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Abstract

Distribution middleware is often integrated as a COTS, providing distribution facilities
for critical, embedded or large-scale applications. So far, typical middleware does not
come with a complete analysis of their behavioral properties. In this paper, we present
our work on middleware modeling and the verification of its behavioral properties; the
study is applied to our middleware architecture: PolyORB. Then we present the tools and
techniques deployed to actually verify the behavioral properties of our model: Petri nets,
temporal logic and advanced algorithms to reduce the size ofthe state space. Finally, we
detail some properties we verify and assess our methodology.
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1 Introduction: Issues in Middleware Engineering

Distribution middleware is now widely integrated asComponents Off-The-Shelf
(COTS) in Distributed Real-Time Embedded (DRE) systems. The properties of
each building block must be known to ensure its correct integration to such sys-
tem [4] and to ensure the correctness of the system as a whole.

In this context, the European Spatial Agency (ESA) identified several use cases
for middleware. They include ground stations interacting with satellites as well as
fleets of collaborating satellites and drones. These applications require multiple
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distribution mechanisms to handle variations in communication channels, flexible
resource management, and ensure autonomy for long missions.

In addition to distribution needs, these systems come with non-functional re-
quirements, inherited from real-time engineering such as reliability, availability,
dependability. Hence, properties (like determinism, safety, liveness, timeliness)
must be verified during the design process and in particular at the middleware level.

Middleware solutions now support the requirements of most distributed appli-
cations. They usually supports one given distribution model: a combination of one
or several mechanisms to enable distribution, e.g. MessagePassing (MP), Remote
Procedure Call (RPC), Distributed Object Computing (DOC) or Shared Memory
(SM). Yet, they usually do not address the verification of keybehavioral properties
such as request fairness, absence of deadlock or correct resource dimensioning.

This calls for a next-generation of middleware that addresses these many chal-
lenges [20]. Middleware architecture should be versatile to meet application needs.
Moreover it should follow an extensive proof-based system engineering approach
to provide strong evidence it is correct with respect to application requirements.

This paper details a joint work on middleware verification lead by the CS de-
partment of the ENST (middleware experts) and SRC/LIP6 (verification experts).

We first review well-known existing middleware architectures, and show they
do not facilitate verification; then, we introduce the schizophrenic middleware ar-
chitecture as a solution to achieve verification. To verify key behavioral properties
in our middleware, we refine our middleware components, we model them using
Petri nets and we assemble models to build one middleware configuration. As the
system may be very complex, we present the algorithms we usedto address state
space explosion and apply them to check middleware behavioral properties. This
provides a first step towards building proof-based middleware.

2 Problem statement

In this paper, we focus on the complete characterization of distribution middleware.
In this section, we present some background on middleware architectures. We then
discuss the use of formal methods to verify behavioral properties of middleware.

Formal modeling and middleware engineering are usually considered as two
different expert domains. For instance, they are considered either by separate teams
of the project or at separate steps in the design process. To efficiently reach our
objective, we propose to reconcile system modeling and middleware engineering,
and join ENST and LIP6 efforts. The ENST has a long experiencein middleware
implementations, including GLADE, the only industrial implementations of the
Distributed System Annex of Ada 95; AdaBroker an Open SourceCORBA ORB.
The LIP6/SRC department has a long experience in the development of algorithms
and tools to apply formal methods to distributed systems, ithas developed the CPN-
AMI tool-suite to model and then analyse systems using Petrinets.
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2.1 Middleware for DRE systems

DRE systems require adaptable distribution models and middleware architectures:
Rajkumar [19] advertised Message Passing as a solution for DRE systems, and pro-
posed the Real-Time Publisher/Subscriber service. The AdaDistributed Systems
Annex [13,17] integrates several mechanisms (DOC, RPC, SM). RT-CORBA ex-
tends CORBA’s DOC mechanisms for real-time systems and integrates support for
many QoS policies [21]. This leads to several tailorable middleware architectures.

