Generation of distributed programs in
their target execution environment

Frédéric Gilliers, Jean-Pierre Velu Fabrice Kordon
frederic.gilliers@agem com Fabri ce. Kordon@i p6. fr
j ean-pi erre. vel u@agem com Laboratoire d’'Informatique de Paris 6/SRC
SAGEM SA Université Pierre & Marie Curie
Etablissement d’Eraggny, Avenue du Gros Chéne 4, place Jussieu
95610 Eragny F-75252 Paris CEDEX 05, France

B.P. 51 - 95612 Cergy Pontoise Cedex, France

Abstract— This paper presents how we use tP, a formal- « a model on which any type of validation or verification
based, Object Oriented notation dedicated to the developnme of techniques may be applied,
distributed application. « the programs that implement this model ; in a prototyping
The language comes with a development methodology which based design, programs are generated from the model.
emphasizes the separation between the control aspect of the
application, and the computational aspect. Specificationgritten Such an approach becomes widely accepted under various

in LfP focus on the control part of the application which is 5mes As an example. MDA M | Driven Developmen
known to be a difficult issue of distributed applications. The ames. AS an example, [5] (Mode en Development)

corresponding code is then automatically generated to imeiment may be considered as a sort_ of prototy_plng aPproaCh- _Howevgr
the behavior in the target execution environment_ generated pI’OgramS mUSt Intel’aCt W|th the|r exeCUtIOI’]-eI’]VI
ronment: operating system or middleware as well as libsarie

This paper briefly presents the LfP language, how we handle providing routines for various purpose (i.e. device drier
connection between computational and control aspects. Wén¢n

describes a prototype implementation of the code generataand

the associated runtime. A distributed application is made of two orthogonal aspects

the control aspect, and the computational aspect. Thealontr
Note: the work presented in this paper is being performespect manages the global state of the application whereas t
withing the MORSE project. MORSE is a French governmef@mputational aspect covers the domain specific computtio
founded research project (RNTL) with industrial partnergomponents.

(Sagem, Aonix) and academic partners (LIP6 - Univ. P. & o)] o]
M. Curie, LaBRI - Univ. Bordeaux I). Prototyping is of particular interest for distributed appt

tions for the following reasons:
|. INTRODUCTION « They are very difficult to develop since they are very
undeterministic ; thus, some apparently minor choices
may have dramatic influences on the system behavior.

« The control aspects (the difficult part to build) do strongly
interact with both the execution environment and compu-
tational aspects, these interactions have to be carefully
studied.

The rapid advance of distributed technology has lead to sys-
tems stretching limits in terms of complexity and manageabi
ity [1]. This problem is crucial for reliable distributed stgms
which are required to have a deterministic behavior. A way
to consider this development problem is to use "prototyping
techniques".

Prototyping is defined by IEEE d%\ type of development We consider that distributed applications group together a
in which emphasis is placed on developing executables ea#ntrol part managing the application (interaction protoc
in the development process to permit early feedback aRgtween the application’s components, initializatiomiea-
analysis in support of the development procggs" However, tion, etc..) and external components that contain routtnes

this definition was variously interpreted and several types P€ appropriately invoked when the control part evaluatey th
prototyping are considered for various purpose [3]. have to be processed. Since these two aspects of a disttibute

system cannot be easily captured in one single semantics,

For some kinds of systems, prototyping can be usefulllyis necessary to separate them. Thus, the model specifies

considered as a development approach strongly supportedabiythe control aspects of the system and references ekterna

program generation techniques. This approach distingaisftomponents to be appropriately inserted in the control code
two strong components [4]: by the program generation tool.

