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Abstract

Distribution middleware is often integrated as a COTS, ployg distribution facilities
for critical, embedded or large-scale applications. So tigrsical middleware does not
come with a complete analysis of their behavioral propertitn this paper, we present
our work on middleware modeling and the verification of ith&edoral properties; the
study is applied to our middleware architecture: PolyORBef we present the tools and
techniques deployed to actually verify the behavioral props of our model: Petri nets,
temporal logic and advanced algorithms to reduce the sitkeoftate space. Finally, we
detail some properties we verify and assess our methodology
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1 Introduction: Issues in Middleware Engineering

Distribution middleware is now widely integrated @&mponents Off-The-Shelf
(COTS) in Distributed Real-Time Embedded (DRE) systemse ptoperties of
each building block must be known to ensure its correct nattgn to such sys-
tem 4] and to ensure the correctness of the system as a whole.

In this context, the European Spatial Agency (ESA) iderttifeveral use cases
for middleware. They include ground stations interactinthwatellites as well as
fleets of collaborating satellites and drones. These agpics require multiple
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distribution mechanisms to handle variations in commuiocechannels, flexible
resource management, and ensure autonomy for long missions
In addition to distribution needs, these systems come wotifanctional re-
quirements, inherited from real-time engineering suchedigbility, availability,
dependability. Hence, properties (like determinism, tyafieveness, timeliness)
must be verified during the design process and in particttheaniddleware level.
Middleware solutions now support the requirements of madtiduted appli-
cations. They usually supports one given distribution nhoaleombination of one
or several mechanisms to enable distribution, e.g. MedBagsing (MP), Remote
Procedure Call (RPC), Distributed Object Computing (DO€Bhared Memory
(SM). Yet, they usually do not address the verification of kefpavioral properties
such as request fairness, absence of deadlock or correatrcesdimensioning.
This calls for a next-generation of middleware that addressese many chal-
lenges R0]. Middleware architecture should be versatile to meetiappbn needs.
Moreover it should follow an extensive proof-based systewireeering approach
to provide strong evidence it is correct with respect to @gibn requirements.
This paper details a joint work on middleware verificatioadeby the CS de-
partment of the ENST (middleware experts) and SRC/LIPGf{gation experts).
We first review well-known existing middleware archite&sy and show they
do not facilitate verification; then, we introduce the solpilarenic middleware ar-
chitecture as a solution to achieve verification. To verdy behavioral properties
in our middleware, we refine our middleware components, wdehthem using
Petri nets and we assemble models to build one middlewarfegooation. As the
system may be very complex, we present the algorithms we tosaddress state
space explosion and apply them to check middleware bets\pooperties. This
provides a first step towards building proof-based middiewa

2 Problem statement

In this paper, we focus on the complete characterizatiomstfildution middleware.
In this section, we present some background on middlewahatactures. We then
discuss the use of formal methods to verify behavioral pitegeeof middleware.

Formal modeling and middleware engineering are usuallysiclemed as two
different expert domains. For instance, they are consibeitber by separate teams
of the project or at separate steps in the design processffi¢ermtly reach our
objective, we propose to reconcile system modeling and lenckte engineering,
and join ENST and LIP6 efforts. The ENST has a long experieémeaiddleware
implementations, including GLADE, the only industrial ilepentations of the
Distributed System Annex of Ada 95; AdaBroker an Open So@O&RBA ORB.
The LIP6/SRC department has a long experience in the dawelopof algorithms
and tools to apply formal methods to distributed systentgstdeveloped the CPN-
AMI tool-suite to model and then analyse systems using Rets.
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2.1 Middleware for DRE systems

DRE systems require adaptable distribution models and Iewdde architectures:
Rajkumar [L9] advertised Message Passing as a solution for DRE systechpya-
posed the Real-Time Publisher/Subscriber service. TheDisibuted Systems
Annex [13,17] integrates several mechanisms (DOC, RPC, SM). RT-CORBA ex
tends CORBA’s DOC mechanisms for real-time systems andriates support for
many QoS policies41]. This leads to several tailorable middleware architexgur

For instanceconfigurable middlewaresuch as TAO 22|, let applications se-
lect specific run-time policies to support the DOC distribntmodel. It relies on
architectural and design patter® {o support a large number of policies.

