]. JMS is a standardizetbABbmmon message
passing models; it keeps the distribution layer implemténtadefined. We focused di-
rectly on MOM distribution logic and defined MOMA as an applion personality.
As for DSA, PolyORB NCM and protocol personalities act as emownication sys-
tem. Our MOM architecture supports typical MOM primitivéled 1-to-1 and 1-to-N
message exchanges. Those are implemented usienyantlike pattern: clients invoke
specific methods on MOMA objects to exchange messages.

Web Server: The Web Server personality provides the same API as the Ada We
Server project (AWS) [Obr03]. It allows for the implemerdat of web services, web
server applications, or classical web pages. AWS-baseérseallow the programmer
to directly interact with incoming or outgoing HTTP (Hypex Transfer Protocol) and
SOAP requests. We have implementestavantlike pattern to enable servers creation;
request manipulation is done through a wrapper on PolyORBé&rnals. The AWS
personality provides the basic functionalities of the irdd) AWS; other functionalities
are facilities to ease data manipulation. They will be ipowated in future releases.

4.2 Protocol personalities

Protocol personalities provide support for data exchafgdyORB supports GIOP
(General Inter-Orb Protocol) for all-purpose requestsDMI(Multicast Inter-Orb Pro-
tocol) for multicast and SOAP for Web Services.

GIOP: GIOP is the transport layer of the CORBA specifications. Aaé®r pro-
vided a basis for the implementation of GIOP. This persoyatiplements GIOP ver-
sions from 1.0 to 1.2 along with the CDR (Common Data Reprtasien) represen-
tation scheme to map data between the neutral core layer Bid Sreams. GIOP
is a generic protocol for which we provide several instant&P (Internet Inter-Orb
Protocol) supports synchronous request semantics ovefiIF.QRIOP [OMGO03] in-
stantiation of GIOP enables group communication over IRtigagt. DIOP (Datagram
Inter-Orb Protocol) relies on UDP/IP communications tam$mit one-way requests
only.

SOAP: SOAP protocol [W3CO03] enables the exchange of structureldyped in-
formation between peers. It is a self-describing XML docotj@/3CO00] that defines
both its data and semantics. Basically, SOAP with HTTP Iigdliis used as a com-
munication protocol for Web Services. PolyORB'’s SOAP peadity reuses code from

AWS, and takes advantage from the XML self-describing pridg®to propose a direct
mapping between SOAP and neutral requests.

4.3 Neutral Core Middleware

Neutral Core Middleware is the heart of PolyORB. It providdsasic implementation
for most middleware services defined in section 3.2. Besitlé@®plements different
APIs and patterns on top of which distribution facilitie® dwilt. Finally, it provides
hooks to register and to configure application or protocod@ealities.

These components are designed to maximize code reusetrparfce and config-
urability. For instance, PolyORB tasking constructs caradiisted to application re-
quirements. It supports No Tasking, Full Tasking but alseeRacar run-time [DB98].
Moreover, tasking policies may be defined to precisely adnéisks allocation to pro-
cess requests. It reuses notions introduced in GLADE an@raker and define differ-
ent policiesthread poo] thread per sessiqgrthread per request

Moreover, the NCM eases to proof determinism of key middteveéements. Hence,
the Ravenscar tasking run-time enables determinism ofuzogrecy patterns. Static and
dynamic perfect hash tables [DKM4] enableD(1) lookup time in dictionaries.

5 Experiments and validation

This section illustrates PolyORB capabilities and efficieto assess its usability as a
distribution platform to develop complete applications fi¥st address its compliance
to strict specifications; we then discuss code reuse andnpeahce issues.

5.1 Interoperability & compliance to standards

Middleware specifications strictly prescribe the compdsem top of which a dis-
tributed application may be built, e.g. protocols, APli&tcompliance to these norms
is required to ensure interoperability with other products

We first verified compliance at the protocol level: transpdntequest must enable
communication with other middleware.

CORBA/IIOP: We verified interoperability using the 11OP instantiatioh@OP
with other CORBA-based middlewar€+ implementations: omniORB, TAO; Java
implementations: Jonathan and OpenORB. Our tests verify wlansfer consistency
for various types as defined by the OMG IDL: simple, aggregatecomplex ones.