This paper presents how we aim to provide such flexibility External components define a set of interfaces used by the
using LfP [6]: a modeling language dedicated to the proprogrammer to link the computational aspect of the appticat
totyping of distributed systems. We present how we mod# its control part where required. External data (requivgd
the separation between the control code and the executexternal components to perform their task) are handled &y th
environment (the "external routines"). We also illustrateg control part of the application using a mechanism very simil
technique using an experimentation to generate Java-RMI [@ private types defined in the Ada language [8].

code from alLfP specification. . L .
Requirements of the application concerning the control

Section Il presents the methodology developed arduiil aspgct should be tran§lated into assertio.ns or propeAges.
and the structure of the resulting applications. Sectidn [f€rtions such as “a variable never has a given value” shauld b

describes the language itself using an example: a simpte |dyritten in OCL, whereas properties which involve sequences
“if a service S is invoked, then it will awa

manager for a group of server. This example is followe®f actions such as | _ : _
through the whole paper and lets us introduce the coREPVide an answer” are written in temporal logic.

generation techniques required to automatically gendgtee The control aspect of the application is then translated
control part of the distributed application. Section IV ggats g 5 Lfp specification (step 1 on figure 1). Given that (1)
the techniques we developed to implement the methodolog¢ control aspect of the application is now unambiguously
associated toLfP focusing on three aspects: deploymeniefined and that (2) the external data are not modified outside
of the generated application, the runtime required for cogg the external components, it is possible to apply formal
generation, and the generated code structure. techniques to the resultingfP model (step 2 of figure 1).

It is therefore possible to check that this specification thee

Il. LfP, PROTOTYPING AND EXECUTION ENVIRONMENT all the application’s requirements expressed in the model.

Once the model is verified, the source code of the control

A. Application development methodology aspect is generated (step 3 of figure 1). This code is linkéd wi
the external components using external calls defined in the
P specification. Development of external components (steps

methodology for the developpement of distributed systatms.# @nd 5 of figure 1) is out of the scope of our methodology
focuses on the control aspect since this aspect is relatecfif O_f this paper. They may be implemented using various
most of the specific issues that may be encountered when Efé:_hmque_s_or come from legacy code, as long as they respect
velopping a distributed application. The components neglii their specifications.

to implement the computational aspect are not modeléd This paper focuses on the automatic code generation, formal
and are therefore called external components. verification is presented in [9], [10]. Let us now present
a more detailed structure of the generated applications. In

LfP is a language developed to support our prototypi

High lovel the following sections, we call &fP component a control
- component automatically produced fronL&P model.
Specification
/ comait::m B. General structure of &fP application
—(4)> The development of distributed applications usib§P
1 Components highly relies on the separation of the control aspect from th
/ computational aspect. This leads to the application siract
— — of figure 2. This figure outlines the communication scheme
Form:::nodel . (5) of an applications designed using our methodc_)logj/P
Generation Y components (control aspect) handle the interaction mecha-

nisms between external components (computational aspect)

(2)
Formal - —> - and manipulates them by means of function calls.

Analysis (3) In order to comply with this communication scheme, an

Code Generation external component must not :

Fig. 1. LfP methodology for distributed applications developpement R modify the current state of Bf P component;

« call a method of & fP component;

Our methodology is presented on figure 1. It starts from | directly communicate with an other external component.
a high level specification, for example written in UML. This

specification should outline the distinction between thetia Breaking one of these rules may alter the control com-
aspect of the application and the external components tipanents behavior, therefore invalidating formal verifizas
handle the computational aspect. performed on the model.

Computational
Components
Instances

LfP Class
Instances

Fig. 2. Structure of an application generated frofP

Ill. PRESENTATION OFLfP THROUGH AN EXAMPLE

In order to model the control aspects of distributed appli-

cations,LfP provides a "protocol oriented" structure.

. clients ask for a server identifier with method
get _server of classl oad_nanager,

« then the client sends its requests to the server using
methodhandl e_r equest of classserver,

« when the client does not need the server anymore, it
releases it by calling methork! ease_server of class

| oad_manager .

B. A short presentation of the correspondibfP model

Figure 4 shows theLfP architecture diagram of the
"load_manager" system. The three main UML classes of the
system are translated intof P classes. The interaction class
RPCis translated into & fP media. From now we use the word
"componentwhen no distinction needs to be done between a
class or a media.

const nbr_of_server : integer := 3 ;
srvl, srv2, srv3 : server with()
clientl, client2,client3,

load_mngr : load_manager with

i
client4,
O3

client5 : client with ()

i

« cl asses manage interface with the external components,

and handle the data required to manipulate these compo-

nents;

« nedi a provide a convenient way to relatefP classes
together using arbitrary complex protocols.