Adaptive and reflective middlewaj20,3] extends middleware configurability
mechanisms to enable adaptability to specific changes ilicapipn context. This
architecture provides promising properties to meet Qo3@gimns requirements.

Generic middlewaresuch as Jonathar2€], defines abstract canonical com-
ponents and architecture, their instantiation providgsegific distribution model.
Jonathan provides a CORBA personaliafid), a Java RMI personality)éremi¢
and specialized personalities for multimedia systems.

These architectures can meet stringent requirements. hBytdnly partially
determine their properties: they usually rely on the tgstih specific scenarios
such as Boeing's Bold Stroke OFRJ. However, there is a double combinato-
rial explosion when considering middleware as a whole: theler of possible
execution scenarios for one middleware configuration amee with the interleav-
ing of threads and requests; the number of possible confignsincreases with
middleware adaptability and versatility.

Thus, we claim testing is not sufficient to assess middlewahavioral proper-
ties such asbsence of deadlockequest fairnessor correct resource dimension-
ing. We propose to use formal methods to model and then verifgyatem.

2.2 Formal methods for middleware verification

This sections discusses the choice of a modeling languatjésaformal verifica-
tion methods that are appropriate to model and then verifidreware.

There are currently two families of formal methods: proatéd verification
(such as B ]] or Z [8]) and model checking (using tools and languages such as
SPIN [11] or LUSTRE [10]). In proof-based methods, the model is described by
means of axioms, properties are theorems to be verified @sithgorem prover.

In model checking, the model is expressed using a language Which an ex-
haustive execution can be computed (this usually requireataematically based
definition). An “execution engine” produces the exhaussitate space associated
to the system as a graph where actions (atomic instructiotisel language) re-
late to states (a given possible value of the system’s cntiéxs then possible to
explore the graph to check if a property is satisfied.

These two approaches are complementary. Proof-baseddaekrallow the
analysis of infinite systems. However, the use of a theorewapiis a very difficult
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and a very technical task that is hard to automate. On theargntnodel checking
is dedicated to finite-state systems but modeling and vatidic can be done using
graphical toolkits and most steps can be automaigd |

We selectedNell-formed Petri nets (WN)p] as an input language for model
checking. WN are high-level Petri nets, in which tokens gped data holders.
This allows for a concise and parametric definition of a systehile preserving
its semantics. One main feature\WNis that they allow the automatic and efficient
construction of thesymbolic reachability grapha quotient state-space, in which
nodes are equivalence classes of states, and arcs eque/alasses of events. This
graph is built by exploiting symmetry, yielding a symboltate-space sometimes
exponentially smaller than the concrete state-space farsdhore manageable.

Recent works have automated the analysis of the symmelioeged by a sys-
tem [25], and of the symmetries allowed by a properg}, [allowing full LTL
model-checking while efficiently fighting the well-knownrobinatorial state-space
explosion problem. As we show in sectidhg and6.1, the use of these symmetry-
based reductions allows us to verify the properties of ostesy, while plain state-
space generation is unfeasible with classic techniques.

In the remainder of the paper, we present the Schizophreiddisvare archi-
tecture, and show how we reengineer it to enable the verdicatf middleware.
Then, we detail the algorithms we used and analyze our midateearchitecture.

3 The Schizophrenic Middleware Architecture

In this section, we introduce the key elements of the “sgbtizenic middleware
architecture”; and present its role in the verification dii#@&oral properties.

Middleware combines two complementary facets: (1) a fraorkvo imple-
ment distributed systems, using the host and operatingrspssources (e.g. tasks,
I/0); and (2) a set of services to build portable distribwapglications. In12], we
introduced the “schizophrenic middleware” architect@emnique architecture that
advertises these two aspects, and enforces separationadros.