For instance,configurable middleware, such as TAO [22], let applications se-
lect specific run-time policies to support the DOC distribution model. It relies on
architectural and design patterns [9] to support a large number of policies.

Adaptive and reflective middleware[20,3] extends middleware configurability
mechanisms to enable adaptability to specific changes in application context. This
architecture provides promising properties to meet QoS applications requirements.

Generic middleware, such as Jonathan [26], defines abstract canonical com-
ponents and architecture, their instantiation provides a specific distribution model.
Jonathan provides a CORBA personality (David), a Java RMI personality (Jeremie)
and specialized personalities for multimedia systems.

These architectures can meet stringent requirements. But they only partially
determine their properties: they usually rely on the testing of specific scenarios
such as Boeing’s Bold Stroke OFP [23]. However, there is a double combinato-
rial explosion when considering middleware as a whole: the number of possible
execution scenarios for one middleware configuration increases with the interleav-
ing of threads and requests; the number of possible configurations increases with
middleware adaptability and versatility.

Thus, we claim testing is not sufficient to assess middlewarebehavioral proper-
ties such asabsence of deadlocks, request fairness, or correct resource dimension-
ing. We propose to use formal methods to model and then verify oursystem.

2.2 Formal methods for middleware verification

This sections discusses the choice of a modeling language and its formal verifica-
tion methods that are appropriate to model and then verify middleware.

There are currently two families of formal methods: proof-based verification
(such as B [1] or Z [8]) and model checking (using tools and languages such as
SPIN [11] or LUSTRE [10]). In proof-based methods, the model is described by
means of axioms, properties are theorems to be verified usinga theorem prover.
In model checking, the model is expressed using a language from which an ex-
haustive execution can be computed (this usually requires amathematically based
definition). An “execution engine” produces the exhaustivestate space associated
to the system as a graph where actions (atomic instructions in the language) re-
late to states (a given possible value of the system’s context). It is then possible to
explore the graph to check if a property is satisfied.

These two approaches are complementary. Proof-based techniques allow the
analysis of infinite systems. However, the use of a theorem prover is a very difficult
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and a very technical task that is hard to automate. On the contrary, model checking
is dedicated to finite-state systems but modeling and verification can be done using
graphical toolkits and most steps can be automated [6].

We selectedWell-formed Petri nets (WN)[5] as an input language for model
checking. WN are high-level Petri nets, in which tokens are typed data holders.
This allows for a concise and parametric definition of a system, while preserving
its semantics. One main feature ofWNis that they allow the automatic and efficient
construction of thesymbolic reachability graph: a quotient state-space, in which
nodes are equivalence classes of states, and arcs equivalence classes of events. This
graph is built by exploiting symmetry, yielding a symbolic state-space sometimes
exponentially smaller than the concrete state-space, and thus more manageable.

Recent works have automated the analysis of the symmetries allowed by a sys-
tem [25], and of the symmetries allowed by a property [2], allowing full LTL
model-checking while efficiently fighting the well-known combinatorial state-space
explosion problem. As we show in sections5.2and6.1, the use of these symmetry-
based reductions allows us to verify the properties of our system, while plain state-
space generation is unfeasible with classic techniques.

In the remainder of the paper, we present the Schizophrenic Middleware archi-
tecture, and show how we reengineer it to enable the verification of middleware.
Then, we detail the algorithms we used and analyze our middleware architecture.

3 The Schizophrenic Middleware Architecture

In this section, we introduce the key elements of the “schizophrenic middleware
architecture”; and present its role in the verification of behavioral properties.

Middleware combines two complementary facets: (1) a framework to imple-
ment distributed systems, using the host and operating system resources (e.g. tasks,
I/O); and (2) a set of services to build portable distributedapplications. In [12], we
introduced the “schizophrenic middleware” architecture:a unique architecture that
advertises these two aspects, and enforces separation of concerns.

In [28], we present PolyORB, our implementation of such a schizophrenic mid-
dleware. We assess its suitability as a middleware platformto support multiple
specifications (CORBA, Ada Distributed Systems Annex, Web Applications, Ada
Messaging Service close to Sun’s JMS) and as a COTS for industry projects3 .