. anarchitecture diagramdescribes the application ar-
chitecture .

A. The load manager system

This section introduces our language through a simple
protocol example: a simple load_management system for a

group of servers.

load _manager

register(srv : in server)
get_server() return server
I _server(srv : in server)

server

handle_request(req : int_request)

Fig. 3. Class diagram of the load manager system

The UML class diagram of this system is provided o
figure 3. It displays four classesciient models a simple
client that sends a batch of requests to the sepsner re-
ceives the requests and handles theoad_manager provides
the reference of the less loaded server to a client; dk@€s

-- port type for componant’s interface
type simple_port is port ;

i

type client_port is port (simple_port);

-— Requests handled by the server
type t_request is opaque ;

—— return value of a request
type t_reqg val is opaque

—- request manager (external componant)

type reqg_handler is opaque
function handle_request (req :

in t_request) ;

client.itf
fifo

LOAD_MANAGER

server.mngr_itf
1 fifo

1

server.itf
1 fifo

load_manager.itf
1 fifo

Fig. 4. Architecture diagram of the load_manager system

Some elements that cannot be modeled in UML also appear
on this diagram: thei nder s model interaction points between
the classes and the media. They describe characteristics of
the buffer required for communications between components
Binders are handled inside the components thropatt s.
Components ports are references to all the binders that the
component may use to communicate.

At the binder level, every interaction between components
is a message. ALfP message contains two sections: the
discriminant contains the information needed by the media
to handle the message and send it to its destination, the data
section contains the data sent to the destination component
The structure of the discriminant for a given port is given
by its type. Two types of ports are declared in figure 4:

is an interaction class that handles communications betwes npl e_port and client_port. When a class declares a

the application’s components. This model behavior can
succintly described as follows:

benpl e_port port, it means that the class must send all its
messages through this port without a discriminant; whereas

when a class sends a message tol aent_port port, it o if srv_index is less or equal tmbr _of servers,

must provide a discriminant that contains a reference to a the only activatable method is register,

sinmpl e_port instance. On the media side, the port type is « if srv_i ndex is greater thambr _of _servers, then

only required when reading information from a port (to get get _server orrel ease_server may be executed.
the discriminant structure). 4) once the selected method is executed, the component

L _ jumps back to stat&1.
This diagram also shows the declaration of two external

types: typet _request contains a request that the client sends function handle_request (req : in t_request) return t_result

to the server, and type_result contains the results that is B B -

the server sends back to the client. Sincgesult and res : t_result
. end ;

t _request do not declare any method for external calls, it

is possible to use variable of these types as parameters for
pr methOdS. res:=handler@handle_reqg(req) ;

LfP classes are "active classes" which means that they
define an execution unit of the application (very similar to a ‘
. . . . gitf:return(res);
thread). When an instance of a class is created, it exedstes i
automata as long as it finds executable transitions. When the 6
automata comes into a state only followed by one or several
methods, it holds its execution until one of the pending méth

: Fig. 6. behavioral diagram for method register
is called from another class.

o Figure 7 displays the behavioral diagram of class server.
itf : simple_port ;

type srv._load is record The declaration part of this class shows the declaratiomof a
server_id : server ; external component type €dquest _handl er) which provides
eng‘{mber—"f—c"ems -integer ; methocdhandl e_request which executes a request and returns
type t_srv_array is array (1..nbr_of_server) of srv_load : its result. Just after this type declaration, an instanc¢hef
srv_list : t_srv_array ; external component is declared and initialized. On the con-
srv_index : integer := 1 ;
function get_server return server trary to type_st _request andt _resul t_, request __handl er
synchronous procedure release_server (server_id : in server) ; declares an interface, therefore a variable of this typexain
synchronous procedure register(server_id : in server) ; be a parameter of Bf P method.