In [28], we present PolyORB, our implementation of such a schireqb mid-
dleware. We assess its suitability as a middleware platfiarrsupport multiple
specifications (CORBA, Ada Distributed Systems Annex, Wgplications, Ada
Messaging Service close to Sun’s JMS) and as a COTS for industjects® .

From our experiments, we note that a reduced set of senasesficient to de-
scribe various distribution models. We identify seven steprequest processing,
each of which is defined as one fundamental service. Serargegeneric compo-
nents for which an general implementation is provided. Dmp&rs may provide
an alternate implementation. Each middleware instancedasoherent assembling
of these entities. ThgBroker component coordinates these different services, it
responsible for the correct request propagation in the lendate instance.

3 PolyORB is supported by AdaCorket( p: / /| i bre. act - eur ope. fr/ pol yorb)
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Request propagation

UBroker

Fig. 1. Request propagation in the Schizophrenic Middleveachitecture

Figure 1 illustrates how PolyORB services cooperate to transmit regeest
between two application entities, located on two separades

The clientlooks up server’s reference usingdhldressingervice (1), a dictionary-
like component. Then, it uses thendingfactory (2) to establish a connection with
the server, using one communication channels (e.g. sqQgketscol stack).

Request parameters are mapped onto a representationestitaipansmission
over network, using theepresentatiorservice (3), this is a mathematical mapping
that convert a data into a byte stream (e.g. CORBA CDR).

A protocol (4) is implemented for transmissions between the client ttwed
server nodes, through th@nsport(5) service, which establishes a communication
channel between the two nodes. Both can be reducadttonata Then the request
is sent through the network and unmarshalled by the server.

Upon the reception of a request, the middleware instanagesthat a concrete
entity is available to execute the request, usingattivationservice (6). Finally,
theexecutiorservice (7) assigns execution resources to process thestedihese
two services rely on thiactoryandresource managemedesign patterns.

Hence, services in our middleware architecturepapes and filtersthey com-
pute a value and pass it to another component. Our expesmétit PolyORB
showed they follow the same semantics, they are only addptethtch precise
specifications. They can be reduced to well-known abstmasti

The puBroker handles the coordination of these services: it atexresources
and ensures the propagation of data through middlewareid&gst is the only
component that controls the whole middleware: it maniggatritical resources
such as tasks and 1/Os or global locks. It holds middlewahatieral properties.

The Schizophrenic Middleware architecture provides a cqelmgnsive descrip-
tion of middleware. This architecture separates a set oémgeservices dedicated
to request processing from tp@roker. The latter is directly responsible for mid-
dleware behavior. Thus, we isolate the control loop of owteay, present in all
middleware instances: it is the key component to be verifrstl fi

4 puBroker: source code and formal model implementations

We identified thgquBroker as the control loop of our architecture. We now discus
its architecture and mapping to both source code and fomm@alkimentations.

5



Hucuges, THIERRY-MIEG, KORDON, PAUTET, BAARIR, AND VERGNAUD

4.1 uBroker architecture

We first propose an architecture for thigroker, and detail its components.
Several “strategies” have been defined to create and usdaewil® resources:
[18] detail different request processing policies implemdmelAO; the CARISM
project [L4] allows for the dynamic reconfiguration of communicatiocscsts. Hence,
the uBroker must be adaptable enough to support most of them,tdingkrgvides
a clear design to enable modeling and then verification.
We propose the following architecture for thBroker(figure2):

 theuBroker Core APhandles the functional parts of the interactions with other
middleware services; it provides an interface to confighee middleware in-
stance and helper routines to execute specific functiorts asienanaging 1/0.
This component interacts directly with middleware Biading Transport Exe-
cutionandAddressingservices;

 the uBroker Controllermanages the state automaton associated tpBheker.
It grants access to middleware internals (tasks, I/O andieg)eand schedules
tasks to process requests. It is responsible for the befahypart of theuBroker.
Several policies refines its behavior: tAsynchronous Event Checkipglicy
sets up the polling and read strategies to check events @olif@es; th®equest
Schedulesorts request to be processed (e.g. FIFO, EDF ordersiipatcher
selects threads that execute requests.