From our experiments, we note that a reduced set of services is sufficient to de-
scribe various distribution models. We identify seven steps in request processing,
each of which is defined as one fundamental service. Servicesare generic compo-
nents for which an general implementation is provided. Developers may provide
an alternate implementation. Each middleware instance is one coherent assembling
of these entities. TheµBroker component coordinates these different services, itis
responsible for the correct request propagation in the middleware instance.

3 PolyORB is supported by AdaCore (http://libre.act-europe.fr/polyorb)
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Fig. 1. Request propagation in the Schizophrenic Middleware architecture

Figure1 illustrates how PolyORB services cooperate to transmit onerequest
between two application entities, located on two separate nodes.

The client looks up server’s reference using theaddressingservice (1), a dictionary-
like component. Then, it uses thebindingfactory (2) to establish a connection with
the server, using one communication channels (e.g. sockets, protocol stack).

Request parameters are mapped onto a representation suitable for transmission
over network, using therepresentationservice (3), this is a mathematical mapping
that convert a data into a byte stream (e.g. CORBA CDR).

A protocol (4) is implemented for transmissions between the client andthe
server nodes, through thetransport(5) service, which establishes a communication
channel between the two nodes. Both can be reduced toautomata. Then the request
is sent through the network and unmarshalled by the server.

Upon the reception of a request, the middleware instance ensures that a concrete
entity is available to execute the request, using theactivationservice (6). Finally,
theexecutionservice (7) assigns execution resources to process the request. These
two services rely on thefactoryandresource managementdesign patterns.

Hence, services in our middleware architecture arepipes and filters: they com-
pute a value and pass it to another component. Our experiments with PolyORB
showed they follow the same semantics, they are only adaptedto match precise
specifications. They can be reduced to well-known abstractions.

TheµBroker handles the coordination of these services: it allocates resources
and ensures the propagation of data through middleware. Besides, it is the only
component that controls the whole middleware: it manipulates critical resources
such as tasks and I/Os or global locks. It holds middleware behavioral properties.

The Schizophrenic Middleware architecture provides a comprehensive descrip-
tion of middleware. This architecture separates a set of generic services dedicated
to request processing from theµBroker. The latter is directly responsible for mid-
dleware behavior. Thus, we isolate the control loop of our system, present in all
middleware instances: it is the key component to be verified first.

4 µBroker: source code and formal model implementations

We identified theµBroker as the control loop of our architecture. We now discuss
its architecture and mapping to both source code and formal implementations.
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4.1 µBroker architecture

We first propose an architecture for theµBroker, and detail its components.
Several “strategies” have been defined to create and use middleware resources:

[18] detail different request processing policies implemented in TAO; the CARISM
project [14] allows for the dynamic reconfiguration of communication stacks. Hence,
theµBroker must be adaptable enough to support most of them, and still provides
a clear design to enable modeling and then verification.

We propose the following architecture for theµBroker(figure2):

• theµBroker Core APIhandles the functional parts of the interactions with other
middleware services; it provides an interface to configure the middleware in-
stance and helper routines to execute specific functions such as managing I/O.
This component interacts directly with middleware theBinding, Transport, Exe-
cutionandAddressingservices;

• theµBroker Controllermanages the state automaton associated to theµBroker.
It grants access to middleware internals (tasks, I/O and queues) and schedules
tasks to process requests. It is responsible for the behavioral part of theµBroker.
Several policies refines its behavior: theAsynchronous Event Checkingpolicy
sets up the polling and read strategies to check events on I/Osources; theRequest
Schedulersorts request to be processed (e.g. FIFO, EDF orders), theDispatcher
selects threads that execute requests.