itf : simple_port;

register [srv_index <= nbr_of_server] mingr_itf : client port;

[srv_index>nbr_of_server] [srv_index>nbr_of_server] my_rpc : rpc;]
et server release_server type request_handler is opaque
get_ function execute_req(req : in t_request);
S1 end;

handler : request_handler:=new request_handler;

Fig. 5. behavioral diagram for the load manager class function handle_request(req : in t_request);

A class behavior is modeled using a class hierarchical ﬁmy—mc i= rpe(caller => mngr_itf)
automata, such as the one of figure 5. Attributes and methods

declarations appear on the main behavioral diagram (far thi

class, the one presented in figure 5). Sub-diagrams provide a
hierarchical mean to simplify the description of the auttana

When a sub-diagram is named after a method, it represents the
execution flow of the corresponding method. The behavior of

clasd oad_nanager can be described as follows (see figure 5):

&mngr_itf [load_mngr.itf]:register(self) ;

handle_request

1) when activated the class initializes its local variables Fig. 7. behavioral diagram for claser ver
(srv_list andsrv_index) with default values spec-
ified in the declaration part, The behavioral diagram afer ver performs the following

2) then the class waits for a call toegi ster whose actions: (1) create an instance of me@lg to handle commu-

behavior is presented on figure 6 and which registerspgeations with othet f P components, then (2) wait for method
server on the load manager and increments i ndex hand| e_request.

by one,
3) onceregi st er has been executed the class reaches statd-igure 8 presents methdthndl e_request that contains
S1 which may be described as follows: a call to the external methoekecut e_request. The result

function handle_request (req : in t_request) return t_result is
res : t_result

A. Deployment of & fP specification

application. Within our methodology, deployment maps the
application behavior defined in the P model on the physical
res:=handler@execute_req(req) ; architecture. ALfP model is typically deployed over several
hosts linked by a network; every host that belongs to the
§itf:return(res); application is called a node. Deployment is expressed using
an external configuration file interpreted by the code genera
6 and allocatingLfP components and instances on the target
execution architecture.

end ;
% Deployment is a very important aspect of a distributed
&itf;

Fig. 8. behavioral diagram of methddndl e_r equest
The LfP approach provides a unified interaction scheme

between components via a limited set of operators (remote
returned by this call is then returned to the component thaitocedure call or message passing), regardless of theydeplo
invoked the method. ment criteria. This means that the way a model is deployed
does not influence its behavior. The code generator and the
runtime handle a deployment scheme provided by the user
and generate the appropriate network interactions. Toexef
the user only has to specify the nodes where static instances
of the models are instantiated.

&caller [target]:msg ;

caller : client_port ; %&target P msg
target : simple_port ; g B. TheLfP runtime

msg : message ;
Let us now present thefP runtime. We first present its
requirements, and then comment a prototype implementation

starget: msg ;

in java.
scaller:msg ; 1) The LfP runtime requirements:We define theLfP
_ _ ' runtime as the set of low-level functions required to previd
Fig. 9. behavioral diagram for cla&®C the execution environment needed by the generated code. The

runtime is a set of functions and components that handle
Media are active components dedicated to the modeling tafead management, binder implementation, naming service

communication protocols between classes. The only interaghd memory management.
tion scheme known at the media level is message passing.
Figure 9 presents the behavioral diagram of mé®@in our ~ Thread management mainly includes priority management,
example. This media waits for a message coming from an inggtantiation and termination of execution supports fanpo-
port (connected to the corresponding binder instance) apyg ¢ nents. Since.fP does not specify any specific priority man-
it into a local variablensg. Then it forwards this message toagement or specific operation on thread, most current thread
an Output port (Connected to another binder), waits for tH,ibraries should work. The goal of this section of the rurgim
return message and then forward back this return mességéather to provide a unified access to thread management in
to the sender. Let us note that the output pogr (et) is order to avoid modification of the code generator for every
a routing parameter provided by the caller. This is the wdfread management system.
to model point-to-point communication (the output port is

computed using a reference to a binder instance). Binders are the communication means fafP compo-

nents. Therefore, they also handle distribution and networ
interface. Basically, binders are buffers containing ragses.
They implement a producer / consumer model. The tricky
thing is that the read / write operations are distribute@ th
This section presents the translation lofP models t0 message sender (resp. reader) may be instantiated on at dista

programs to be deployed in the final execution environmeplyge therefore binder instances must be included in the
This is a two phases process: the user first specifies figming service.