Behavioral

Functionnal components
components | (Middleware services
Binding Asynchronous
Evecuton ) Request Sehecier
i u u
/Engz;grr:g Core API Request Dispatcher
‘ Task management

Fig. 2. The two sides of thgBroker

puBroker entities are defined by their interface and a commgh-hevel be-
havioral contract, instances of these entities may refireeltehavior to support
different policies. This architecture has been implemenitePolyORB. It uses
well-defined entities, and demonstrates its adaptabdigupport classical policies
found in configurable middleware or defined in specificatisunsh as RT-CORBA.

The puBroker pattern proposes a comprehensive description ahitdleware
control loop, and a step towards verification of middlewagkdvioral properties.

4.2 Modeling one middleware configuration

We now describe the modeling of our architecture using Peti$s as a language
for system modeling and verification (figuBg

Step 1: we elaborate one Petri net module for each middleware coergsn
variation. Petri net transitions represent atomic acti®eri net places are either
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2. Assembling a configuration 3. Evalutating one configuratior

=

1. Models library

3

X
A for scenario
Communication
places

Fig. 3. Steps of th@Broker modeling

middleware states or resources. Common places betweenetiffmodules define
interactions between Petri nets modules, they achasnel place§24).

Step 2:for one configuration of th@Broker, some Petri net modules are se-
lected to produce the complete model. Communications plgmélined in black)
represent links to othemBroker functions or to middleware services.

Step 3:the selected modules are merged to produce a global modsimiuel
and one initial marking enable the verification of the middiee properties.

Functions can be separately verified and then combined to floe complete
Petri net model. Multiple models can be assembled from a comlibrary of
models. Thus, we can test for specific conditions (policres settings).

The initial marking of the Petri Net defines available resegr(e.g. threads,
I/0); or sets up internal counters. Its state space covepess$ible interleaving of
atomic actions: we test all possible execution orders.

We have detailed the steps from middleware requirement®RE systems,
down to the modeling of one configuration using Petri netsis Htlows us to
verify specific middleware behavioral properties on our gisd

5 Verifying properties of the pBroker

In this section, we introduce some of the expected propetiiepuBroker as well
as the formal techniques used to verify them by model-cimecki

5.1 pBroker configurations and models

In this section, we review the key parameters that chatiaeténe uBroker, and
some of the properties one might expect from such a component

The uBroker is defined by the set of policies and the resourceses.u$hese
settings are common to a large set of applications. We censide middleware
instance, in server mode, that processes all incoming stgjud/e study two con-
figurations of thauBroker: Mono-Taskingone main environment task) ahulti-
Tasking(multiple tasks, using the Leader/Followers policy ddsediin [L8]). The
latter allows parallel request processing.

We assume that middleware resources are pre-allocatedomgder a static
pool of threads; a bounded number of I/O sources and onelgratdd memory
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pool to store requests. This hypothesis is acceptable: riesponds to typical
engineering practices in the context of critical systemsr ilhplementations and
the corresponding models are controlled by three parameter

* Snaxis the upper bound of I/O Sources listening for incoming data
* TmaxiS the number of Threads available within the middleware;
* Bsizelis the size of the Buffer allocated to read data from /O sesirc

Snax andTnax define a workload profile for the middleware no@gize defines
constraints on the memory allocated by {ii&roker to process requests. These
parameters control middleware throughput and executioecmess.

We list four essential properties of our component. Theyasgnt key proper-
ties our component must verify to fulfill its role.

PO (symmetry): threads and I/O are unordered, elements asa are equivalent;
P1 (no deadlock): the system may always process incomingestsju

P2 (consistency): there is no buffer overflow;

P3 (fairness): every event on a source is detected and pextess

PO, P1, P3 are difficult to verify only through the execution of somstteases:
one has to examine all possible execution orders. This mapaaffordable or
even possible due to the many possible threads and reqoestsaving. Besides,
the adequate dimensioning of static resources to ensusgstency P2) is a strong
requirement for DRE systems, yet it is a hard problem for opestems such as
middleware. Thus, we propose to verify them by model-chegki