µBroker
Controller

µBroker policiesMiddleware services

µBroker

Core API

Functionnal 
Behavioral 

Binding
Transport
Execution
Addressing

Asynchronous 
  Event Checking
Request Scheduler
Request Dispatcher
Task management

components
components

Fig. 2. The two sides of theµBroker

µBroker entities are defined by their interface and a common high-level be-
havioral contract, instances of these entities may refine this behavior to support
different policies. This architecture has been implemented in PolyORB. It uses
well-defined entities, and demonstrates its adaptability to support classical policies
found in configurable middleware or defined in specificationssuch as RT-CORBA.

TheµBroker pattern proposes a comprehensive description of themiddleware
control loop, and a step towards verification of middleware behavioral properties.

4.2 Modeling one middleware configuration

We now describe the modeling of our architecture using Petrinets as a language
for system modeling and verification (figure3).

Step 1: we elaborate one Petri net module for each middleware components
variation. Petri net transitions represent atomic actions; Petri net places are either
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3. Evalutating one configuration

Communication 
places

Initial Marking
for scenario

1. Models library

2. Assembling a configuration

Fig. 3. Steps of theµBroker modeling

middleware states or resources. Common places between different modules define
interactions between Petri nets modules, they act aschannel places[24].

Step 2: for one configuration of theµBroker, some Petri net modules are se-
lected to produce the complete model. Communications places (outlined in black)
represent links to otherµBroker functions or to middleware services.

Step 3:the selected modules are merged to produce a global model. This model
and one initial marking enable the verification of the middleware properties.

Functions can be separately verified and then combined to form the complete
Petri net model. Multiple models can be assembled from a common library of
models. Thus, we can test for specific conditions (policies and settings).

The initial marking of the Petri Net defines available resources (e.g. threads,
I/O); or sets up internal counters. Its state space covers all possible interleaving of
atomic actions: we test all possible execution orders.

We have detailed the steps from middleware requirements forDRE systems,
down to the modeling of one configuration using Petri nets. This allows us to
verify specific middleware behavioral properties on our models.

5 Verifying properties of the µBroker

In this section, we introduce some of the expected properties theµBroker as well
as the formal techniques used to verify them by model-checking.

5.1 µBroker configurations and models

In this section, we review the key parameters that characterize theµBroker, and
some of the properties one might expect from such a component.

TheµBroker is defined by the set of policies and the resources it uses. These
settings are common to a large set of applications. We consider one middleware
instance, in server mode, that processes all incoming requests. We study two con-
figurations of theµBroker: Mono-Tasking(one main environment task) andMulti-
Tasking(multiple tasks, using the Leader/Followers policy described in [18]). The
latter allows parallel request processing.

We assume that middleware resources are pre-allocated: we consider a static
pool of threads; a bounded number of I/O sources and one preallocated memory
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pool to store requests. This hypothesis is acceptable: it corresponds to typical
engineering practices in the context of critical systems. Our implementations and
the corresponding models are controlled by three parameters:

• Smax is the upper bound of I/O Sources listening for incoming data;
• Tmax is the number of Threads available within the middleware;
• Bsize is the size of the Buffer allocated to read data from I/O sources.

Smax andTmax define a workload profile for the middleware node,Bsizedefines
constraints on the memory allocated by theµBroker to process requests. These
parameters control middleware throughput and execution correctness.

We list four essential properties of our component. They represent key proper-
ties our component must verify to fulfill its role.

• P0 (symmetry): threads and I/O are unordered, elements in a class are equivalent;
• P1 (no deadlock): the system may always process incoming requests;
• P2 (consistency): there is no buffer overflow;
• P3 (fairness): every event on a source is detected and processed.

P0, P1, P3 are difficult to verify only through the execution of some test cases:
one has to examine all possible execution orders. This may not be affordable or
even possible due to the many possible threads and requests interleaving. Besides,
the adequate dimensioning of static resources to ensure consistency (P2) is a strong
requirement for DRE systems, yet it is a hard problem for opensystems such as
middleware. Thus, we propose to verify them by model-checking.