deployment of its model, then the code generator uses both

the model and the corresponding deployment data to produc&henani ng servi ce allows to reach a component (or one
the code corresponding to the control part of the applicatioof its binders) from every part of the model. In the example
The generated code relies on a set of low-level functions tra& section Ill, classclient gets a reference to a server,
creates a common execution environment. and extracts the corresponding binder instance. Figure 10

IV. IMPLEMENTATION OF A LfP MODEL

remotely invoked by the instancesldfPRunt i ne that forward
server_id := sitf [load_mngr.itf]:get_server; component’s requests to distant hosts. This class harf#es t
é node’s components via the local instanceLbPRunt i ne.

Class Lf PBi nder implements theLfP binders services
(message queues). Its local instances are stored in thésnode
local instance ofConponent Tabl e to be retrieved by the
presents a part of clasd i ent which shows this sequenceruntime when required for message operations.
of instructions. The implementation of these operationg re
on the naming service. THef P semantic says that a variablec enerated code structure
which has the type of a component of the model or of a

binder is a reference to the corresponding instance, r&gad | ot s now present the general structure of the generated

of diSt”_bUt'on',The naming s_erwce.must also be able to maln(f:ode. The runtime provides the set of primitives required to
dynamic creation / termination of instances. implement each instruction of the model. Therefore, code ge
Menory menagenent in the runtime is mainly focused oneration must implement the automaton of every component of

the instantiation and termination dffP componentsLfP the model, translating fP instructions in the target program-
allows dynamic instantiation of component, and this instafing language, or inserting runtime calls where apropriate
tiation also instantiate the required elements for the apmpHs present an outlook of the structural aspect of the gestbrat
nent, that is: the thread or process that holds its executié®de:

and its related binders. At termination, théP component] .
itself, and all its resources must be destroyed, includigg t ¢ LfP components (classes and media) are implemented as

Fig. 10. Part of classl i ent behavioral diagram

corresponding entries in the naming service. java classes, .
_ _ - . « LfP types are implemented as java classes, each sort of
2) A prototype implementation using javilve have imple- type (enumerated type, record type etc...) has a “pattern”
mented a prototype of thefP runtime. In order to reduce to build the corresponding java classes,

its size in terms of lines of code, we use java and RMI , | fp methods are mapped to methods of the component
(Remote Method Invocation). This is currently only a proof jaya class,

of feasibility, and performance was not a concern for this , attributes of theLfP class are mapped as attributes of the

implementation. java class,
« local variable of the_fP specification are declared in the
ComponentTable «— LfPRuntime LfPComponent instruction block that implements the construction that

T declares them.

LfP classes extend the claséPd ass, media extend the
LfPBinder ServerRuntime LfPMedia LfPClass classLf PMedi a.
Fig. 11. Class diagram of the runtime public class Load Manager{

public Simple_Port itf;
private class Srv_Load {

Figure 11 shows the runtime simplified class diagram. Every Server server_id;
class (resp. media) of the model extendsd ass (resp. } Integer number of clients;
I__f PMedi a); these (_:Iass_ both ext_em_il PCorrponent which is private class T Srv Array {
linked to the runtime itself. This is mainly a way for the int first = 1;

component to access to runtime primitives. This class also ob past - mhr-ofserver;
provides the required interface for naming management. } - '

public T_Srv_Array srv_list;