5.2 Analysis methods

The system we model is complex and uses different resouitsestate-space is
expected to be huge. We detail the figures in sedidn the system has a state-
space of up to 18 states for the values we considered and is thus impossible to
treat with classic methods. We therefore decided to recheeproblem by perform-
ing a symmetry analysis of the model, and using the resuliet@rate a compact
representation of the state-space of the system, suitabladdel-checking. This
symmetry analysis is fully automated, and is performed &mhegiven configura-
tion of the middleware we considered. We also take into agtcthe property to

be checked, allowing further reductions by abstractingydwehaviors that are not
observed by the property, using dynamically adapted offiyhalgorithms. This
section superficially explains how the tools work (compléscriptions of the al-
gorithms can be found ir2p,2]). Moreover, these techniques may be used through
a simple interface, that requires no knowledge of thesenats.

5.2.1 PO: Analyzing the symmetries of the model

We wish to prove propertf?0 (symmetry) ; the first step is a symmetry analysis
that explores the model’s structure to determine which tigtas present a homo-
geneous behavior. Two elememsande, of a given data type are symmetric if
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exchanginge; with e; at any point in the execution of the system does not mod-
ify its behavior. By behavior, we mean thladbm an observer’s point of viewhe
system appears to be the same.

For this analysis, we first consider the LTL point of view of action-based
observer that sees all events happening as a sequences &tightly myopic ob-
server, the actual values used to trigger the events areetdlusnly the sequences
of occurrences of actions are visible. Such a sequence lexdcaih w-word, the
alphabet of which is an occurrence of an action. The setwfords that the sys-
tem can generate using the alphabet of event occurrencaltad thelanguageof
the actionsof the system. Due to interlacement semantics, this largyuzay be
exponentially smaller than the language of the system avexlghabet that sees
operation arguments. It can be represented byatientstate-space graph, thus
exponentially smaller than the concrete state-space graph

To analyze the symmetries of a system, our algoritBB) §xamines each ac-
tion (transition) of the system to find which elements (if pityistinguishes, and
concludes that any element distinguished by at least onenasthould be distin-
guished inZ. The result of this symmetry analysis is aquivalence relatio?
that lists for each data type the symmetric values with retsfgethe language of
the actions of the system. This automatic computation essilrat any elements
considered equivalent undef are not distinguished bgny action of the system.
Z# defines a set allowable permutations or rotatidjghat can be applied to the
objects of the system without affecting the transitiontiela

We then translate high-level annotations to symbolica¥gressed ones that
useZ in a simple and readily analyzable form, the rigorous syofai/ell-Formed
nets p]. Finally we construct ajuotient reachability graph unde#?, using the
GreatSPN 7] kernel, in which nodes represent an equivalence classatésstin-
der#. Let us mention that computation of symmetries is very fastesit is a
structural propertyof the Petri net. Its complexity is thus related to the sizéhef
specification (number of places and transitions), but nthecstate space size.

Symmetry analysis of theBroker is computed on the structure of our models.
It yields an equivalence relatio® that states that all Threads (resp. Sources) are
equivalent. Therefore, we prove tH@ (symmetryjs true. Note that this property
was not true on the first versions of the model, and that tomkteve had to adapt
some modeling choices of the components ofitBeoker.

5.2.2 P1, P2: Verifying symmetric properties
The propertyP1 states that there exists no deadlock; this is a propertyoina
action-based LTL observer can see. We therefore can véridyproperty on the
guotient produced under the relatigh The quotient graph lists at mdSfayd - Trmax
permutations for each state in a compact manner, it is thpsreentially smaller
than the concrete state-space, allowing faster verificatidhe property.

To verify P2 (consistency)we check that accesses to memory pools are correct.
The placegpataslots)ic1..m represent the memory pool. Write operations insert a
token in one place from this set, read operations withdragv &ata inconsistency
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occurs when writing more than once in a slot. It is tested bwfatg property
expressed by an LTL formuld), that asserts that such a state is unreachable.

vd € pataslots G(card(d) < 1) (1)

The interesting point is that this property is directly alvsdle on the graph
produced unde#Z, as permutations of elements will not change the cardinafit
the place that is tested PiL. Therefore if we consider a node of the quotient state-
space, as all its elements are equivalent udewe can assert whether or not it
verifiescard(d) < 1 directly. An analysis of the symmetries of the propertyveso
and uses this property automatically, without user’s wrgation.