5.2 Analysis methods

The system we model is complex and uses different resources,its state-space is
expected to be huge. We detail the figures in section6.1: the system has a state-
space of up to 1011 states for the values we considered and is thus impossible to
treat with classic methods. We therefore decided to reduce the problem by perform-
ing a symmetry analysis of the model, and using the results togenerate a compact
representation of the state-space of the system, suitable for model-checking. This
symmetry analysis is fully automated, and is performed for each given configura-
tion of the middleware we considered. We also take into account the property to
be checked, allowing further reductions by abstracting away behaviors that are not
observed by the property, using dynamically adapted on-the-fly algorithms. This
section superficially explains how the tools work (completedescriptions of the al-
gorithms can be found in [25,2]). Moreover, these techniques may be used through
a simple interface, that requires no knowledge of these internals.

5.2.1 P0: Analyzing the symmetries of the model
We wish to prove propertyP0 (symmetry) ; the first step is a symmetry analysis
that explores the model’s structure to determine which datatypes present a homo-
geneous behavior. Two elementse1 ande2 of a given data type are symmetric if
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exchanginge1 with e2 at any point in the execution of the system does not mod-
ify its behavior. By behavior, we mean thatfrom an observer’s point of view, the
system appears to be the same.

For this analysis, we first consider the LTL point of view of anaction-based
observer that sees all events happening as a sequence. To this slightly myopic ob-
server, the actual values used to trigger the events are blurred, only the sequences
of occurrences of actions are visible. Such a sequence is called anω-word, the
alphabet of which is an occurrence of an action. The set ofω-words that the sys-
tem can generate using the alphabet of event occurrences is called thelanguageof
the actionsof the system. Due to interlacement semantics, this language may be
exponentially smaller than the language of the system over an alphabet that sees
operation arguments. It can be represented by aquotientstate-space graph, thus
exponentially smaller than the concrete state-space graph.

To analyze the symmetries of a system, our algorithm [25] examines each ac-
tion (transition) of the system to find which elements (if any) it distinguishes, and
concludes that any element distinguished by at least one action should be distin-
guished inR. The result of this symmetry analysis is anequivalence relationR
that lists for each data type the symmetric values with respect to the language of
the actions of the system. This automatic computation ensures that any elements
considered equivalent underR are not distinguished byanyaction of the system.
R defines a set allowable permutations or rotations [5] that can be applied to the
objects of the system without affecting the transition relation.

We then translate high-level annotations to symbolically expressed ones that
useR in a simple and readily analyzable form, the rigorous syntaxof Well-Formed
nets [5]. Finally we construct aquotient reachability graph underR, using the
GreatSPN [7] kernel, in which nodes represent an equivalence class of states un-
der R. Let us mention that computation of symmetries is very fast since it is a
structural propertyof the Petri net. Its complexity is thus related to the size ofthe
specification (number of places and transitions), but not tothe state space size.

Symmetry analysis of theµBroker is computed on the structure of our models.
It yields an equivalence relationR that states that all Threads (resp. Sources) are
equivalent. Therefore, we prove thatP0 (symmetry)is true. Note that this property
was not true on the first versions of the model, and that to obtain it we had to adapt
some modeling choices of the components of theµBroker.

5.2.2 P1, P2: Verifying symmetric properties
The propertyP1 states that there exists no deadlock; this is a property that our
action-based LTL observer can see. We therefore can verify this property on the
quotient produced under the relationR. The quotient graph lists at mostSmax!·Tmax!
permutations for each state in a compact manner, it is thus exponentially smaller
than the concrete state-space, allowing faster verification of the property.

To verify P2 (consistency), we check that accesses to memory pools are correct.
The places(D ataS lotsi)i∈1..M represent the memory pool. Write operations insert a
token in one place from this set, read operations withdraw one. Data inconsistency
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occurs when writing more than once in a slot. It is tested by a safety property
expressed by an LTL formula (1), that asserts that such a state is unreachable.

∀d ∈ D ataS lots,G(card(d)≤ 1) (1)

The interesting point is that this property is directly observable on the graph
produced underR, as permutations of elements will not change the cardinality of
the place that is tested inP1. Therefore if we consider a node of the quotient state-
space, as all its elements are equivalent underR, we can assert whether or not it
verifiescard(d)≤ 1 directly. An analysis of the symmetries of the property proves
and uses this property automatically, without user’s intervention.