ClassLf PRunti ne provides the interface required by com- public Integer srv_index;
ponents. This includes message management, naming sgrvice }
and instantiation service. This class also directly hamdle
the hosts component table (cla€snponent Tabl e) which

rovides a way to retrieve a local component from LitsP . .
P y P Type declaration also depends on théP type's visi-

reference. This class also forwards all the requests to tl:r)]?t 1t declared in the architecture diaaram h
appropriateSer ver Runti me instance. If the target node is Hity. types declare € architecture diagram such as

the local host, then the call is a direct method invocatioﬁ', mpl e_port on figure 4 will be generated as public classes in

otherwise the runtime uses the RMI protocol a separate java file. Types declared insidef® component
' such assrv_| oad will be declared as private classes inside

ClassServer Runti ne executes the forwarded requests. ithe component’s class. Figure 12 presents the declarations
is the only declared RMI class, since its methods may letassLoad Manager: The declarations of the attributes are

Fig. 12. Declaration of the attributes of classad_Manager

self-explanatory. Local types are mapped to private ctassguard, and “jump” to the corresponding label if the guard
Srv_Load implements a record type, every attribute is a field true. This “jump” means to set the value wéxt to the

of the record. Clas3_Srv_Array implements an array type, transition’s label.

which requires three field$i r st is the lowest valid value of

the index,| ast is the highest valid value of the index, and at If several transitions follow one statefP does not specify
last value is the array itself. a default evaluation order for the guards. If required, it is
possible to specify it on the model by giving priorities teeey
outgoing arc of a state.

while (true) {
switch (next) {
case initial:

request .addMethod (register) ; public T_Result handle_request (T_Request req) {

msg = runtime.getMessage (request); Request_Handler handler = new Request_Handler () ;
if (msg.method.equals ("register") { T_Result res ;
register ((Server) msg.paramters[0]); next=sl;
runtime.setnMessage (msg, this); lo?p:
} break ; while (true) {
. switch (next) {
} case Sl:
} next = T1;
break;
. S2:
Fig. 13. Structure of the generated code case next = T2;
break;
The dynamic aspect of the diagram is handled by creating case Tl:

.y . = handl . t t ;
code for the automaton states and transitions. The main oo D e ereaereanes (req)
diagram is generated in a method calted which is a default break;

case T2:

mean to implement the “main” function of a thread in java.
Code generation for methods follows the same pattern, only

return (res);

}

the java method’s name changes. Since the java language does
not implement a “goto” statement, we “emulate” it with a '
“switch” structure inside a while loop: Every state is lazbl

with a number, and theext variable contains the label of the
next state to execute. This solution remains efficient b&2au T,ansitions are relatively easy to translate since theuost

the number of states per automaton is generally quite reduggyns available in_fP often have a direct equivalent in every
since a dedicated loop is produced for every sub-diagram. gir,ctured programing language, however some constnstio

Figure 13 displays the structure of the code generated fRRECific to theL TP language are harder to implement. The
the initial state of the main diagram of figure 5. Since thi§0de for thehandl e_request method of figure 8 is displayed

state is followed by a list (here reduced to one element) 8 figure 14. This figure displays the general structure of the
method transitions, we apply the following pattern: code generated for methods and the call to the external com-

ponent fiandl er. execut e_request(req)) which has been
« for every outgoing transition whose guard is true, add theitialized on instantiation of classerver. Communication
name of the method in the list of valid methods, instructions are harder to translate and require the rentim
« send the request to the runtime, interface for message manipulation, the generated codetis n
. get the activation message and execute the correspondingsented in this paper.
method,
« send the return message with the return value.