Thus, we verify there is no data corruption 8hax< Bsijze by model check-
ing for different values o5ya@ndBsjze but we notice that data-corruption occurs
otherwise. We interpret this result by the fact that modeiaatics does not allow
more thancard(o ataslots) successive write operations, and thus does not over-
flow the buffer.

5.2.3 P3: Exploitingobservedehavioral symmetries

We have seen the equivalence relation of the sysi#&mlthough permissive, can
allow verification of symmetric properties. However, to iferP3 (fairness) we
need to evaluate the LTL formula:

Vse sourcesa= {s} C MdifiedSrc,b= {s} C DataOnSrc,
G(a=-Fb)

(2)

It states that any event on a given sousosill eventually be handled. If so,
the token representing should move from the notification pladédi fi edSrc
(“the pBroker detected a pending request”) to initial plde¢ aOnSrc (“new in-
coming request”). This property cannot be observed reliaglour action-based
LTL observer, as it requires that the binding ©in the action “thepuBroker de-
tected a pending request frosh be remembered, so that we can verify that the
sames is eventually seen moving toat aOnSr c. However, thanks to symmetry,
if ds € sourcessuch thatP3 holds true, as we know all sources to be equivalent,
we will have proved the propertys € sources This avoids redundant verification
for each source, although this would also be possible asuh®ar of sources is
supposed finite.

We therefore choose a sousthat we individualize, by constructing a quotient
graph under more restrictive relatioff such thas cannot be permuted with other
sources. Thus our observer can now see events relatgagtdifferent from events
relating to other sources. However, the cost of distingagkven a single source
is up to a factorial increasedrd(sourceg!) in the state-space size. Thus even if
the system is structurally symmetric, when the formula is+&s in this case- its
evaluation generates again (though with a delay) the stzee explosion problem.
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Thus, the quotient reachability graph suffers from a majoitation: it does
not tacklepartially symmetric systenw partially symmetric propertiesHowever
recent advances have shown that these partial symmetridseoaxploited in LTL
verification, through the Symbolic Synchronized Produ@RpmethodZ]. The
basic intuition is to use an observer capable@dming in(i.e. by using a refined
Z') whenever there is a potential problem, amdming outi.e. by allowing more
permutations iZ’) when a “blurred” vision is enough to verify the property.

For instance, the property may distinguish objects onlpants of an execu-
tion run, e.g. P3. Sources can be permuted when there are no requests pending
We need to distinguish the soursenly when the placé&bdi fi edSr ¢ contains a
request from a source This partial temporal asymmetry can be captured by work-
ing with the Blchi automaton that represents the LTL propgt?]. To perform
model-checking, we compute the intersection of the languagognized by the
negationof a property with the language of the system. This operasicomputed
by thesynchronized produdif the state-space and the automata of the formula. It
is thus usually of complexity polynomial over the producttloé sizes of the au-
tomaton of the LTL formula, and of the state-space itselfwieleer, we construct
our symmetry-aware Symbolic Synchronized Product on theflg we adapt the
relation#’ (our zoom setting) under which we build the successors oéte sto
the arc of the LTL automaton with which it is being synchrauz

Consider the automata corresponding to the nega-
tion of P3 represented figurd. An w-word (or se- @
guence of events) recognized by this automaton is com- -
posed of a finite sequence of events (we don't C&\-E?g_ 4 Autamata of the
which, synchronizing with the arc true), followed b¥1egation of propert3
an event such thaA —b becomes true after the event,
and then—b always remain true (accepting statg.

Such a sequence contradi®8, thus producing a counter-example. In the SSP
construction, while synchronizing with the arc "true", reymmetry is introduced
thus all model objects are equivalent, we can zoom out; byhahsonization with
the arc "a —b" forces to individualize the source "s" (zoom in) to allowarect
symbolic verification.