Thus, we verify there is no data corruption forSmax≤ Bsize, by model check-
ing for different values ofSmaxandBsize, but we notice that data-corruption occurs
otherwise. We interpret this result by the fact that model semantics does not allow
more thancard(D ataS lots) successive write operations, and thus does not over-
flow the buffer.

5.2.3 P3: Exploitingobservedbehavioral symmetries
We have seen the equivalence relation of the systemR, although permissive, can
allow verification of symmetric properties. However, to verify P3 (fairness), we
need to evaluate the LTL formula:







∀s∈ S ources,a= {s} ⊆ ModifiedSrc,b = {s} ⊆ DataOnSrc,

G(a⇒ Fb)
(2)

It states that any event on a given sources will eventually be handled. If so,
the token representings should move from the notification placeModifiedSrc
(“the µBroker detected a pending request”) to initial placeDataOnSrc (“new in-
coming request”). This property cannot be observed reliably by our action-based
LTL observer, as it requires that the binding ofs in the action “theµBroker de-
tected a pending request froms” be remembered, so that we can verify that the
sames is eventually seen moving toDataOnSrc. However, thanks to symmetry,
if ∃s∈ S ourcessuch thatP3 holds true, as we know all sources to be equivalent,
we will have proved the property∀s∈ S ources. This avoids redundant verification
for each source, although this would also be possible as the number of sources is
supposed finite.

We therefore choose a sources that we individualize, by constructing a quotient
graph under more restrictive relationR ′ such thats cannot be permuted with other
sources. Thus our observer can now see events relating tosas different from events
relating to other sources. However, the cost of distinguishing even a single source
is up to a factorial increase (card(S ources)!) in the state-space size. Thus even if
the system is structurally symmetric, when the formula is not –as in this case– its
evaluation generates again (though with a delay) the state-space explosion problem.
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Thus, the quotient reachability graph suffers from a major limitation: it does
not tacklepartially symmetric systemsor partially symmetric properties. However
recent advances have shown that these partial symmetries can be exploited in LTL
verification, through the Symbolic Synchronized Product (SSP) method [2]. The
basic intuition is to use an observer capable ofzooming in(i.e. by using a refined
R ′) whenever there is a potential problem, andzooming out(i.e. by allowing more
permutations inR ′) when a “blurred” vision is enough to verify the property.

For instance, the property may distinguish objects only inparts of an execu-
tion run, e.g. P3. Sources can be permuted when there are no requests pending.
We need to distinguish the sources only when the placeModifiedSrc contains a
request from a sources. This partial temporal asymmetry can be captured by work-
ing with the Büchi automaton that represents the LTL property [27]. To perform
model-checking, we compute the intersection of the language recognized by the
negationof a property with the language of the system. This operationis computed
by thesynchronized productof the state-space and the automata of the formula. It
is thus usually of complexity polynomial over the product ofthe sizes of the au-
tomaton of the LTL formula, and of the state-space itself. However, we construct
our symmetry-aware Symbolic Synchronized Product on the fly, and we adapt the
relationR ′ (our zoom setting) under which we build the successors of a state, to
the arc of the LTL automaton with which it is being synchronized.

Consider the automata corresponding to the nega-
GFED@ABCq0

true

TT

a∧¬b //
��??

GFED@ABC?>=<89:;q1

¬b

TT

Fig. 4: Automata of the
negation of propertyP3

tion of P3 represented figure4. An ω-word (or se-
quence of events) recognized by this automaton is com-
posed of a finite sequence of events (we don’t care
which, synchronizing with the arc true), followed by
an event such thata∧¬b becomes true after the event,
and then¬b always remain true (accepting stateq1).
Such a sequence contradictsP3, thus producing a counter-example. In the SSP
construction, while synchronizing with the arc "true", no asymmetry is introduced
thus all model objects are equivalent, we can zoom out; but a synchronization with
the arc "a∧¬b" forces to individualize the source "s" (zoom in) to allow a correct
symbolic verification.