CORBA/MIOP: We tested interoperability with TAO implementation of MIOP
messages were correctly broadcasted and then received®yiid PolyORB nodes.

SOAP: We tested interoperability with AWS clients and serverdtlun top of AWS
original implementation. We verified data transfer corsisy.

Then, we verified compliance at the application level: impated API or gener-
ated code must verify a defined semantics and run-time piieper

CORBA: The OMG defined in [OMGO01] how CORBA specifications are to be
translated into Ada 95. We implemented these recommentdasiod verified correct-
ness on typical CORBA examples. Besides, the implementafithe COS Naming,

3 COS: Common Object Service

COS Event and the Interface Repository stressed our impitien. Let us note that
this mapping is currently under revision; adjustments maydguired.

DSA: We used theAda Conformity Assessment Authotidgt suite to validate our
implementation of the Distributed System Annex. We remabedconformity tests of
obsoleted features like the compliancesyst em RPC which is no longer normative in
Ada0Y (paragraph E.4.20). We pass all tests but two. Theimgigssts are related to
variable-length types, and will be added in a near future.

AWS & MOMA: These two personalities rely on specific and not normalined i
terfaces. We verified on selected examples that the applicavdes behaved correctly.

These different tests demonstrate that PolyORB providéatdesimplementation
of various distribution models, compliant to industriarstiards.

PolyORB CORBA/GIOP O ClientjomniORB| TAO |PolyORB
[
- ’ Server
J than D d
Pcc’::;lo;l; e — Genefmde OMNIORB 1385 [33105] 1.86%
e ————— Personality specific code TAO N/A_12.986s] 2.498
‘Jonathan Jeremie sLoc TAO TP N/A |3.361s| 3.865
S
e+ PolyORB 1.78% |[3.576s5] 2.056s
10000 20000 30000 40000 50000 PolyORE TP 3346 |5.053 3.605

Fig. 4. Code reuse in PolyORB and Jonathan Fig. 5. Execution time for 10000 requests

5.2 Code reuse

Code reuse ratio provides a measure of the reusable fuatkeny components pro-
vided by middleware. Figure 4 shows a measure of the SLOGeptén comparable
applications. We computed Source Lines Of Code (SLOCSs) efgéneric core and
personalization specific code between PolyORB and Jonafibiawhich source code
is freely available. The measures have been done using Sba@€

We considered two distinct configurations: “ORB”, using CBMGIOP personal-
ities; and “RPC” comparing DSA/GIOP for PolyORB and RMI fanathan.

A raw analysis demonstrates that PolyORB NCM representgrafisiant part —
more than 66 % — of the distribution infrastructure; Jonatbare and sets of abstract
interfaces represent around 10 %. PolyORB'’s numbers demadashat the NCM pro-
vides key building blocks to implement middleware. Thisatlg reduces the need to
write large portions of code when adapting PolyORB to meetibeds of an applica-
tion. Hence, PolyORB facilitates the development of newspealities. This has been
verified when implementing AWS, MIOP and MOMA: PolyORB prdes generic ab-
stractions to build different distribution models.

5.3 Code efficiency

PolyORB novel architecture enables great configurabdignericity and interoperabil-
ity. These are interesting properties when developing ptayéng a distributed appli-
cation. However, middleware implementations should haeeptable performance as

4 from David A. Wheelerht t p: / / waw. dwheel er . cont sl occount /

well. Thus, we benchmarked PolyORB against typical and gandible middleware to
assess impact of its architecture on performances.

We compared the execution time for PolyORB configured wittRBB/GIOP per-
sonalities; and two very distin@++ CORBA ORB: omniORB and TAO. omniORB
(from AT&T Labs) is known for its strict compliance to CORBAeacifications and its
efficiency. TAO advertises its configurability and relidtyilroperties.

PolyORB relies on dynamic mechanisms. In order to have evtteneasurements
sets, we tested against other dynamic clients and sener§®RBA Dynamic Inter-
face Invocation (DIl) clients and CORBA Dynamic Skeletorenfiace (DSI) servers.
We measure the time required to execute0DD requests. Each request “echoes” an
unsigned long parameter.

Figure 5 summarizes our measurements. omniORB uses italdsédtings, TAO
and PolyORB denotes no tasking configuration of middlewB&Q Thread Pool (TP)
and PolyORB TP are full tasking configurations of middlewarsng a thread pool of
four threads.