In the current case, &3 holds true, the sequences of the synchronized product
that match &/ —b” but not “—b always true” are eventually garbage collected. The
final size of the SSP proving the validity B8 is therefore no more than the size of
the quotient graph unde® allowing all permutations, as all actions in the SSP end
up synchronizing with the arcue.

The SSP is a powerful technique, also able to tackle partsgiinmetric sys-
tems, in which objects behave asymmetrically only in latedi parts of the model.
Usually, as the action-based symmetry analysis is globake local asymmetries
will yield a restrictive relation, and the graph built unde¥ may be as large as
the concrete state-space. A typically encountered casstitbdted systems that
present an initialization phase in which privileged irtias play a different role,
but then all participants behave like symmetrical peergdhe system is running.
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Fig. 5. pBroker’s state space and quotientFig. 6. Number of nodes examined to eval-
reachability graph foBynax= 4 andBgi;e= 5.  uateP3 whenTha= 2 andBgjze— 4.

SSP addresses this problem (by zooming in just when runhiagnitialization),
but as theuBroker is (by design) fully symmetric, this particular retion was not
used for our verification. We plan to use this capability irttier works, for more
advanced and complex configurations.

6 \Verification results and performances

In this section, we detail figures and performance of theication of theuBroker.

6.1 Modeling and analysing the pBroker

TheMono-Taskingnodel has 47 places, 38 transitions and 134 aviegti-Tasking
model is twice as large. Number of tasks and I/Os has no effethe size of the
model (it is coded as types for Petri net tokens), the sizeebtiffer has an impact
on the number of places and transitions.

Figure5 summarizes the size of the state spaceBfpt— 5 andSya= 4. Petri
Net models have an average size, yet the state space istagmotes the complex-
ity of the system. Its size increases exponentially Withx andSyax. We also note
that the symbolic reachability graph is smaller by seveoalgrs of ten, and that
this ration increases witfimax. Thus, computations can be completed within ac-
ceptable delays on usual workstations, in less than 10 Houtise biggest models,
on 2.6GHz Pentium-4 computers with 512MB of memory runnidg A _inux.

From these different figures, we claim that the analysis &y®BB could not
have been performed without the use of these advanced muelekiog techniques
because of intrinsic memory limitations of typical work&tas. This is depicted in
figure5. It clearly shows an exponential ratio between the congtetie space and
the quotient reachability graph. As an illustration, evendommon middleware
configurations (7 threads and 4 I/O sources) the systemmeeabout 18" states,
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but we could compute and evaluate its properties on a quatechability graph
on a computer having 512MB of memory without swapping. We alsserve that
the quotient graph evolution decreases. As an example, &roon5 threads, the
guotient graph increases by a factor of 80% and from 5 to 6, tagtar of 57%.
At a given stage, it should reach an asymptote (e.g. whemgahdiw threads does
not impact on the system symbolic complexity at all). Thisfiparticular interest
since the state space evolution remains exponential.

The SSP technique brings further reductions as illustiaydayure6, that com-
pares it to the global symmetry approach. It shows how the fyam the reduc-
tion increases as the parameters increase. It is equivaléné global symmetry
approach for one source (no symmetry to exploit), then sféepolynomial size
reduction oveiSyax. No value is provided whe§,ax reaches 5Bz is 4 and the
property is not verified as we have shown in the previous @ecthus the the on-
the-fly counter-example production algorithm interrupggesspace examination.

We verified two configurations: we tested LTL formulae repreisg expected
properties, we extracted scenarios that help dimensiamsgurces. Our model-
checking tools overcome the complexity of jl8roker model. The verified prop-
erties provide strong evidence that our architecture isectr

6.2 Assessment of our verification tools

The tools we used have a significant role to achieve verifinatOur models were
created using CPN-AMI15], a Petri net CASE environment that integrates struc-
tural analysis tools and model checkers. We then analysetgpé symmetries
[25 and compute the reduced state space using the GreatgRob[-suite and
extensions for SSP. Finally for LTL model-checking, we usieel model check-
ing library Spot [L6], in conjunction with GreatSPN. All these tools have drsser
available that make them plug-ins, homogeneously acdedsilon CPN-AMI, and
hiding the complexity of their interactions from the enceusCPN-AMI and SPOT
are developed in LIP6/SRC. GreatSPN is developed at theridipgnto di Infor-
matica at the University of Torino. The LTL capabilities oféatSPN and SSP
computation are the result of a cooperation between PadiFanno.