In the current case, asP3 holds true, the sequences of the synchronized product
that match “a∧¬b” but not “¬b always true” are eventually garbage collected. The
final size of the SSP proving the validity ofP3 is therefore no more than the size of
the quotient graph underR allowing all permutations, as all actions in the SSP end
up synchronizing with the arctrue.

The SSP is a powerful technique, also able to tackle partially symmetric sys-
tems, in which objects behave asymmetrically only in localized parts of the model.
Usually, as the action-based symmetry analysis is global, these local asymmetries
will yield a restrictive relationR, and the graph built underR may be as large as
the concrete state-space. A typically encountered case is distributed systems that
present an initialization phase in which privileged initiators play a different role,
but then all participants behave like symmetrical peers once the system is running.
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SSP addresses this problem (by zooming in just when running the initialization),
but as theµBroker is (by design) fully symmetric, this particular reduction was not
used for our verification. We plan to use this capability in further works, for more
advanced and complex configurations.

6 Verification results and performances

In this section, we detail figures and performance of the verification of theµBroker.

6.1 Modeling and analysing the µBroker

TheMono-Taskingmodel has 47 places, 38 transitions and 134 arcs.Multi-Tasking
model is twice as large. Number of tasks and I/Os has no effecton the size of the
model (it is coded as types for Petri net tokens), the size of the buffer has an impact
on the number of places and transitions.

Figure5 summarizes the size of the state space forBsize= 5 andSmax= 4. Petri
Net models have an average size, yet the state space is large,it denotes the complex-
ity of the system. Its size increases exponentially withTmax andSmax. We also note
that the symbolic reachability graph is smaller by several powers of ten, and that
this ration increases withTmax. Thus, computations can be completed within ac-
ceptable delays on usual workstations, in less than 10 hoursfor the biggest models,
on 2.6GHz Pentium-4 computers with 512MB of memory running GNU/Linux.

From these different figures, we claim that the analysis of PolyORB could not
have been performed without the use of these advanced model checking techniques
because of intrinsic memory limitations of typical workstations. This is depicted in
figure5. It clearly shows an exponential ratio between the concretestate space and
the quotient reachability graph. As an illustration, even for common middleware
configurations (7 threads and 4 I/O sources) the system presents about 1011 states,

12



Hugues, Thierry-Mieg, Kordon, Pautet, Baarir, and Vergnaud

but we could compute and evaluate its properties on a quotient reachability graph
on a computer having 512MB of memory without swapping. We also observe that
the quotient graph evolution decreases. As an example, from4 to 5 threads, the
quotient graph increases by a factor of 80% and from 5 to 6, by afactor of 57%.
At a given stage, it should reach an asymptote (e.g. when adding new threads does
not impact on the system symbolic complexity at all). This isof particular interest
since the state space evolution remains exponential.

The SSP technique brings further reductions as illustratedby figure6, that com-
pares it to the global symmetry approach. It shows how the gain from the reduc-
tion increases as the parameters increase. It is equivalentto the global symmetry
approach for one source (no symmetry to exploit), then offers a polynomial size
reduction overSmax. No value is provided whenSmax reaches 5:Bsize is 4 and the
property is not verified as we have shown in the previous section, thus the the on-
the-fly counter-example production algorithm interrupts state-space examination.

We verified two configurations: we tested LTL formulae representing expected
properties, we extracted scenarios that help dimensioningresources. Our model-
checking tools overcome the complexity of theµBroker model. The verified prop-
erties provide strong evidence that our architecture is correct.