We note that TAO DSI cannot interoperate with omniORB Dlénls, indicated by
“N/A" in the table; this is a known bug. PolyORB competes wiitlese two platforms.
In thread pool mode, PolyORB has similar performance coetgptr TAO, better per-
formance in mono tasking — nearly 30 %. omniORB is the fast#®B, performance
loss factor ranges from 1.3 to 2.4. The main explanation idignificant difference
with omniORB is its over-optimized architecture that inuet limits configurability.

5.4 Towards reliability of distribution middleware

Building reliable software is a complex task, more spedifjcahen it comes to dis-
tributed applications. Middleware tends to be used as Cab&ponents in mission
critical applications. However, the integration of COTSrgmnents raises new issues
to ensure reliability or to certify applications [Bud03]ehce, developer requires pre-
cise knowledge on component behavior and properties.

At the implementation level, PolyORB enforces determini3ime use of selected
algorithms and patterns as well as of the Ravenscar proétdi¢sm 4.3) ensure deter-
minism of the basic elements of the implementation.

Then we contemplated the formal verification of our architex Schizophrenic
middleware provides a comprehensive description of ithitgcture built around dif-
ferent well-defined services. Middleware functions areedated to specific services.
This enables separate verification of its components.

In [HPKO3], we proposed a roadmap to middleware verificatiime middleware
main loop coordinates all functions within a middleware @od/e identified this loop
as the most critical component of middleware. Then, we defama modelled it using
Petri Nets. This allows us to formally verify qualitativeoperties on the behavior of
this component such as the bounds of buffers or the appteps of critical sections.

The other middleware services and components are less epmaptities. They im-
plement well known patterns, or simply manipulate datay tthe not directly rely on
constructions that may lead to faulty execution. We planrgalgally verify them. The

5 COTS: Commercial Off-The-Shelf

combination of these different results is a first step towdodmal verification of mid-
dleware. This provides inputs to assess properties andohmove reliability.
PolyORB properties and performances make it a possiblecehoi develop dis-
tributed applications. PolyORB provides configurabilibdagenericity which does not
impede performance. Besides, PolyORB relies on strongieeging methods. The for-
mal verifications of qualitative properties ensure middleswreliability. These are first
steps to ensure the usability of PolyORB to build reliabkrithuted applications.

6 Conclusion

The diversity of application requirements leads to diffeérdistribution models, and
then middleware implementations adapted to a specific gbritaus, distributed ap-
plication engineering requires adaptable middleware t\itde range of applications.
This paper discussed about adaptable middleware desigmgfementations.

First, we identified several requirements on middlewarhitgcture: adaptability to
application needs, interoperability between heterogeseomponents, reliability.

Then, we discussed existing solutions. Configurable mwdalle allows for fine
adaptation to application needs, but is restricted to angilistribution model. Generic
middleware defines abstract interfaces that are to be itestiath to meet the specific
needs of the application; however this implies engineeoig large portion of code
for each instantiation. Interoperability between heteregpus middleware is often ad-
dressed separately. This slows down the performances woffthke system.

We introducedchizophrenic middlewasges a comprehensive solution to distributed
applications engineering. Schizophrenic middlewareesohoth configurability, gener-
icity and interoperability concerns. Schizophrenic méddhre extends the concept of
middleware personalities to permit several collocated@malities to inter-operate within
the same middleware instance. We defiapglicationpersonalities an@rotocol per-
sonalities, all bound to Beutral Core Middleware

Our implementation PolyORB, which is available under a fseéware license,
demonstrates the validity of the schizophrenic concepésdéveloped personalities for
SOAP and protocols associated to GIOP. We also developedmpeadities for CORBA,
DSA, Message Passing (MOMA) and Web (AWS) middleware types.

Finally, we analyzed PolyORB implementation. We detaitsdcompliance to in-
dustrial specifications, and discussed its interopetgbilith other middleware imple-
mentations. We discussed code reuse, and indicated hovDR&8ydesign eases the
implementation of new distribution models. PolyORB'’s bemarks show that it com-
petes with other well-known implementations, yet it offergre adaptation capabilities.
We also discussed reliability issues: PolyORB relies oigtsténgineering and design
methods that help to prove its reliability. We are curremtigdelling key elements of
middleware to formally prove their reliability in specifis@ cases. This will provide
more information on middleware reliability.