An important aspect of the verification process is that bbthdlobal struc-
tural analysis of the system and the partial symmetry arsalysed in SSP were
computed wholly automatically, thanks to our recentlyodirced extensions to the
GreatSPN kernel 25,2]. As we tested our properties over a wide range of con-
figurations and parameter values, symmetry analysis "bg'haould have been
unfeasible, and less reliable as it would have required Inuntarvention.

Our symmetry-aware algorithms help us to address the spatee explosion.
The reduced state-space is smaller than the ones produdgplitsi algorithms by
a power of ten. This difference increases with the parare&gf, Tmax Bsize This
demonstrates that our tools make it possible to verify cemplystems. The use
of formal verification techniques on thuBroker allowed to correct some bugs, and
gives us a much higher level of confidence in the architeaitifRolyORB.
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7 Conclusion

In this paper, we focused on middleware architectures amddthification of their
behavioral properties. We outlined current trends in medaire engineering: mul-
tiple architectures exist to support the requirements oERdgstems; yet, verifi-
cation is seldom contemplated. Indeed, verifying a digted infrastructure is a
complex task as long as middleware development does nafratevery early in
the design process both distribution functions and vetiboaequirements.

We aim at providing a proof-based middleware. We presen$tigézophrenic
Middleware Architecture, and detailed steps to verify ite Yhose Petri nets as a
modeling language, and LTL to express and then verify itp@ries.

The schizophrenic architecture emphasizes on the semparaticoncerns in
middleware: a set of fundamental services covers middievitarctional compo-
nents, a Middleware Main Loop coordinates them. Servicesbmaadapted to
support configurability and genericity requirements. tlaws schizophrenic mid-
dleware PolyORB is a good candidate to build proof-basedilevdare.

We identified the key component that controls the whole neiddre behavior
and refined it to define thgBroker pattern. This adaptable component proposes a
complete definition of a middleware main control loop.

We detailed the steps to model and then verify it using Petis,ra complete
theoretical framework to assess properties of controkesystsuch as thgBroker.
Then, we discussed the verification of several configuratajrihepBroker.

We introduced tools and algorithms to achieve verificatidime state-space
explosion is a typical problems when modeling system wittni Rets. We present
advanced techniques used to overcome this problem. Thas@dees allows the
testing of LTL formulas on reduced state space: the quositte space. It fully
exploits global and local symmetries of the model. Hencecadd assessed our
model is fair for incoming requests, without deadlock; weéaded how we can
check that resources are correctly dimensioned. We natéhihaatio between the
guotient graph and the complete state space is exponghgaitate space evolution
remains exponential since the quotient graph tends to an@sye. This analysis
could have never been performed using classical model eigetédchniques.

Thus, we achieved the complete verification of key middlevieehavioral prop-
erties. this is a first step towards the construction of afpbased middleware. To
reach this goal, we had to improve the schizophrenic arctuite in order to address
both distribution functions and behavioral verificatioqueements.

Besides, this analysis of middleware properties providease study for the
use of formal methods to verify a complex system. We disalgszapplication of
advanced techniques to overcome combinatorial explosamtshow to use at best
system information to optimize the verification process.

Later work will consider two main directions. The first onetasapply veri-
fication to more complex configurations (more tasks, morepdernpolicies); but
complete applications involving client and server nodeke $econd direction is
to increase the link between models and implementationsegiBroker. We will
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investigate ways to deduce code patterns from our verifisddbspecifications to
directly produce source code for one middleware configomati his will increase
confidence in middleware as a COTS to be integrated in drajgplications.
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