6.2 Assessment of our verification tools

The tools we used have a significant role to achieve verification. Our models were
created using CPN-AMI [15], a Petri net CASE environment that integrates struc-
tural analysis tools and model checkers. We then analyse data type symmetries
[25] and compute the reduced state space using the GreatSPN [7] tool-suite and
extensions for SSP. Finally for LTL model-checking, we usedthe model check-
ing library Spot [16], in conjunction with GreatSPN. All these tools have drivers
available that make them plug-ins, homogeneously accessible from CPN-AMI, and
hiding the complexity of their interactions from the end-user. CPN-AMI and SPOT
are developed in LIP6/SRC. GreatSPN is developed at the Dipartimento di Infor-
matica at the University of Torino. The LTL capabilities of GreatSPN and SSP
computation are the result of a cooperation between Paris and Torino.

An important aspect of the verification process is that both the global struc-
tural analysis of the system and the partial symmetry analysis used in SSP were
computed wholly automatically, thanks to our recently introduced extensions to the
GreatSPN kernel [25,2]. As we tested our properties over a wide range of con-
figurations and parameter values, symmetry analysis "by hand" would have been
unfeasible, and less reliable as it would have required human intervention.

Our symmetry-aware algorithms help us to address the state-space explosion.
The reduced state-space is smaller than the ones produced bytypical algorithms by
a power of ten. This difference increases with the parametersSmax, Tmax, Bsize. This
demonstrates that our tools make it possible to verify complex systems. The use
of formal verification techniques on theµBroker allowed to correct some bugs, and
gives us a much higher level of confidence in the architectureof PolyORB.

13



Hugues, Thierry-Mieg, Kordon, Pautet, Baarir, and Vergnaud

7 Conclusion

In this paper, we focused on middleware architectures and the verification of their
behavioral properties. We outlined current trends in middleware engineering: mul-
tiple architectures exist to support the requirements of DRE systems; yet, verifi-
cation is seldom contemplated. Indeed, verifying a distributed infrastructure is a
complex task as long as middleware development does not integrate very early in
the design process both distribution functions and verification requirements.

We aim at providing a proof-based middleware. We present theSchizophrenic
Middleware Architecture, and detailed steps to verify it. We chose Petri nets as a
modeling language, and LTL to express and then verify its properties.

The schizophrenic architecture emphasizes on the separation of concerns in
middleware: a set of fundamental services covers middleware functional compo-
nents, a Middleware Main Loop coordinates them. Services can be adapted to
support configurability and genericity requirements. thus, our schizophrenic mid-
dleware PolyORB is a good candidate to build proof-based middleware.

We identified the key component that controls the whole middleware behavior
and refined it to define theµBroker pattern. This adaptable component proposes a
complete definition of a middleware main control loop.

We detailed the steps to model and then verify it using Petri nets, a complete
theoretical framework to assess properties of control systems such as theµBroker.
Then, we discussed the verification of several configurations of theµBroker.

We introduced tools and algorithms to achieve verification.The state-space
explosion is a typical problems when modeling system with Petri nets. We present
advanced techniques used to overcome this problem. These techniques allows the
testing of LTL formulas on reduced state space: the quotientstate space. It fully
exploits global and local symmetries of the model. Hence, wecould assessed our
model is fair for incoming requests, without deadlock; we detailed how we can
check that resources are correctly dimensioned. We note that the ratio between the
quotient graph and the complete state space is exponential;the state space evolution
remains exponential since the quotient graph tends to an asymptote. This analysis
could have never been performed using classical model checking techniques.

Thus, we achieved the complete verification of key middleware behavioral prop-
erties. this is a first step towards the construction of a proof-based middleware. To
reach this goal, we had to improve the schizophrenic architecture in order to address
both distribution functions and behavioral verification requirements.

Besides, this analysis of middleware properties provides acase study for the
use of formal methods to verify a complex system. We discussed the application of
advanced techniques to overcome combinatorial explosions, and how to use at best
system information to optimize the verification process.

Later work will consider two main directions. The first one isto apply veri-
fication to more complex configurations (more tasks, more complex policies); but
complete applications involving client and server nodes. The second direction is
to increase the link between models and implementations of theµBroker. We will
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investigate ways to deduce code patterns from our verified formal specifications to
directly produce source code for one middleware configuration. This will increase
confidence in middleware as a COTS to be integrated in critical applications.
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