Fig. 14. Structure of the code generated fiandl e_r equest

Final states of components main diagram (not presented
in the example of this article) mean the deallocation of

The first two items allow to build and send a requesdhe LfP component that reaches them. In java, this mainly
that will ask for all activatable method(s). The runtimelcaimeans to remove all the class instances that implement this
returns a message that contains both the name of the adtivatemponent from the naming service data structures (i.¢.: se
method and the parameters. The content of the messagéhé@r references to “null”). This removes the only referesic
directly used as parameters for the method call, since jaeathese class instances, thus allowing the garbage amilect
only uses references for object paramet&rf? i nout and to perform the effective deallocation. This work is done by a
out parameters are updated in the message. If the methodustime primitive called in the code generated for the diagr
a function, the message also stores the return value. Atiflasfinal state.
the method is a synchronous procedure or returns a value, the
message is sent back in the binder, with the method’s updated

parameters or return value V. CONCLUSION AND FUTURE WORK

The code generated for a state followed by a set of tran-The LfP language is dedicated to the prototyping of dis-
sitions is much simpler: evaluated the outgoing transiontributed applications. This language combine several eptsc

1) formal description techniques suitable for distributed?] “Java remote method invocation,” 1997, hitp://splistasoft.com/pages/
systems rmi.html.
’ . . . L 8] IS0, Information Technology — Programming Languages — Ad&O,
2) a process oriented design, suitable for distributed sy':[.-] Feb. 1995 ISO/IEC/ANSIggGSZ:lggS. g -anguag
tems, [9] F. Kordon, I. Mounier, E. Paviot-Adet, and D. Regep, “fal veri-

3) an object oriented design, suitable for the analysis of a fication of embedded distributed systems in a prototypingragch,”
in Monterey Workshop 2001: on Engineering Automation forv@uof

system (SUCh as UML)' Intensive System Integratipdune 2001.
[10] D. Regep, Y. Thierry-Mieg, and F. Kordon, “Modélisatiet vérification

We presented in this paper how we intend to use our de systémes répartis: une approche intégrée avec LffRtdneedings
language to automatically generate distributed apptoati of AFADL03 January 2003.
The LfP model describes the control part of the system. We
have shown how it can be connected to "external" components
(that do not participate in the control but contain actiomest t
have to be executed). This is a difficult part sindé is based
on a formal notation to enable formal verification.

Thus, we have elaborated a mechanism inspired from the
notion of "private types" found in the Ada programming
language. This allows the definition of variables that caly on
be transported from laf P component to another one. Methods
to be executed when the control part of the system decides can
be associated to these types.

We presented how the control part and the external compo-
nents can be merged into a coherent architecture implechente
on top of a runtime providing basic services for the executio
of a LfP model. In MDA terms, theLfP specification is
then a PIM (Platform Intependant Model). Combined with
deployment directives, it becomes a PSM (Platform Specific
Model) suitable for automatic program generation.

LfP is a foundation of the MORSEproject that explores
the design and implementation of highly reliable distrézlit
systems. MORSE focuses on the design of the asynchronous
part of such systems and aims to be used for critical appli-
cations and covers the development of the control part of the
application from a high level specification written in UML to
code generation. Thief P code generator is being written and
the general prototyping approach will be validated on reed s
projects within the context of MORSE partners.

REFERENCES

[1] N. Leveson, “Software engineering: Stretching the t8maf complexity,”
Communications of the ACMol. 40(2), pp. 129-131, 1997.

[2] C.Booth and G. Kurpis, “The new IEEE standard dictionaflectrical
and electronics terms [including abstracts of all curr&&HE standards],
5th edition,” Institute of Electrical and Electronics Engers, Tech. Rep.,
1993.

[3] F. Kordon and J. Henkel, “An overview of Rapid System Btgping
today,” to appear in Design Automation for Embedded Syste/ois 8,
no. 4, pp. 275-282, december 2003.

[4] F. Kordon and Lugi, “An Introduction to Rapid System Riyjping,”
IEEE Trans. Softw. Engvol. 28, no. 9, pp. 817-821, 2002.

[5] OMG, “Model Driven Architecture (MDA), Document number
ormsc/2001-07-01,” OMG, Tech. Rep., 2001.

[6] D. Regep and F. Kordon,LfP: A Specification Language for Rapid
Prototyping of Concurrent Systems,” froceedings of the 12th Interna-
tional Workshop on Rapid System PrototypingEE Computer Society,
2001, pp. 90-97.

lhttp://norse. lip6.fr