PolyORB current development focuses on stringent detésmiand real-time prop-
erties of distribution middleware, as well as the impleraéion of real-time middleware
specifications such as RT-CORBA.

References

[Bak0l] S. Baker. Middleware to middleware. Broceedings of the 3rd International Sym-
posium on Distributed Objects and Applications (DOAB¢ptember 2001.

[BDV'98] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, Emak, and D. Gan-
non. Java/RMI performance and object model interopetgbiixperiments with
Java/HPC++ distributed components.Aroceedings of Workshop on Java for High-
Performance Network Computipgages 91-100, May 1998.

[Bri01] E. Briot. XML/Ada: a full XML suite 2001.

[Bud03] T.J.Budden. Decision Point: Will Using a COTS Coment Help or Hinder Your
DO-178B Certification Effort. STSC CrossTalk, The Journal of Defense Software
Engineering November 2003.

[DB98] B. Dobbing and A. Burns. The Ravenscar tasking prdfitehigh integrity real-time
programs. IrProceedings of SigAda’9&Vashington, DC, USA, November 1998.

[DHTS98] B. Dumant, F. Horn, F. Dang Tran, and J-B. Stefawinathan: an open distributed
processing environment in java. Rfoceedings of the IFIP International Conference
on Distribut ed Systems Platforms and Open Distributed ssing 1998.

[DKM T94] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer, H.dRnert, and R. E. Tarjan.
Dynamic perfect hashing: upper and lower boun@&AM Journal on Computing
23(4):738-761, August 1994.

[GHJIV94] E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign Patterns: Elements of
Reusable Object-Oriented Softwarsddison Wesley, Massachusetts, 1994.

[HPKO3] J. Hugues, L. Pautet, and F. Kordon. Refining middlenfunctions for verification
purpose. InMonterey Workshop on Software Engineering for Embeddeti@gs
From Requirements to Implementati@hicago, IL, USA, September 2003.

[MGG96] P.Merle, C. Gransart, and J-M. Geib. CORBAWeb: Agrgmobject navigatoiCom-
puter Networks and ISDN Syster28(7-11):1269-1281, 1996.

[Mul93] S. Mullender.Distributed SystemsACM, 1993.

[Obr03] P. Obry. Ada Web Server (AWS) 1.3, 2003.

[OMGO01] OMG. Ada Language Mapping Specification, v1.©9MG, October 2001. OMG
Technical Document formal/2001-10-42.

[OMGO03] OMG. unreliable Multicast InterORB Protocol specificatio®MG, January 2003.
OMG Technical Document ptc/03-01-11.

[PQK*01] L. Pautet, T. Quinot, F. Kordon, J. Hugues, and T. Vergnetal. Polyorb, 2001.
http://1ibre.act-europe.fr.

[PTOO] Laurent Pautet and Samuel Tardieu. GLADE: a Framievior Building Large
Object-Oriented Real-Time Distributed Systems. Pioceedings of the 3rd IEEE
International Symposium on Object-Oriented Real-Timetribisted Computing
(ISORC’00) Newport Beach, California, USA, June 2000.

[QPKO1] T. Quinot, L. Pautet, and F. Kordon. Architecture &reuseable object-oriented
polymorphic middleware. IRroceedings of PDPTA'Qlas Vegas, USA, June 2001.

[Qui99] T. Quinot. CIAO: Opening the Ada 95 distributed ®rss annex to CORBA clients.
In Ada France 1999Brest, France, September 1999.

[SC97] D. Schmidt and Christ Cleeland. Applying patterndéwelop extensible and main-
tainable ORB midd lewareCommunications of the ACM, CACKIO(12), 1997.

[SSC98] A. Singhai, A. Sane, and R. Campbell. Quarterwar®fddleware. InProceedings
of ICDCS’'98 IEEE, May 1998.

[SUN99] SUN. Java Message Service (JMS), 1999.

[W3C00] Wa3C.Extensible Markup Language (XML) 12000. W3C recommandation.

[W3C03] Wa3C. Simple Object Access Protocol (SOAP) 1.2: prinjene 2003. W3C recom-
mandation.

